Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1 | // Copyright 2017 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "absl/synchronization/mutex.h" |
| 16 | |
| 17 | #ifdef _WIN32 |
| 18 | #include <windows.h> |
| 19 | #ifdef ERROR |
| 20 | #undef ERROR |
| 21 | #endif |
| 22 | #else |
| 23 | #include <fcntl.h> |
| 24 | #include <pthread.h> |
| 25 | #include <sched.h> |
| 26 | #include <sys/time.h> |
| 27 | #endif |
| 28 | |
| 29 | #include <assert.h> |
| 30 | #include <errno.h> |
| 31 | #include <stdio.h> |
| 32 | #include <stdlib.h> |
| 33 | #include <string.h> |
| 34 | #include <time.h> |
| 35 | |
| 36 | #include <algorithm> |
| 37 | #include <atomic> |
| 38 | #include <cinttypes> |
| 39 | #include <thread> // NOLINT(build/c++11) |
| 40 | |
| 41 | #include "absl/base/attributes.h" |
| 42 | #include "absl/base/config.h" |
| 43 | #include "absl/base/dynamic_annotations.h" |
| 44 | #include "absl/base/internal/atomic_hook.h" |
| 45 | #include "absl/base/internal/cycleclock.h" |
| 46 | #include "absl/base/internal/hide_ptr.h" |
| 47 | #include "absl/base/internal/low_level_alloc.h" |
| 48 | #include "absl/base/internal/raw_logging.h" |
| 49 | #include "absl/base/internal/spinlock.h" |
| 50 | #include "absl/base/internal/sysinfo.h" |
| 51 | #include "absl/base/internal/thread_identity.h" |
| 52 | #include "absl/base/port.h" |
| 53 | #include "absl/debugging/stacktrace.h" |
| 54 | #include "absl/debugging/symbolize.h" |
| 55 | #include "absl/synchronization/internal/graphcycles.h" |
| 56 | #include "absl/synchronization/internal/per_thread_sem.h" |
| 57 | #include "absl/time/time.h" |
| 58 | |
| 59 | using absl::base_internal::CurrentThreadIdentityIfPresent; |
| 60 | using absl::base_internal::PerThreadSynch; |
| 61 | using absl::base_internal::ThreadIdentity; |
| 62 | using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity; |
| 63 | using absl::synchronization_internal::GraphCycles; |
| 64 | using absl::synchronization_internal::GraphId; |
| 65 | using absl::synchronization_internal::InvalidGraphId; |
| 66 | using absl::synchronization_internal::KernelTimeout; |
| 67 | using absl::synchronization_internal::PerThreadSem; |
| 68 | |
| 69 | extern "C" { |
| 70 | ABSL_ATTRIBUTE_WEAK void AbslInternalMutexYield() { std::this_thread::yield(); } |
| 71 | } // extern "C" |
| 72 | |
| 73 | namespace absl { |
| 74 | |
| 75 | namespace { |
| 76 | |
| 77 | #if defined(THREAD_SANITIZER) |
| 78 | constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore; |
| 79 | #else |
| 80 | constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort; |
| 81 | #endif |
| 82 | |
| 83 | ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection( |
| 84 | kDeadlockDetectionDefault); |
| 85 | ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false); |
| 86 | |
| 87 | // ------------------------------------------ spinlock support |
| 88 | |
| 89 | // Make sure read-only globals used in the Mutex code are contained on the |
| 90 | // same cacheline and cacheline aligned to eliminate any false sharing with |
| 91 | // other globals from this and other modules. |
| 92 | static struct MutexGlobals { |
| 93 | MutexGlobals() { |
| 94 | // Find machine-specific data needed for Delay() and |
| 95 | // TryAcquireWithSpinning(). This runs in the global constructor |
| 96 | // sequence, and before that zeros are safe values. |
| 97 | num_cpus = absl::base_internal::NumCPUs(); |
| 98 | spinloop_iterations = num_cpus > 1 ? 1500 : 0; |
| 99 | } |
| 100 | int num_cpus; |
| 101 | int spinloop_iterations; |
| 102 | // Pad this struct to a full cacheline to prevent false sharing. |
| 103 | char padding[ABSL_CACHELINE_SIZE - 2 * sizeof(int)]; |
| 104 | } ABSL_CACHELINE_ALIGNED mutex_globals; |
| 105 | static_assert( |
| 106 | sizeof(MutexGlobals) == ABSL_CACHELINE_SIZE, |
| 107 | "MutexGlobals must occupy an entire cacheline to prevent false sharing"); |
| 108 | |
| 109 | ABSL_CONST_INIT absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)> |
| 110 | submit_profile_data; |
| 111 | ABSL_CONST_INIT absl::base_internal::AtomicHook< |
| 112 | void (*)(const char *msg, const void *obj, int64_t wait_cycles)> mutex_tracer; |
| 113 | ABSL_CONST_INIT absl::base_internal::AtomicHook< |
| 114 | void (*)(const char *msg, const void *cv)> cond_var_tracer; |
| 115 | ABSL_CONST_INIT absl::base_internal::AtomicHook< |
| 116 | bool (*)(const void *pc, char *out, int out_size)> |
| 117 | symbolizer(absl::Symbolize); |
| 118 | |
| 119 | } // namespace |
| 120 | |
| 121 | static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, |
| 122 | bool locking, bool trylock, |
| 123 | bool read_lock); |
| 124 | |
| 125 | void RegisterMutexProfiler(void (*fn)(int64_t wait_timestamp)) { |
| 126 | submit_profile_data.Store(fn); |
| 127 | } |
| 128 | |
| 129 | void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj, |
| 130 | int64_t wait_cycles)) { |
| 131 | mutex_tracer.Store(fn); |
| 132 | } |
| 133 | |
| 134 | void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv)) { |
| 135 | cond_var_tracer.Store(fn); |
| 136 | } |
| 137 | |
| 138 | void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size)) { |
| 139 | symbolizer.Store(fn); |
| 140 | } |
| 141 | |
| 142 | // spinlock delay on iteration c. Returns new c. |
| 143 | namespace { |
| 144 | enum DelayMode { AGGRESSIVE, GENTLE }; |
| 145 | }; |
| 146 | static int Delay(int32_t c, DelayMode mode) { |
| 147 | // If this a uniprocessor, only yield/sleep. Otherwise, if the mode is |
| 148 | // aggressive then spin many times before yielding. If the mode is |
| 149 | // gentle then spin only a few times before yielding. Aggressive spinning is |
| 150 | // used to ensure that an Unlock() call, which must get the spin lock for |
| 151 | // any thread to make progress gets it without undue delay. |
| 152 | int32_t limit = (mutex_globals.num_cpus > 1) ? |
| 153 | ((mode == AGGRESSIVE) ? 5000 : 250) : 0; |
