Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | |
| 2 | // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp -o benchEigenSolver && ./benchEigenSolver |
| 3 | // options: |
| 4 | // -DBENCH_GMM |
| 5 | // -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3 |
| 6 | // -DEIGEN_DONT_VECTORIZE |
| 7 | // -msse2 |
| 8 | // -DREPEAT=100 |
| 9 | // -DTRIES=10 |
| 10 | // -DSCALAR=double |
| 11 | |
| 12 | #include <iostream> |
| 13 | |
| 14 | #include <Eigen/Core> |
| 15 | #include <Eigen/QR> |
| 16 | #include <bench/BenchUtil.h> |
| 17 | using namespace Eigen; |
| 18 | |
| 19 | #ifndef REPEAT |
| 20 | #define REPEAT 1000 |
| 21 | #endif |
| 22 | |
| 23 | #ifndef TRIES |
| 24 | #define TRIES 4 |
| 25 | #endif |
| 26 | |
| 27 | #ifndef SCALAR |
| 28 | #define SCALAR float |
| 29 | #endif |
| 30 | |
| 31 | typedef SCALAR Scalar; |
| 32 | |
| 33 | template <typename MatrixType> |
| 34 | __attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m) |
| 35 | { |
| 36 | int rows = m.rows(); |
| 37 | int cols = m.cols(); |
| 38 | |
| 39 | int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows)))); |
| 40 | int saRepeats = stdRepeats * 4; |
| 41 | |
| 42 | typedef typename MatrixType::Scalar Scalar; |
| 43 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| 44 | |
| 45 | MatrixType a = MatrixType::Random(rows,cols); |
| 46 | SquareMatrixType covMat = a * a.adjoint(); |
| 47 | |
| 48 | BenchTimer timerSa, timerStd; |
| 49 | |
| 50 | Scalar acc = 0; |
| 51 | int r = internal::random<int>(0,covMat.rows()-1); |
| 52 | int c = internal::random<int>(0,covMat.cols()-1); |
| 53 | { |
| 54 | SelfAdjointEigenSolver<SquareMatrixType> ei(covMat); |
| 55 | for (int t=0; t<TRIES; ++t) |
| 56 | { |
| 57 | timerSa.start(); |
| 58 | for (int k=0; k<saRepeats; ++k) |
| 59 | { |
| 60 | ei.compute(covMat); |
| 61 | acc += ei.eigenvectors().coeff(r,c); |
| 62 | } |
| 63 | timerSa.stop(); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | { |
| 68 | EigenSolver<SquareMatrixType> ei(covMat); |
| 69 | for (int t=0; t<TRIES; ++t) |
| 70 | { |
| 71 | timerStd.start(); |
| 72 | for (int k=0; k<stdRepeats; ++k) |
| 73 | { |
| 74 | ei.compute(covMat); |
| 75 | acc += ei.eigenvectors().coeff(r,c); |
| 76 | } |
| 77 | timerStd.stop(); |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | if (MatrixType::RowsAtCompileTime==Dynamic) |
| 82 | std::cout << "dyn "; |
| 83 | else |
| 84 | std::cout << "fixed "; |
| 85 | std::cout << covMat.rows() << " \t" |
| 86 | << timerSa.value() * REPEAT / saRepeats << "s \t" |
| 87 | << timerStd.value() * REPEAT / stdRepeats << "s"; |
| 88 | |
| 89 | #ifdef BENCH_GMM |
| 90 | if (MatrixType::RowsAtCompileTime==Dynamic) |
| 91 | { |
| 92 | timerSa.reset(); |
| 93 | timerStd.reset(); |
| 94 | |
| 95 | gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols()); |
| 96 | gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols()); |
| 97 | std::vector<Scalar> eigval(covMat.rows()); |
| 98 | eiToGmm(covMat, gmmCovMat); |
| 99 | for (int t=0; t<TRIES; ++t) |
| 100 | { |
| 101 | timerSa.start(); |
| 102 | for (int k=0; k<saRepeats; ++k) |
| 103 | { |
| 104 | gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect); |
| 105 | acc += eigvect(r,c); |
| 106 | } |
| 107 | timerSa.stop(); |
| 108 | } |
| 109 | // the non-selfadjoint solver does not compute the eigen vectors |
| 110 | // for (int t=0; t<TRIES; ++t) |
| 111 | // { |
| 112 | // timerStd.start(); |
| 113 | // for (int k=0; k<stdRepeats; ++k) |
| 114 | // { |
