Austin Schuh | a273376 | 2015-09-06 17:46:50 -0700 | [diff] [blame] | 1 | /* $OpenBSD: queue.h,v 1.16 2000/09/07 19:47:59 art Exp $ */ |
| 2 | /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */ |
| 3 | |
| 4 | /* |
| 5 | * Copyright (c) 1991, 1993 |
| 6 | * The Regents of the University of California. All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * 3. Neither the name of the University nor the names of its contributors |
| 17 | * may be used to endorse or promote products derived from this software |
| 18 | * without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 21 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 22 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 23 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 24 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 25 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 26 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 27 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 28 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 29 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 30 | * SUCH DAMAGE. |
| 31 | * |
| 32 | * @(#)queue.h 8.5 (Berkeley) 8/20/94 |
| 33 | */ |
| 34 | |
| 35 | #ifndef _SYS_QUEUE_H_ |
| 36 | #define _SYS_QUEUE_H_ |
| 37 | |
| 38 | /* |
| 39 | * This file defines five types of data structures: singly-linked lists, |
| 40 | * lists, simple queues, tail queues, and circular queues. |
| 41 | * |
| 42 | * |
| 43 | * A singly-linked list is headed by a single forward pointer. The elements |
| 44 | * are singly linked for minimum space and pointer manipulation overhead at |
| 45 | * the expense of O(n) removal for arbitrary elements. New elements can be |
| 46 | * added to the list after an existing element or at the head of the list. |
| 47 | * Elements being removed from the head of the list should use the explicit |
| 48 | * macro for this purpose for optimum efficiency. A singly-linked list may |
| 49 | * only be traversed in the forward direction. Singly-linked lists are ideal |
| 50 | * for applications with large datasets and few or no removals or for |
| 51 | * implementing a LIFO queue. |
| 52 | * |
| 53 | * A list is headed by a single forward pointer (or an array of forward |
| 54 | * pointers for a hash table header). The elements are doubly linked |
| 55 | * so that an arbitrary element can be removed without a need to |
| 56 | * traverse the list. New elements can be added to the list before |
| 57 | * or after an existing element or at the head of the list. A list |
| 58 | * may only be traversed in the forward direction. |
| 59 | * |
| 60 | * A simple queue is headed by a pair of pointers, one the head of the |
| 61 | * list and the other to the tail of the list. The elements are singly |
| 62 | * linked to save space, so elements can only be removed from the |
| 63 | * head of the list. New elements can be added to the list before or after |
| 64 | * an existing element, at the head of the list, or at the end of the |
| 65 | * list. A simple queue may only be traversed in the forward direction. |
| 66 | * |
| 67 | * A tail queue is headed by a pair of pointers, one to the head of the |
| 68 | * list and the other to the tail of the list. The elements are doubly |
| 69 | * linked so that an arbitrary element can be removed without a need to |
| 70 | * traverse the list. New elements can be added to the list before or |
| 71 | * after an existing element, at the head of the list, or at the end of |
| 72 | * the list. A tail queue may be traversed in either direction. |
| 73 | * |
| 74 | * A circle queue is headed by a pair of pointers, one to the head of the |
| 75 | * list and the other to the tail of the list. The elements are doubly |
| 76 | * linked so that an arbitrary element can be removed without a need to |
| 77 | * traverse the list. New elements can be added to the list before or after |