| 154 | if (c < limit) { |
| 155 | c++; // spin |
| 156 | } else { |
| 157 | ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0); |
| 158 | if (c == limit) { // yield once |
| 159 | AbslInternalMutexYield(); |
| 160 | c++; |
| 161 | } else { // then wait |
| 162 | absl::SleepFor(absl::Microseconds(10)); |
| 163 | c = 0; |
| 164 | } |
| 165 | ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0); |
| 166 | } |
| 167 | return (c); |
| 168 | } |
| 169 | |
| 170 | // --------------------------Generic atomic ops |
| 171 | // Ensure that "(*pv & bits) == bits" by doing an atomic update of "*pv" to |
| 172 | // "*pv | bits" if necessary. Wait until (*pv & wait_until_clear)==0 |
| 173 | // before making any change. |
| 174 | // This is used to set flags in mutex and condition variable words. |
| 175 | static void AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits, |
| 176 | intptr_t wait_until_clear) { |
| 177 | intptr_t v; |
| 178 | do { |
| 179 | v = pv->load(std::memory_order_relaxed); |
| 180 | } while ((v & bits) != bits && |
| 181 | ((v & wait_until_clear) != 0 || |
| 182 | !pv->compare_exchange_weak(v, v | bits, |
| 183 | std::memory_order_release, |
| 184 | std::memory_order_relaxed))); |
| 185 | } |
| 186 | |
| 187 | // Ensure that "(*pv & bits) == 0" by doing an atomic update of "*pv" to |
| 188 | // "*pv & ~bits" if necessary. Wait until (*pv & wait_until_clear)==0 |
| 189 | // before making any change. |
| 190 | // This is used to unset flags in mutex and condition variable words. |
| 191 | static void AtomicClearBits(std::atomic<intptr_t>* pv, intptr_t bits, |
| 192 | intptr_t wait_until_clear) { |
| 193 | intptr_t v; |
| 194 | do { |
| 195 | v = pv->load(std::memory_order_relaxed); |
| 196 | } while ((v & bits) != 0 && |
| 197 | ((v & wait_until_clear) != 0 || |
| 198 | !pv->compare_exchange_weak(v, v & ~bits, |
| 199 | std::memory_order_release, |
| 200 | std::memory_order_relaxed))); |
| 201 | } |
| 202 | |
| 203 | //------------------------------------------------------------------ |
| 204 | |
| 205 | // Data for doing deadlock detection. |
| 206 | static absl::base_internal::SpinLock deadlock_graph_mu( |
| 207 | absl::base_internal::kLinkerInitialized); |
| 208 | |
| 209 | // graph used to detect deadlocks. |
| 210 | static GraphCycles *deadlock_graph ABSL_GUARDED_BY(deadlock_graph_mu) |
| 211 | ABSL_PT_GUARDED_BY(deadlock_graph_mu); |
| 212 | |
| 213 | //------------------------------------------------------------------ |
| 214 | // An event mechanism for debugging mutex use. |
| 215 | // It also allows mutexes to be given names for those who can't handle |
| 216 | // addresses, and instead like to give their data structures names like |
| 217 | // "Henry", "Fido", or "Rupert IV, King of Yondavia". |
| 218 | |
| 219 | namespace { // to prevent name pollution |
| 220 | enum { // Mutex and CondVar events passed as "ev" to PostSynchEvent |
| 221 | // Mutex events |
| 222 | SYNCH_EV_TRYLOCK_SUCCESS, |
| 223 | SYNCH_EV_TRYLOCK_FAILED, |
| 224 | SYNCH_EV_READERTRYLOCK_SUCCESS, |
| 225 | SYNCH_EV_READERTRYLOCK_FAILED, |
| 226 | SYNCH_EV_LOCK, |
| 227 | SYNCH_EV_LOCK_RETURNING, |
| 228 | SYNCH_EV_READERLOCK, |
| 229 | SYNCH_EV_READERLOCK_RETURNING, |
| 230 | SYNCH_EV_UNLOCK, |
| 231 | SYNCH_EV_READERUNLOCK, |
| 232 | |
| 233 | // CondVar events |
| 234 | SYNCH_EV_WAIT, |
| 235 | SYNCH_EV_WAIT_RETURNING, |
| 236 | SYNCH_EV_SIGNAL, |
| 237 | SYNCH_EV_SIGNALALL, |
| 238 | }; |
| 239 | |
| 240 | enum { // Event flags |
| 241 | SYNCH_F_R = 0x01, // reader event |
| 242 | SYNCH_F_LCK = 0x02, // PostSynchEvent called with mutex held |
| 243 | SYNCH_F_TRY = 0x04, // TryLock or ReaderTryLock |
| 244 | SYNCH_F_UNLOCK = 0x08, // Unlock or ReaderUnlock |
| 245 | |
| 246 | SYNCH_F_LCK_W = SYNCH_F_LCK, |
| 247 | SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R, |
| 248 | }; |
| 249 | } // anonymous namespace |
| 250 | |
| 251 | // Properties of the events. |
| 252 | static const struct { |
| 253 | int flags; |
| 254 | const char *msg; |
| 255 | } event_properties[] = { |
| 256 | {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "}, |
| 257 | {0, "TryLock failed "}, |
| 258 | {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "}, |
| 259 | {0, "ReaderTryLock failed "}, |
| 260 | {0, "Lock blocking "}, |
| 261 | {SYNCH_F_LCK_W, "Lock returning "}, |
| 262 | {0, "ReaderLock blocking "}, |
| 263 | {SYNCH_F_LCK_R, "ReaderLock returning "}, |
| 264 | {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "}, |
| 265 | {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "}, |
| 266 | {0, "Wait on "}, |
| 267 | {0, "Wait unblocked "}, |
| 268 | {0, "Signal on "}, |
| 269 | {0, "SignalAll on "}, |
| 270 | }; |
| 271 | |
| 272 | static absl::base_internal::SpinLock synch_event_mu( |
| 273 | absl::base_internal::kLinkerInitialized); |
| 274 | // protects synch_event |
| 275 | |
| 276 | // Hash table size; should be prime > 2. |
| 277 | // Can't be too small, as it's used for deadlock detection information. |
| 278 | static const uint32_t kNSynchEvent = 1031; |
| 279 | |
| 280 | static struct SynchEvent { // this is a trivial hash table for the events |
| 281 | // struct is freed when refcount reaches 0 |
| 282 | int refcount ABSL_GUARDED_BY(synch_event_mu); |
| 283 | |
| 284 | // buckets have linear, 0-terminated chains |
| 285 | SynchEvent *next ABSL_GUARDED_BY(synch_event_mu); |
| 286 | |
| 287 | // Constant after initialization |
| 288 | uintptr_t masked_addr; // object at this address is called "name" |
| 289 | |
| 290 | // No explicit synchronization used. Instead we assume that the |
| 291 | // client who enables/disables invariants/logging on a Mutex does so |
| 292 | // while the Mutex is not being concurrently accessed by others. |
| 293 | void (*invariant)(void *arg); // called on each event |
| 294 | void *arg; // first arg to (*invariant)() |
| 295 | bool log; // logging turned on |
| 296 | |