| 115 | // gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect); |
| 116 | // acc += eigvect(r,c); |
| 117 | // } |
| 118 | // timerStd.stop(); |
| 119 | // } |
| 120 | |
| 121 | std::cout << " | \t" |
| 122 | << timerSa.value() * REPEAT / saRepeats << "s" |
| 123 | << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ " na "; |
| 124 | } |
| 125 | #endif |
| 126 | |
| 127 | #ifdef BENCH_GSL |
| 128 | if (MatrixType::RowsAtCompileTime==Dynamic) |
| 129 | { |
| 130 | timerSa.reset(); |
| 131 | timerStd.reset(); |
| 132 | |
| 133 | gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols()); |
| 134 | gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols()); |
| 135 | gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols()); |
| 136 | gsl_vector* eigval = gsl_vector_alloc(covMat.rows()); |
| 137 | gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows()); |
| 138 | |
| 139 | gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols()); |
| 140 | gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows()); |
| 141 | gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows()); |
| 142 | |
| 143 | eiToGsl(covMat, &gslCovMat); |
| 144 | for (int t=0; t<TRIES; ++t) |
| 145 | { |
| 146 | timerSa.start(); |
| 147 | for (int k=0; k<saRepeats; ++k) |
| 148 | { |
| 149 | gsl_matrix_memcpy(gslCopy,gslCovMat); |
| 150 | gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm); |
| 151 | acc += gsl_matrix_get(eigvect,r,c); |
| 152 | } |
| 153 | timerSa.stop(); |
| 154 | } |
| 155 | for (int t=0; t<TRIES; ++t) |
| 156 | { |
| 157 | timerStd.start(); |
| 158 | for (int k=0; k<stdRepeats; ++k) |
| 159 | { |
| 160 | gsl_matrix_memcpy(gslCopy,gslCovMat); |
| 161 | gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm); |
| 162 | acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c)); |
| 163 | } |
| 164 | timerStd.stop(); |
| 165 | } |
| 166 | |
| 167 | std::cout << " | \t" |
| 168 | << timerSa.value() * REPEAT / saRepeats << "s \t" |
| 169 | << timerStd.value() * REPEAT / stdRepeats << "s"; |
| 170 | |
| 171 | gsl_matrix_free(gslCovMat); |
| 172 | gsl_vector_free(gslCopy); |
| 173 | gsl_matrix_free(eigvect); |
| 174 | gsl_vector_free(eigval); |
| 175 | gsl_matrix_complex_free(eigvectz); |
| 176 | gsl_vector_complex_free(eigvalz); |
| 177 | gsl_eigen_symmv_free(eisymm); |
| 178 | gsl_eigen_nonsymmv_free(einonsymm); |
| 179 | } |
| 180 | #endif |
| 181 | |
| 182 | std::cout << "\n"; |
| 183 | |
| 184 | // make sure the compiler does not optimize too much |
| 185 | if (acc==123) |
| 186 | std::cout << acc; |
| 187 | } |
| 188 | |
| 189 | int main(int argc, char* argv[]) |
| 190 | { |
| 191 | const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0}; |
| 192 | std::cout << "size selfadjoint generic"; |
| 193 | #ifdef BENCH_GMM |
| 194 | std::cout << " GMM++ "; |
| 195 | #endif |
| 196 | #ifdef BENCH_GSL |
| 197 | std::cout << " GSL (double + ATLAS) "; |
| 198 | #endif |
| 199 | std::cout << "\n"; |
| 200 | for (uint i=0; dynsizes[i]>0; ++i) |
| 201 | benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i])); |
| 202 | |
| 203 | benchEigenSolver(Matrix<Scalar,2,2>()); |
| 204 | benchEigenSolver(Matrix<Scalar,3,3>()); |
| 205 | benchEigenSolver(Matrix<Scalar,4,4>()); |
| 206 | benchEigenSolver(Matrix<Scalar,6,6>()); |
| 207 | benchEigenSolver(Matrix<Scalar,8,8>()); |
| 208 | benchEigenSolver(Matrix<Scalar,12,12>()); |
| 209 | benchEigenSolver(Matrix<Scalar,16,16>()); |
| 210 | return 0; |
| 211 | } |
| 212 | |