| 78 | * an existing element, at the head of the list, or at the end of the list. |
| 79 | * A circle queue may be traversed in either direction, but has a more |
| 80 | * complex end of list detection. |
| 81 | * |
| 82 | * For details on the use of these macros, see the queue(3) manual page. |
| 83 | */ |
| 84 | |
| 85 | /* |
| 86 | * Singly-linked List definitions. |
| 87 | */ |
| 88 | #define SLIST_HEAD(name, type) \ |
| 89 | struct name { \ |
| 90 | struct type *slh_first; /* first element */ \ |
| 91 | } |
| 92 | |
| 93 | #define SLIST_HEAD_INITIALIZER(head) \ |
| 94 | { NULL } |
| 95 | |
| 96 | #ifndef WIN32 |
| 97 | #define SLIST_ENTRY(type) \ |
| 98 | struct { \ |
| 99 | struct type *sle_next; /* next element */ \ |
| 100 | } |
| 101 | #endif |
| 102 | |
| 103 | /* |
| 104 | * Singly-linked List access methods. |
| 105 | */ |
| 106 | #define SLIST_FIRST(head) ((head)->slh_first) |
| 107 | #define SLIST_END(head) NULL |
| 108 | #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head)) |
| 109 | #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) |
| 110 | |
| 111 | #define SLIST_FOREACH(var, head, field) \ |
| 112 | for((var) = SLIST_FIRST(head); \ |
| 113 | (var) != SLIST_END(head); \ |
| 114 | (var) = SLIST_NEXT(var, field)) |
| 115 | |
| 116 | /* |
| 117 | * Singly-linked List functions. |
| 118 | */ |
| 119 | #define SLIST_INIT(head) { \ |
| 120 | SLIST_FIRST(head) = SLIST_END(head); \ |
| 121 | } |
| 122 | |
| 123 | #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ |
| 124 | (elm)->field.sle_next = (slistelm)->field.sle_next; \ |
| 125 | (slistelm)->field.sle_next = (elm); \ |
| 126 | } while (0) |
| 127 | |
| 128 | #define SLIST_INSERT_HEAD(head, elm, field) do { \ |
| 129 | (elm)->field.sle_next = (head)->slh_first; \ |
| 130 | (head)->slh_first = (elm); \ |
| 131 | } while (0) |
| 132 | |
| 133 | #define SLIST_REMOVE_HEAD(head, field) do { \ |
| 134 | (head)->slh_first = (head)->slh_first->field.sle_next; \ |
| 135 | } while (0) |
| 136 | |
| 137 | /* |
| 138 | * List definitions. |
| 139 | */ |
| 140 | #define LIST_HEAD(name, type) \ |
| 141 | struct name { \ |
| 142 | struct type *lh_first; /* first element */ \ |
| 143 | } |
| 144 | |
| 145 | #define LIST_HEAD_INITIALIZER(head) \ |
| 146 | { NULL } |
| 147 | |
| 148 | #define LIST_ENTRY(type) \ |
| 149 | struct { \ |
| 150 | struct type *le_next; /* next element */ \ |
| 151 | struct type **le_prev; /* address of previous next element */ \ |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * List access methods |
| 156 | */ |
| 157 | #define LIST_FIRST(head) ((head)->lh_first) |
| 158 | #define LIST_END(head) NULL |
| 159 | #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head)) |
| 160 | #define LIST_NEXT(elm, field) ((elm)->field.le_next) |
| 161 | |
| 162 | #define LIST_FOREACH(var, head, field) \ |
| 163 | for((var) = LIST_FIRST(head); \ |
| 164 | (var)!= LIST_END(head); \ |
| 165 | (var) = LIST_NEXT(var, field)) |
| 166 | |
| 167 | /* |
| 168 | * List functions. |
| 169 | */ |
| 170 | #define LIST_INIT(head) do { \ |
| 171 | LIST_FIRST(head) = LIST_END(head); \ |
| 172 | } while (0) |
| 173 | |
| 174 | #define LIST_INSERT_AFTER(listelm, elm, field) do { \ |
| 175 | if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ |
| 176 | (listelm)->field.le_next->field.le_prev = \ |
| 177 | &(elm)->field.le_next; \ |
| 178 | (listelm)->field.le_next = (elm); \ |
| 179 | (elm)->field.le_prev = &(listelm)->field.le_next; \ |
| 180 | } while (0) |
| 181 | |
| 182 | #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ |
| 183 | (elm)->field.le_prev = (listelm)->field.le_prev; \ |
| 184 | (elm)->field.le_next = (listelm); \ |
| 185 | *(listelm)->field.le_prev = (elm); \ |
| 186 | (listelm)->field.le_prev = &(elm)->field.le_next; \ |
| 187 | } while (0) |
| 188 | |
| 189 | #define LIST_INSERT_HEAD(head, elm, field) do { \ |