| 297 | // Constant after initialization |
| 298 | char name[1]; // actually longer---null-terminated std::string |
| 299 | } * synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu); |
| 300 | |
| 301 | // Ensure that the object at "addr" has a SynchEvent struct associated with it, |
| 302 | // set "bits" in the word there (waiting until lockbit is clear before doing |
| 303 | // so), and return a refcounted reference that will remain valid until |
| 304 | // UnrefSynchEvent() is called. If a new SynchEvent is allocated, |
| 305 | // the string name is copied into it. |
| 306 | // When used with a mutex, the caller should also ensure that kMuEvent |
| 307 | // is set in the mutex word, and similarly for condition variables and kCVEvent. |
| 308 | static SynchEvent *EnsureSynchEvent(std::atomic<intptr_t> *addr, |
| 309 | const char *name, intptr_t bits, |
| 310 | intptr_t lockbit) { |
| 311 | uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent; |
| 312 | SynchEvent *e; |
| 313 | // first look for existing SynchEvent struct.. |
| 314 | synch_event_mu.Lock(); |
| 315 | for (e = synch_event[h]; |
| 316 | e != nullptr && e->masked_addr != base_internal::HidePtr(addr); |
| 317 | e = e->next) { |
| 318 | } |
| 319 | if (e == nullptr) { // no SynchEvent struct found; make one. |
| 320 | if (name == nullptr) { |
| 321 | name = ""; |
| 322 | } |
| 323 | size_t l = strlen(name); |
| 324 | e = reinterpret_cast<SynchEvent *>( |
| 325 | base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l)); |
| 326 | e->refcount = 2; // one for return value, one for linked list |
| 327 | e->masked_addr = base_internal::HidePtr(addr); |
| 328 | e->invariant = nullptr; |
| 329 | e->arg = nullptr; |
| 330 | e->log = false; |
| 331 | strcpy(e->name, name); // NOLINT(runtime/printf) |
| 332 | e->next = synch_event[h]; |
| 333 | AtomicSetBits(addr, bits, lockbit); |
| 334 | synch_event[h] = e; |
| 335 | } else { |
| 336 | e->refcount++; // for return value |
| 337 | } |
| 338 | synch_event_mu.Unlock(); |
| 339 | return e; |
| 340 | } |
| 341 | |
| 342 | // Deallocate the SynchEvent *e, whose refcount has fallen to zero. |
| 343 | static void DeleteSynchEvent(SynchEvent *e) { |
| 344 | base_internal::LowLevelAlloc::Free(e); |
| 345 | } |
| 346 | |
| 347 | // Decrement the reference count of *e, or do nothing if e==null. |
| 348 | static void UnrefSynchEvent(SynchEvent *e) { |
| 349 | if (e != nullptr) { |
| 350 | synch_event_mu.Lock(); |
| 351 | bool del = (--(e->refcount) == 0); |
| 352 | synch_event_mu.Unlock(); |
| 353 | if (del) { |
| 354 | DeleteSynchEvent(e); |
| 355 | } |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | // Forget the mapping from the object (Mutex or CondVar) at address addr |
| 360 | // to SynchEvent object, and clear "bits" in its word (waiting until lockbit |
| 361 | // is clear before doing so). |
| 362 | static void ForgetSynchEvent(std::atomic<intptr_t> *addr, intptr_t bits, |
| 363 | intptr_t lockbit) { |
| 364 | uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent; |
| 365 | SynchEvent **pe; |
| 366 | SynchEvent *e; |
| 367 | synch_event_mu.Lock(); |
| 368 | for (pe = &synch_event[h]; |
| 369 | (e = *pe) != nullptr && e->masked_addr != base_internal::HidePtr(addr); |
| 370 | pe = &e->next) { |
| 371 | } |
| 372 | bool del = false; |
| 373 | if (e != nullptr) { |
| 374 | *pe = e->next; |
| 375 | del = (--(e->refcount) == 0); |
| 376 | } |
| 377 | AtomicClearBits(addr, bits, lockbit); |
| 378 | synch_event_mu.Unlock(); |
| 379 | if (del) { |
| 380 | DeleteSynchEvent(e); |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | // Return a refcounted reference to the SynchEvent of the object at address |
| 385 | // "addr", if any. The pointer returned is valid until the UnrefSynchEvent() is |
| 386 | // called. |
| 387 | static SynchEvent *GetSynchEvent(const void *addr) { |
| 388 | uint32_t h = reinterpret_cast<intptr_t>(addr) % kNSynchEvent; |
| 389 | SynchEvent *e; |
| 390 | synch_event_mu.Lock(); |
| 391 | for (e = synch_event[h]; |
| 392 | e != nullptr && e->masked_addr != base_internal::HidePtr(addr); |
| 393 | e = e->next) { |
| 394 | } |
| 395 | if (e != nullptr) { |
| 396 | e->refcount++; |
| 397 | } |
| 398 | synch_event_mu.Unlock(); |
| 399 | return e; |
| 400 | } |
| 401 | |
| 402 | // Called when an event "ev" occurs on a Mutex of CondVar "obj" |
| 403 | // if event recording is on |
| 404 | static void PostSynchEvent(void *obj, int ev) { |
| 405 | SynchEvent *e = GetSynchEvent(obj); |
| 406 | // logging is on if event recording is on and either there's no event struct, |
| 407 | // or it explicitly says to log |
| 408 | if (e == nullptr || e->log) { |
| 409 | void *pcs[40]; |
| 410 | int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1); |
| 411 | // A buffer with enough space for the ASCII for all the PCs, even on a |
| 412 | // 64-bit machine. |
| 413 | char buffer[ABSL_ARRAYSIZE(pcs) * 24]; |
| 414 | int pos = snprintf(buffer, sizeof (buffer), " @"); |
| 415 | for (int i = 0; i != n; i++) { |
| 416 | pos += snprintf(&buffer[pos], sizeof (buffer) - pos, " %p", pcs[i]); |
| 417 | } |
| 418 | ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj, |
| 419 | (e == nullptr ? "" : e->name), buffer); |
| 420 | } |
| 421 | const int flags = event_properties[ev].flags; |
| 422 | if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) { |
| 423 | // Calling the invariant as is causes problems under ThreadSanitizer. |
| 424 | // We are currently inside of Mutex Lock/Unlock and are ignoring all |
| 425 | // memory accesses and synchronization. If the invariant transitively |
| 426 | // synchronizes something else and we ignore the synchronization, we will |
| 427 | // get false positive race reports later. |
| 428 | // Reuse EvalConditionAnnotated to properly call into user code. |
| 429 | struct local { |
| 430 | static bool pred(SynchEvent *ev) { |
| 431 | (*ev->invariant)(ev->arg); |
| 432 | return false; |
| 433 | } |
| 434 | }; |
| 435 | Condition cond(&local::pred, e); |
| 436 | Mutex *mu = static_cast<Mutex *>(obj); |
| 437 | const bool locking = (flags & SYNCH_F_UNLOCK) == 0; |
| 438 | const bool trylock = (flags & SYNCH_F_TRY) != 0; |
| 439 | const bool read_lock = (flags & SYNCH_F_R) != 0; |
| 440 | EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock); |
| 441 | } |
| 442 | UnrefSynchEvent(e); |
| 443 | } |
| 444 | |
| 445 | //------------------------------------------------------------------ |
| 446 | |
| 447 | // The SynchWaitParams struct encapsulates the way in which a thread is waiting: |
| 448 | // whether it has a timeout, the condition, exclusive/shared, and whether a |
| 449 | // condition variable wait has an associated Mutex (as opposed to another |
| 450 | // type of lock). It also points to the PerThreadSynch struct of its thread. |
| 451 | // cv_word tells Enqueue() to enqueue on a CondVar using CondVarEnqueue(). |
| 452 | // |
| 453 | // This structure is held on the stack rather than directly in |
| 454 | // PerThreadSynch because a thread can be waiting on multiple Mutexes if, |
| 455 | // while waiting on one Mutex, the implementation calls a client callback |
| 456 | // (such as a Condition function) that acquires another Mutex. We don't |
| 457 | // strictly need to allow this, but programmers become confused if we do not |
| 458 | // allow them to use functions such a LOG() within Condition functions. The |
| 459 | // PerThreadSynch struct points at the most recent SynchWaitParams struct when |
| 460 | // the thread is on a Mutex's waiter queue. |
| 461 | struct SynchWaitParams { |
| 462 | SynchWaitParams(Mutex::MuHow how_arg, const Condition *cond_arg, |
| 463 | KernelTimeout timeout_arg, Mutex *cvmu_arg, |
| 464 | PerThreadSynch *thread_arg, |
| 465 | std::atomic<intptr_t> *cv_word_arg) |
| 466 | : how(how_arg), |
| 467 | cond(cond_arg), |
| 468 | timeout(timeout_arg), |
| 469 | cvmu(cvmu_arg), |
| 470 | thread(thread_arg), |
| 471 | cv_word(cv_word_arg), |
| 472 | contention_start_cycles(base_internal::CycleClock::Now()) {} |
| 473 | |
| 474 | const Mutex::MuHow how; // How this thread needs to wait. |
| 475 | const Condition *cond; // The condition that this thread is waiting for. |
| 476 | // In Mutex, this field is set to zero if a timeout |
| 477 | // expires. |
| 478 | KernelTimeout timeout; // timeout expiry---absolute time |
| 479 | // In Mutex, this field is set to zero if a timeout |
| 480 | // expires. |
| 481 | Mutex *const cvmu; // used for transfer from cond var to mutex |
| 482 | PerThreadSynch *const thread; // thread that is waiting |
| 483 | |
| 484 | // If not null, thread should be enqueued on the CondVar whose state |
| 485 | // word is cv_word instead of queueing normally on the Mutex. |
| 486 | std::atomic<intptr_t> *cv_word; |
| 487 | |
| 488 | int64_t contention_start_cycles; // Time (in cycles) when this thread started |
| 489 | // to contend for the mutex. |
| 490 | }; |
| 491 | |
| 492 | struct SynchLocksHeld { |
| 493 | int n; // number of valid entries in locks[] |
| 494 | bool overflow; // true iff we overflowed the array at some point |
| 495 | struct { |
| 496 | Mutex *mu; // lock acquired |
| 497 | int32_t count; // times acquired |
| 498 | GraphId id; // deadlock_graph id of acquired lock |
| 499 | } locks[40]; |
| 500 | // If a thread overfills the array during deadlock detection, we |
| 501 | // continue, discarding information as needed. If no overflow has |
| 502 | // taken place, we can provide more error checking, such as |
| 503 | // detecting when a thread releases a lock it does not hold. |
| 504 | }; |
| 505 | |
| 506 | // A sentinel value in lists that is not 0. |
| 507 | // A 0 value is used to mean "not on a list". |
| 508 | static PerThreadSynch *const kPerThreadSynchNull = |
| 509 | reinterpret_cast<PerThreadSynch *>(1); |
| 510 | |
| 511 | static SynchLocksHeld *LocksHeldAlloc() { |
| 512 | SynchLocksHeld *ret = reinterpret_cast<SynchLocksHeld *>( |
| 513 | base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld))); |
| 514 | ret->n = 0; |
| 515 | ret->overflow = false; |
| 516 | return ret; |
| 517 | } |
| 518 | |
| 519 | // Return the PerThreadSynch-struct for this thread. |
| 520 | static PerThreadSynch *Synch_GetPerThread() { |
| 521 | ThreadIdentity *identity = GetOrCreateCurrentThreadIdentity(); |
| 522 | return &identity->per_thread_synch; |
| 523 | } |
| 524 | |
| 525 | static PerThreadSynch *Synch_GetPerThreadAnnotated(Mutex *mu) { |
| 526 | if (mu) { |
| 527 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
| 528 | } |
| 529 | PerThreadSynch *w = Synch_GetPerThread(); |
| 530 | if (mu) { |
| 531 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
| 532 | } |
| 533 | return w; |
| 534 | } |
| 535 | |
| 536 | static SynchLocksHeld *Synch_GetAllLocks() { |
| 537 | PerThreadSynch *s = Synch_GetPerThread(); |
| 538 | if (s->all_locks == nullptr) { |
| 539 | s->all_locks = LocksHeldAlloc(); // Freed by ReclaimThreadIdentity. |
| 540 | } |
| 541 | return s->all_locks; |
| 542 | } |
| 543 | |
| 544 | // Post on "w"'s associated PerThreadSem. |
| 545 | inline void Mutex::IncrementSynchSem(Mutex *mu, PerThreadSynch *w) { |
| 546 | if (mu) { |
| 547 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
| 548 | } |
| 549 | PerThreadSem::Post(w->thread_identity()); |
| 550 | if (mu) { |
| 551 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | // Wait on "w"'s associated PerThreadSem; returns false if timeout expired. |
| 556 | bool Mutex::DecrementSynchSem(Mutex *mu, PerThreadSynch *w, KernelTimeout t) { |
| 557 | if (mu) { |
| 558 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
| 559 | } |
| 560 | assert(w == Synch_GetPerThread()); |
| 561 | static_cast<void>(w); |
| 562 | bool res = PerThreadSem::Wait(t); |
| 563 | if (mu) { |
| 564 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