| 190 | if (((elm)->field.le_next = (head)->lh_first) != NULL) \ |
| 191 | (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ |
| 192 | (head)->lh_first = (elm); \ |
| 193 | (elm)->field.le_prev = &(head)->lh_first; \ |
| 194 | } while (0) |
| 195 | |
| 196 | #define LIST_REMOVE(elm, field) do { \ |
| 197 | if ((elm)->field.le_next != NULL) \ |
| 198 | (elm)->field.le_next->field.le_prev = \ |
| 199 | (elm)->field.le_prev; \ |
| 200 | *(elm)->field.le_prev = (elm)->field.le_next; \ |
| 201 | } while (0) |
| 202 | |
| 203 | #define LIST_REPLACE(elm, elm2, field) do { \ |
| 204 | if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \ |
| 205 | (elm2)->field.le_next->field.le_prev = \ |
| 206 | &(elm2)->field.le_next; \ |
| 207 | (elm2)->field.le_prev = (elm)->field.le_prev; \ |
| 208 | *(elm2)->field.le_prev = (elm2); \ |
| 209 | } while (0) |
| 210 | |
| 211 | /* |
| 212 | * Simple queue definitions. |
| 213 | */ |
| 214 | #define SIMPLEQ_HEAD(name, type) \ |
| 215 | struct name { \ |
| 216 | struct type *sqh_first; /* first element */ \ |
| 217 | struct type **sqh_last; /* addr of last next element */ \ |
| 218 | } |
| 219 | |
| 220 | #define SIMPLEQ_HEAD_INITIALIZER(head) \ |
| 221 | { NULL, &(head).sqh_first } |
| 222 | |
| 223 | #define SIMPLEQ_ENTRY(type) \ |
| 224 | struct { \ |
| 225 | struct type *sqe_next; /* next element */ \ |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * Simple queue access methods. |
| 230 | */ |
| 231 | #define SIMPLEQ_FIRST(head) ((head)->sqh_first) |
| 232 | #define SIMPLEQ_END(head) NULL |
| 233 | #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head)) |
| 234 | #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next) |
| 235 | |
| 236 | #define SIMPLEQ_FOREACH(var, head, field) \ |
| 237 | for((var) = SIMPLEQ_FIRST(head); \ |
| 238 | (var) != SIMPLEQ_END(head); \ |
| 239 | (var) = SIMPLEQ_NEXT(var, field)) |
| 240 | |
| 241 | /* |
| 242 | * Simple queue functions. |
| 243 | */ |
| 244 | #define SIMPLEQ_INIT(head) do { \ |
| 245 | (head)->sqh_first = NULL; \ |
| 246 | (head)->sqh_last = &(head)->sqh_first; \ |
| 247 | } while (0) |
| 248 | |
| 249 | #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \ |
| 250 | if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \ |
| 251 | (head)->sqh_last = &(elm)->field.sqe_next; \ |
| 252 | (head)->sqh_first = (elm); \ |
| 253 | } while (0) |
| 254 | |
| 255 | #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \ |
| 256 | (elm)->field.sqe_next = NULL; \ |
| 257 | *(head)->sqh_last = (elm); \ |
| 258 | (head)->sqh_last = &(elm)->field.sqe_next; \ |
| 259 | } while (0) |
| 260 | |
| 261 | #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| 262 | if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\ |
| 263 | (head)->sqh_last = &(elm)->field.sqe_next; \ |
| 264 | (listelm)->field.sqe_next = (elm); \ |
| 265 | } while (0) |
| 266 | |
| 267 | #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \ |
| 268 | if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \ |
| 269 | (head)->sqh_last = &(head)->sqh_first; \ |
| 270 | } while (0) |
| 271 | |
| 272 | /* |
| 273 | * Tail queue definitions. |
| 274 | */ |
| 275 | #define TAILQ_HEAD(name, type) \ |
| 276 | struct name { \ |
| 277 | struct type *tqh_first; /* first element */ \ |
| 278 | struct type **tqh_last; /* addr of last next element */ \ |
| 279 | } |
| 280 | |
| 281 | #define TAILQ_HEAD_INITIALIZER(head) \ |
| 282 | { NULL, &(head).tqh_first } |
| 283 | |
| 284 | #define TAILQ_ENTRY(type) \ |
| 285 | struct { \ |
| 286 | struct type *tqe_next; /* next element */ \ |
| 287 | struct type **tqe_prev; /* address of previous next element */ \ |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * tail queue access methods |
| 292 | */ |
| 293 | #define TAILQ_FIRST(head) ((head)->tqh_first) |
| 294 | #define TAILQ_END(head) NULL |