| 565 | } |
| 566 | return res; |
| 567 | } |
| 568 | |
| 569 | // We're in a fatal signal handler that hopes to use Mutex and to get |
| 570 | // lucky by not deadlocking. We try to improve its chances of success |
| 571 | // by effectively disabling some of the consistency checks. This will |
| 572 | // prevent certain ABSL_RAW_CHECK() statements from being triggered when |
| 573 | // re-rentry is detected. The ABSL_RAW_CHECK() statements are those in the |
| 574 | // Mutex code checking that the "waitp" field has not been reused. |
| 575 | void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() { |
| 576 | // Fix the per-thread state only if it exists. |
| 577 | ThreadIdentity *identity = CurrentThreadIdentityIfPresent(); |
| 578 | if (identity != nullptr) { |
| 579 | identity->per_thread_synch.suppress_fatal_errors = true; |
| 580 | } |
| 581 | // Don't do deadlock detection when we are already failing. |
| 582 | synch_deadlock_detection.store(OnDeadlockCycle::kIgnore, |
| 583 | std::memory_order_release); |
| 584 | } |
| 585 | |
| 586 | // --------------------------time support |
| 587 | |
| 588 | // Return the current time plus the timeout. Use the same clock as |
| 589 | // PerThreadSem::Wait() for consistency. Unfortunately, we don't have |
| 590 | // such a choice when a deadline is given directly. |
| 591 | static absl::Time DeadlineFromTimeout(absl::Duration timeout) { |
| 592 | #ifndef _WIN32 |
| 593 | struct timeval tv; |
| 594 | gettimeofday(&tv, nullptr); |
| 595 | return absl::TimeFromTimeval(tv) + timeout; |
| 596 | #else |
| 597 | return absl::Now() + timeout; |
| 598 | #endif |
| 599 | } |
| 600 | |
| 601 | // --------------------------Mutexes |
| 602 | |
| 603 | // In the layout below, the msb of the bottom byte is currently unused. Also, |
| 604 | // the following constraints were considered in choosing the layout: |
| 605 | // o Both the debug allocator's "uninitialized" and "freed" patterns (0xab and |
| 606 | // 0xcd) are illegal: reader and writer lock both held. |
| 607 | // o kMuWriter and kMuEvent should exceed kMuDesig and kMuWait, to enable the |
| 608 | // bit-twiddling trick in Mutex::Unlock(). |
| 609 | // o kMuWriter / kMuReader == kMuWrWait / kMuWait, |
| 610 | // to enable the bit-twiddling trick in CheckForMutexCorruption(). |
| 611 | static const intptr_t kMuReader = 0x0001L; // a reader holds the lock |
| 612 | static const intptr_t kMuDesig = 0x0002L; // there's a designated waker |
| 613 | static const intptr_t kMuWait = 0x0004L; // threads are waiting |
| 614 | static const intptr_t kMuWriter = 0x0008L; // a writer holds the lock |
| 615 | static const intptr_t kMuEvent = 0x0010L; // record this mutex's events |
| 616 | // INVARIANT1: there's a thread that was blocked on the mutex, is |
| 617 | // no longer, yet has not yet acquired the mutex. If there's a |
| 618 | // designated waker, all threads can avoid taking the slow path in |
| 619 | // unlock because the designated waker will subsequently acquire |
| 620 | // the lock and wake someone. To maintain INVARIANT1 the bit is |
| 621 | // set when a thread is unblocked(INV1a), and threads that were |
| 622 | // unblocked reset the bit when they either acquire or re-block |
| 623 | // (INV1b). |
| 624 | static const intptr_t kMuWrWait = 0x0020L; // runnable writer is waiting |
| 625 | // for a reader |
| 626 | static const intptr_t kMuSpin = 0x0040L; // spinlock protects wait list |
| 627 | static const intptr_t kMuLow = 0x00ffL; // mask all mutex bits |
| 628 | static const intptr_t kMuHigh = ~kMuLow; // mask pointer/reader count |
| 629 | |
| 630 | // Hack to make constant values available to gdb pretty printer |
| 631 | enum { |
| 632 | kGdbMuSpin = kMuSpin, |
| 633 | kGdbMuEvent = kMuEvent, |
| 634 | kGdbMuWait = kMuWait, |
| 635 | kGdbMuWriter = kMuWriter, |
| 636 | kGdbMuDesig = kMuDesig, |
| 637 | kGdbMuWrWait = kMuWrWait, |
| 638 | kGdbMuReader = kMuReader, |
| 639 | kGdbMuLow = kMuLow, |
| 640 | }; |
| 641 | |
| 642 | // kMuWrWait implies kMuWait. |
| 643 | // kMuReader and kMuWriter are mutually exclusive. |
| 644 | // If kMuReader is zero, there are no readers. |
| 645 | // Otherwise, if kMuWait is zero, the high order bits contain a count of the |
| 646 | // number of readers. Otherwise, the reader count is held in |
| 647 | // PerThreadSynch::readers of the most recently queued waiter, again in the |
| 648 | // bits above kMuLow. |
| 649 | static const intptr_t kMuOne = 0x0100; // a count of one reader |
| 650 | |
| 651 | // flags passed to Enqueue and LockSlow{,WithTimeout,Loop} |
| 652 | static const int kMuHasBlocked = 0x01; // already blocked (MUST == 1) |
| 653 | static const int kMuIsCond = 0x02; // conditional waiter (CV or Condition) |
| 654 | |
| 655 | static_assert(PerThreadSynch::kAlignment > kMuLow, |
| 656 | "PerThreadSynch::kAlignment must be greater than kMuLow"); |
| 657 | |
| 658 | // This struct contains various bitmasks to be used in |
| 659 | // acquiring and releasing a mutex in a particular mode. |
| 660 | struct MuHowS { |
| 661 | // if all the bits in fast_need_zero are zero, the lock can be acquired by |
| 662 | // adding fast_add and oring fast_or. The bit kMuDesig should be reset iff |
| 663 | // this is the designated waker. |
| 664 | intptr_t fast_need_zero; |
| 665 | intptr_t fast_or; |
| 666 | intptr_t fast_add; |
| 667 | |
| 668 | intptr_t slow_need_zero; // fast_need_zero with events (e.g. logging) |
| 669 | |
| 670 | intptr_t slow_inc_need_zero; // if all the bits in slow_inc_need_zero are |
| 671 | // zero a reader can acquire a read share by |
| 672 | // setting the reader bit and incrementing |
| 673 | // the reader count (in last waiter since |
| 674 | // we're now slow-path). kMuWrWait be may |
| 675 | // be ignored if we already waited once. |
| 676 | }; |
| 677 | |
| 678 | static const MuHowS kSharedS = { |
| 679 | // shared or read lock |
| 680 | kMuWriter | kMuWait | kMuEvent, // fast_need_zero |
| 681 | kMuReader, // fast_or |
| 682 | kMuOne, // fast_add |
| 683 | kMuWriter | kMuWait, // slow_need_zero |
| 684 | kMuSpin | kMuWriter | kMuWrWait, // slow_inc_need_zero |
| 685 | }; |
| 686 | static const MuHowS kExclusiveS = { |
| 687 | // exclusive or write lock |
| 688 | kMuWriter | kMuReader | kMuEvent, // fast_need_zero |
| 689 | kMuWriter, // fast_or |
| 690 | 0, // fast_add |
| 691 | kMuWriter | kMuReader, // slow_need_zero |
| 692 | ~static_cast<intptr_t>(0), // slow_inc_need_zero |
| 693 | }; |
| 694 | static const Mutex::MuHow kShared = &kSharedS; // shared lock |
| 695 | static const Mutex::MuHow kExclusive = &kExclusiveS; // exclusive lock |
| 696 | |
| 697 | #ifdef NDEBUG |
| 698 | static constexpr bool kDebugMode = false; |
| 699 | #else |
| 700 | static constexpr bool kDebugMode = true; |
| 701 | #endif |
| 702 | |
| 703 | #ifdef THREAD_SANITIZER |
| 704 | static unsigned TsanFlags(Mutex::MuHow how) { |
| 705 | return how == kShared ? __tsan_mutex_read_lock : 0; |
| 706 | } |
| 707 | #endif |
| 708 | |
| 709 | static bool DebugOnlyIsExiting() { |
| 710 | return false; |
| 711 | } |
| 712 | |
| 713 | Mutex::~Mutex() { |
| 714 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 715 | if ((v & kMuEvent) != 0 && !DebugOnlyIsExiting()) { |
| 716 | ForgetSynchEvent(&this->mu_, kMuEvent, kMuSpin); |
| 717 | } |
| 718 | if (kDebugMode) { |
| 719 | this->ForgetDeadlockInfo(); |
| 720 | } |
| 721 | ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static); |
| 722 | } |
| 723 | |
| 724 | void Mutex::EnableDebugLog(const char *name) { |
| 725 | SynchEvent *e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin); |
| 726 | e->log = true; |
| 727 | UnrefSynchEvent(e); |
| 728 | } |
| 729 | |
| 730 | void EnableMutexInvariantDebugging(bool enabled) { |
| 731 | synch_check_invariants.store(enabled, std::memory_order_release); |
| 732 | } |
| 733 | |
| 734 | void Mutex::EnableInvariantDebugging(void (*invariant)(void *), |
| 735 | void *arg) { |
| 736 | if (synch_check_invariants.load(std::memory_order_acquire) && |
| 737 | invariant != nullptr) { |
| 738 | SynchEvent *e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin); |
| 739 | e->invariant = invariant; |
| 740 | e->arg = arg; |
| 741 | UnrefSynchEvent(e); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) { |
| 746 | synch_deadlock_detection.store(mode, std::memory_order_release); |
| 747 | } |
| 748 | |
| 749 | // Return true iff threads x and y are waiting on the same condition for the |
| 750 | // same type of lock. Requires that x and y be waiting on the same Mutex |
| 751 | // queue. |
| 752 | static bool MuSameCondition(PerThreadSynch *x, PerThreadSynch *y) { |
| 753 | return x->waitp->how == y->waitp->how && |
| 754 | Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond); |
| 755 | } |
| 756 | |
| 757 | // Given the contents of a mutex word containing a PerThreadSynch pointer, |
| 758 | // return the pointer. |
| 759 | static inline PerThreadSynch *GetPerThreadSynch(intptr_t v) { |
| 760 | return reinterpret_cast<PerThreadSynch *>(v & kMuHigh); |
| 761 | } |
| 762 | |
| 763 | // The next several routines maintain the per-thread next and skip fields |
| 764 | // used in the Mutex waiter queue. |
| 765 | // The queue is a circular singly-linked list, of which the "head" is the |
| 766 | // last element, and head->next if the first element. |
| 767 | // The skip field has the invariant: |
| 768 | // For thread x, x->skip is one of: |
| 769 | // - invalid (iff x is not in a Mutex wait queue), |
| 770 | // - null, or |
| 771 | // - a pointer to a distinct thread waiting later in the same Mutex queue |
| 772 | // such that all threads in [x, x->skip] have the same condition and |
| 773 | // lock type (MuSameCondition() is true for all pairs in [x, x->skip]). |
| 774 | // In addition, if x->skip is valid, (x->may_skip || x->skip == null) |
| 775 | // |
| 776 | // By the spec of MuSameCondition(), it is not necessary when removing the |
| 777 | // first runnable thread y from the front a Mutex queue to adjust the skip |
| 778 | // field of another thread x because if x->skip==y, x->skip must (have) become |
| 779 | // invalid before y is removed. The function TryRemove can remove a specified |
| 780 | // thread from an arbitrary position in the queue whether runnable or not, so |
| 781 | // it fixes up skip fields that would otherwise be left dangling. |
| 782 | // The statement |
| 783 | // if (x->may_skip && MuSameCondition(x, x->next)) { x->skip = x->next; } |
| 784 | // maintains the invariant provided x is not the last waiter in a Mutex queue |
| 785 | // The statement |
| 786 | // if (x->skip != null) { x->skip = x->skip->skip; } |
| 787 | // maintains the invariant. |
| 788 | |
| 789 | // Returns the last thread y in a mutex waiter queue such that all threads in |
| 790 | // [x, y] inclusive share the same condition. Sets skip fields of some threads |
| 791 | // in that range to optimize future evaluation of Skip() on x values in |
| 792 | // the range. Requires thread x is in a mutex waiter queue. |
| 793 | // The locking is unusual. Skip() is called under these conditions: |
| 794 | // - spinlock is held in call from Enqueue(), with maybe_unlocking == false |
| 795 | // - Mutex is held in call from UnlockSlow() by last unlocker, with |
| 796 | // maybe_unlocking == true |
| 797 | // - both Mutex and spinlock are held in call from DequeueAllWakeable() (from |
| 798 | // UnlockSlow()) and TryRemove() |
| 799 | // These cases are mutually exclusive, so Skip() never runs concurrently |
| 800 | // with itself on the same Mutex. The skip chain is used in these other places |
| 801 | // that cannot occur concurrently: |
| 802 | // - FixSkip() (from TryRemove()) - spinlock and Mutex are held) |
| 803 | // - Dequeue() (with spinlock and Mutex held) |
| 804 | // - UnlockSlow() (with spinlock and Mutex held) |