| 295 | #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) |
| 296 | #define TAILQ_LAST(head, headname) \ |
| 297 | (*(((struct headname *)((head)->tqh_last))->tqh_last)) |
| 298 | /* XXX */ |
| 299 | #define TAILQ_PREV(elm, headname, field) \ |
| 300 | (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) |
| 301 | #define TAILQ_EMPTY(head) \ |
| 302 | (TAILQ_FIRST(head) == TAILQ_END(head)) |
| 303 | |
| 304 | #define TAILQ_FOREACH(var, head, field) \ |
| 305 | for((var) = TAILQ_FIRST(head); \ |
| 306 | (var) != TAILQ_END(head); \ |
| 307 | (var) = TAILQ_NEXT(var, field)) |
| 308 | |
| 309 | #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ |
| 310 | for((var) = TAILQ_LAST(head, headname); \ |
| 311 | (var) != TAILQ_END(head); \ |
| 312 | (var) = TAILQ_PREV(var, headname, field)) |
| 313 | |
| 314 | /* |
| 315 | * Tail queue functions. |
| 316 | */ |
| 317 | #define TAILQ_INIT(head) do { \ |
| 318 | (head)->tqh_first = NULL; \ |
| 319 | (head)->tqh_last = &(head)->tqh_first; \ |
| 320 | } while (0) |
| 321 | |
| 322 | #define TAILQ_INSERT_HEAD(head, elm, field) do { \ |
| 323 | if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ |
| 324 | (head)->tqh_first->field.tqe_prev = \ |
| 325 | &(elm)->field.tqe_next; \ |
| 326 | else \ |
| 327 | (head)->tqh_last = &(elm)->field.tqe_next; \ |
| 328 | (head)->tqh_first = (elm); \ |
| 329 | (elm)->field.tqe_prev = &(head)->tqh_first; \ |
| 330 | } while (0) |
| 331 | |
| 332 | #define TAILQ_INSERT_TAIL(head, elm, field) do { \ |
| 333 | (elm)->field.tqe_next = NULL; \ |
| 334 | (elm)->field.tqe_prev = (head)->tqh_last; \ |
| 335 | *(head)->tqh_last = (elm); \ |
| 336 | (head)->tqh_last = &(elm)->field.tqe_next; \ |
| 337 | } while (0) |
| 338 | |
| 339 | #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| 340 | if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ |
| 341 | (elm)->field.tqe_next->field.tqe_prev = \ |
| 342 | &(elm)->field.tqe_next; \ |
| 343 | else \ |
| 344 | (head)->tqh_last = &(elm)->field.tqe_next; \ |
| 345 | (listelm)->field.tqe_next = (elm); \ |
| 346 | (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ |
| 347 | } while (0) |
| 348 | |
| 349 | #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ |
| 350 | (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ |
| 351 | (elm)->field.tqe_next = (listelm); \ |
| 352 | *(listelm)->field.tqe_prev = (elm); \ |
| 353 | (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ |
| 354 | } while (0) |
| 355 | |
| 356 | #define TAILQ_REMOVE(head, elm, field) do { \ |
| 357 | if (((elm)->field.tqe_next) != NULL) \ |
| 358 | (elm)->field.tqe_next->field.tqe_prev = \ |
| 359 | (elm)->field.tqe_prev; \ |
| 360 | else \ |
| 361 | (head)->tqh_last = (elm)->field.tqe_prev; \ |
| 362 | *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ |
| 363 | } while (0) |
| 364 | |
| 365 | #define TAILQ_REPLACE(head, elm, elm2, field) do { \ |
| 366 | if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \ |
| 367 | (elm2)->field.tqe_next->field.tqe_prev = \ |
| 368 | &(elm2)->field.tqe_next; \ |
| 369 | else \ |
| 370 | (head)->tqh_last = &(elm2)->field.tqe_next; \ |
| 371 | (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \ |
| 372 | *(elm2)->field.tqe_prev = (elm2); \ |
| 373 | } while (0) |
| 374 | |
| 375 | /* |
| 376 | * Circular queue definitions. |
| 377 | */ |
| 378 | #define CIRCLEQ_HEAD(name, type) \ |
| 379 | struct name { \ |
| 380 | struct type *cqh_first; /* first element */ \ |
| 381 | struct type *cqh_last; /* last element */ \ |
| 382 | } |
| 383 | |
| 384 | #define CIRCLEQ_HEAD_INITIALIZER(head) \ |
| 385 | { CIRCLEQ_END(&head), CIRCLEQ_END(&head) } |
| 386 | |
| 387 | #define CIRCLEQ_ENTRY(type) \ |
| 388 | struct { \ |
| 389 | struct type *cqe_next; /* next element */ \ |
| 390 | struct type *cqe_prev; /* previous element */ \ |
| 391 | } |
| 392 | |
| 393 | /* |
| 394 | * Circular queue access methods |
| 395 | */ |
| 396 | #define CIRCLEQ_FIRST(head) ((head)->cqh_first) |
| 397 | #define CIRCLEQ_LAST(head) ((head)->cqh_last) |
| 398 | #define CIRCLEQ_END(head) ((void *)(head)) |
| 399 | #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next) |
| 400 | #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev) |
| 401 | #define CIRCLEQ_EMPTY(head) \ |
| 402 | (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head)) |
| 403 | |
| 404 | #define CIRCLEQ_FOREACH(var, head, field) \ |
| 405 | for((var) = CIRCLEQ_FIRST(head); \ |
| 406 | (var) != CIRCLEQ_END(head); \ |
| 407 | (var) = CIRCLEQ_NEXT(var, field)) |
| 408 | |
| 409 | #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ |
| 410 | for((var) = CIRCLEQ_LAST(head); \ |
| 411 | (var) != CIRCLEQ_END(head); \ |
| 412 | (var) = CIRCLEQ_PREV(var, field)) |
| 413 | |
| 414 | /* |
| 415 | * Circular queue functions. |
| 416 | */ |
| 417 | #define CIRCLEQ_INIT(head) do { \ |
| 418 | (head)->cqh_first = CIRCLEQ_END(head); \ |
| 419 | (head)->cqh_last = CIRCLEQ_END(head); \ |
| 420 | } while (0) |
| 421 | |
| 422 | #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| 423 | (elm)->field.cqe_next = (listelm)->field.cqe_next; \ |
| 424 | (elm)->field.cqe_prev = (listelm); \ |
| 425 | if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \ |
| 426 | (head)->cqh_last = (elm); \ |
| 427 | else \ |
| 428 | (listelm)->field.cqe_next->field.cqe_prev = (elm); \ |
| 429 | (listelm)->field.cqe_next = (elm); \ |
| 430 | } while (0) |
| 431 | |
| 432 | #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ |
| 433 | (elm)->field.cqe_next = (listelm); \ |
| 434 | (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ |
| 435 | if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \ |
| 436 | (head)->cqh_first = (elm); \ |
| 437 | else \ |
| 438 | (listelm)->field.cqe_prev->field.cqe_next = (elm); \ |
| 439 | (listelm)->field.cqe_prev = (elm); \ |
| 440 | } while (0) |
| 441 | |
| 442 | #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ |
| 443 | (elm)->field.cqe_next = (head)->cqh_first; \ |
| 444 | (elm)->field.cqe_prev = CIRCLEQ_END(head); \ |
| 445 | if ((head)->cqh_last == CIRCLEQ_END(head)) \ |
| 446 | (head)->cqh_last = (elm); \ |
| 447 | else \ |
| 448 | (head)->cqh_first->field.cqe_prev = (elm); \ |
| 449 | (head)->cqh_first = (elm); \ |
| 450 | } while (0) |
| 451 | |
| 452 | #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ |
| 453 | (elm)->field.cqe_next = CIRCLEQ_END(head); \ |
| 454 | (elm)->field.cqe_prev = (head)->cqh_last; \ |
| 455 | if ((head)->cqh_first == CIRCLEQ_END(head)) \ |
| 456 | (head)->cqh_first = (elm); \ |
| 457 | else \ |
| 458 | (head)->cqh_last->field.cqe_next = (elm); \ |
| 459 | (head)->cqh_last = (elm); \ |
| 460 | } while (0) |
| 461 | |
| 462 | #define CIRCLEQ_REMOVE(head, elm, field) do { \ |
| 463 | if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \ |
| 464 | (head)->cqh_last = (elm)->field.cqe_prev; \ |
| 465 | else \ |
| 466 | (elm)->field.cqe_next->field.cqe_prev = \ |
| 467 | (elm)->field.cqe_prev; \ |
| 468 | if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \ |
| 469 | (head)->cqh_first = (elm)->field.cqe_next; \ |
| 470 | else \ |
| 471 | (elm)->field.cqe_prev->field.cqe_next = \ |
| 472 | (elm)->field.cqe_next; \ |
| 473 | } while (0) |
| 474 | |
| 475 | #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \ |
| 476 | if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \ |
| 477 | CIRCLEQ_END(head)) \ |
| 478 | (head).cqh_last = (elm2); \ |
| 479 | else \ |
| 480 | (elm2)->field.cqe_next->field.cqe_prev = (elm2); \ |
| 481 | if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \ |
| 482 | CIRCLEQ_END(head)) \ |
| 483 | (head).cqh_first = (elm2); \ |
| 484 | else \ |
| 485 | (elm2)->field.cqe_prev->field.cqe_next = (elm2); \ |
| 486 | } while (0) |
| 487 | |
| 488 | #endif /* !_SYS_QUEUE_H_ */ |