| 805 | // A more complex case is Enqueue() |
| 806 | // - Enqueue() (with spinlock held and maybe_unlocking == false) |
| 807 | // This is the first case in which Skip is called, above. |
| 808 | // - Enqueue() (without spinlock held; but queue is empty and being freshly |
| 809 | // formed) |
| 810 | // - Enqueue() (with spinlock held and maybe_unlocking == true) |
| 811 | // The first case has mutual exclusion, and the second isolation through |
| 812 | // working on an otherwise unreachable data structure. |
| 813 | // In the last case, Enqueue() is required to change no skip/next pointers |
| 814 | // except those in the added node and the former "head" node. This implies |
| 815 | // that the new node is added after head, and so must be the new head or the |
| 816 | // new front of the queue. |
| 817 | static PerThreadSynch *Skip(PerThreadSynch *x) { |
| 818 | PerThreadSynch *x0 = nullptr; |
| 819 | PerThreadSynch *x1 = x; |
| 820 | PerThreadSynch *x2 = x->skip; |
| 821 | if (x2 != nullptr) { |
| 822 | // Each iteration attempts to advance sequence (x0,x1,x2) to next sequence |
| 823 | // such that x1 == x0->skip && x2 == x1->skip |
| 824 | while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) { |
| 825 | x0->skip = x2; // short-circuit skip from x0 to x2 |
| 826 | } |
| 827 | x->skip = x1; // short-circuit skip from x to result |
| 828 | } |
| 829 | return x1; |
| 830 | } |
| 831 | |
| 832 | // "ancestor" appears before "to_be_removed" in the same Mutex waiter queue. |
| 833 | // The latter is going to be removed out of order, because of a timeout. |
| 834 | // Check whether "ancestor" has a skip field pointing to "to_be_removed", |
| 835 | // and fix it if it does. |
| 836 | static void FixSkip(PerThreadSynch *ancestor, PerThreadSynch *to_be_removed) { |
| 837 | if (ancestor->skip == to_be_removed) { // ancestor->skip left dangling |
| 838 | if (to_be_removed->skip != nullptr) { |
| 839 | ancestor->skip = to_be_removed->skip; // can skip past to_be_removed |
| 840 | } else if (ancestor->next != to_be_removed) { // they are not adjacent |
| 841 | ancestor->skip = ancestor->next; // can skip one past ancestor |
| 842 | } else { |
| 843 | ancestor->skip = nullptr; // can't skip at all |
| 844 | } |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | static void CondVarEnqueue(SynchWaitParams *waitp); |
| 849 | |
| 850 | // Enqueue thread "waitp->thread" on a waiter queue. |
| 851 | // Called with mutex spinlock held if head != nullptr |
| 852 | // If head==nullptr and waitp->cv_word==nullptr, then Enqueue() is |
| 853 | // idempotent; it alters no state associated with the existing (empty) |
| 854 | // queue. |
| 855 | // |
| 856 | // If waitp->cv_word == nullptr, queue the thread at either the front or |
| 857 | // the end (according to its priority) of the circular mutex waiter queue whose |
| 858 | // head is "head", and return the new head. mu is the previous mutex state, |
| 859 | // which contains the reader count (perhaps adjusted for the operation in |
| 860 | // progress) if the list was empty and a read lock held, and the holder hint if |
| 861 | // the list was empty and a write lock held. (flags & kMuIsCond) indicates |
| 862 | // whether this thread was transferred from a CondVar or is waiting for a |
| 863 | // non-trivial condition. In this case, Enqueue() never returns nullptr |
| 864 | // |
| 865 | // If waitp->cv_word != nullptr, CondVarEnqueue() is called, and "head" is |
| 866 | // returned. This mechanism is used by CondVar to queue a thread on the |
| 867 | // condition variable queue instead of the mutex queue in implementing Wait(). |
| 868 | // In this case, Enqueue() can return nullptr (if head==nullptr). |
| 869 | static PerThreadSynch *Enqueue(PerThreadSynch *head, |
| 870 | SynchWaitParams *waitp, intptr_t mu, int flags) { |
| 871 | // If we have been given a cv_word, call CondVarEnqueue() and return |
| 872 | // the previous head of the Mutex waiter queue. |
| 873 | if (waitp->cv_word != nullptr) { |
| 874 | CondVarEnqueue(waitp); |
| 875 | return head; |
| 876 | } |
| 877 | |
| 878 | PerThreadSynch *s = waitp->thread; |
| 879 | ABSL_RAW_CHECK( |
| 880 | s->waitp == nullptr || // normal case |
| 881 | s->waitp == waitp || // Fer()---transfer from condition variable |
| 882 | s->suppress_fatal_errors, |
| 883 | "detected illegal recursion into Mutex code"); |
| 884 | s->waitp = waitp; |
| 885 | s->skip = nullptr; // maintain skip invariant (see above) |
| 886 | s->may_skip = true; // always true on entering queue |
| 887 | s->wake = false; // not being woken |
| 888 | s->cond_waiter = ((flags & kMuIsCond) != 0); |
| 889 | if (head == nullptr) { // s is the only waiter |
| 890 | s->next = s; // it's the only entry in the cycle |
| 891 | s->readers = mu; // reader count is from mu word |
| 892 | s->maybe_unlocking = false; // no one is searching an empty list |
| 893 | head = s; // s is new head |
| 894 | } else { |
| 895 | PerThreadSynch *enqueue_after = nullptr; // we'll put s after this element |
| 896 | #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM |
| 897 | int64_t now_cycles = base_internal::CycleClock::Now(); |
| 898 | if (s->next_priority_read_cycles < now_cycles) { |
| 899 | // Every so often, update our idea of the thread's priority. |
| 900 | // pthread_getschedparam() is 5% of the block/wakeup time; |
| 901 | // base_internal::CycleClock::Now() is 0.5%. |
| 902 | int policy; |
| 903 | struct sched_param param; |
| 904 | const int err = pthread_getschedparam(pthread_self(), &policy, ¶m); |
| 905 | if (err != 0) { |
| 906 | ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err); |
| 907 | } else { |
| 908 | s->priority = param.sched_priority; |
| 909 | s->next_priority_read_cycles = |
| 910 | now_cycles + |
| 911 | static_cast<int64_t>(base_internal::CycleClock::Frequency()); |
| 912 | } |
| 913 | } |
| 914 | if (s->priority > head->priority) { // s's priority is above head's |
| 915 | // try to put s in priority-fifo order, or failing that at the front. |
| 916 | if (!head->maybe_unlocking) { |
| 917 | // No unlocker can be scanning the queue, so we can insert between |
| 918 | // skip-chains, and within a skip-chain if it has the same condition as |
| 919 | // s. We insert in priority-fifo order, examining the end of every |
| 920 | // skip-chain, plus every element with the same condition as s. |
| 921 | PerThreadSynch *advance_to = head; // next value of enqueue_after |
| 922 | PerThreadSynch *cur; // successor of enqueue_after |
| 923 | do { |
| 924 | enqueue_after = advance_to; |
| 925 | cur = enqueue_after->next; // this advance ensures progress |
| 926 | advance_to = Skip(cur); // normally, advance to end of skip chain |
| 927 | // (side-effect: optimizes skip chain) |
| 928 | if (advance_to != cur && s->priority > advance_to->priority && |
| 929 | MuSameCondition(s, cur)) { |
| 930 | // but this skip chain is not a singleton, s has higher priority |
| 931 | // than its tail and has the same condition as the chain, |
| 932 | // so we can insert within the skip-chain |
| 933 | advance_to = cur; // advance by just one |
| 934 | } |
| 935 | } while (s->priority <= advance_to->priority); |
| 936 | // termination guaranteed because s->priority > head->priority |
| 937 | // and head is the end of a skip chain |
| 938 | } else if (waitp->how == kExclusive && |
| 939 | Condition::GuaranteedEqual(waitp->cond, nullptr)) { |
| 940 | // An unlocker could be scanning the queue, but we know it will recheck |
| 941 | // the queue front for writers that have no condition, which is what s |
| 942 | // is, so an insert at front is safe. |
| 943 | enqueue_after = head; // add after head, at front |
| 944 | } |
| 945 | } |
| 946 | #endif |
| 947 | if (enqueue_after != nullptr) { |
| 948 | s->next = enqueue_after->next; |
| 949 | enqueue_after->next = s; |
| 950 | |
| 951 | // enqueue_after can be: head, Skip(...), or cur. |
| 952 | // The first two imply enqueue_after->skip == nullptr, and |
| 953 | // the last is used only if MuSameCondition(s, cur). |
| 954 | // We require this because clearing enqueue_after->skip |
| 955 | // is impossible; enqueue_after's predecessors might also |
| 956 | // incorrectly skip over s if we were to allow other |
| 957 | // insertion points. |
| 958 | ABSL_RAW_CHECK( |
| 959 | enqueue_after->skip == nullptr || MuSameCondition(enqueue_after, s), |
| 960 | "Mutex Enqueue failure"); |
| 961 | |
| 962 | if (enqueue_after != head && enqueue_after->may_skip && |
| 963 | MuSameCondition(enqueue_after, enqueue_after->next)) { |
| 964 | // enqueue_after can skip to its new successor, s |
| 965 | enqueue_after->skip = enqueue_after->next; |
| 966 | } |
| 967 | if (MuSameCondition(s, s->next)) { // s->may_skip is known to be true |
| 968 | s->skip = s->next; // s may skip to its successor |
| 969 | } |
| 970 | } else { // enqueue not done any other way, so |
| 971 | // we're inserting s at the back |
| 972 | // s will become new head; copy data from head into it |
| 973 | s->next = head->next; // add s after head |
| 974 | head->next = s; |
| 975 | s->readers = head->readers; // reader count is from previous head |
| 976 | s->maybe_unlocking = head->maybe_unlocking; // same for unlock hint |
| 977 | if (head->may_skip && MuSameCondition(head, s)) { |
| 978 | // head now has successor; may skip |
| 979 | head->skip = s; |
| 980 | } |
| 981 | head = s; // s is new head |
| 982 | } |
| 983 | } |
| 984 | s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); |
| 985 | return head; |
| 986 | } |
| 987 | |
| 988 | // Dequeue the successor pw->next of thread pw from the Mutex waiter queue |
| 989 | // whose last element is head. The new head element is returned, or null |
| 990 | // if the list is made empty. |
| 991 | // Dequeue is called with both spinlock and Mutex held. |
| 992 | static PerThreadSynch *Dequeue(PerThreadSynch *head, PerThreadSynch *pw) { |
| 993 | PerThreadSynch *w = pw->next; |
| 994 | pw->next = w->next; // snip w out of list |
| 995 | if (head == w) { // we removed the head |
| 996 | head = (pw == w) ? nullptr : pw; // either emptied list, or pw is new head |
| 997 | } else if (pw != head && MuSameCondition(pw, pw->next)) { |
| 998 | // pw can skip to its new successor |
| 999 | if (pw->next->skip != |
| 1000 | nullptr) { // either skip to its successors skip target |
| 1001 | pw->skip = pw->next->skip; |
| 1002 | } else { // or to pw's successor |
| 1003 | pw->skip = pw->next; |
| 1004 | } |
| 1005 | } |
| 1006 | return head; |
| 1007 | } |
| 1008 | |
| 1009 | // Traverse the elements [ pw->next, h] of the circular list whose last element |
| 1010 | // is head. |
| 1011 | // Remove all elements with wake==true and place them in the |
| 1012 | // singly-linked list wake_list in the order found. Assumes that |
| 1013 | // there is only one such element if the element has how == kExclusive. |
| 1014 | // Return the new head. |
| 1015 | static PerThreadSynch *DequeueAllWakeable(PerThreadSynch *head, |
| 1016 | PerThreadSynch *pw, |
| 1017 | PerThreadSynch **wake_tail) { |
| 1018 | PerThreadSynch *orig_h = head; |
| 1019 | PerThreadSynch *w = pw->next; |
| 1020 | bool skipped = false; |
| 1021 | do { |
| 1022 | if (w->wake) { // remove this element |
| 1023 | ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable"); |
| 1024 | // we're removing pw's successor so either pw->skip is zero or we should |
| 1025 | // already have removed pw since if pw->skip!=null, pw has the same |
| 1026 | // condition as w. |
| 1027 | head = Dequeue(head, pw); |
| 1028 | w->next = *wake_tail; // keep list terminated |
| 1029 | *wake_tail = w; // add w to wake_list; |
| 1030 | wake_tail = &w->next; // next addition to end |
| 1031 | if (w->waitp->how == kExclusive) { // wake at most 1 writer |
| 1032 | break; |
| 1033 | } |
| 1034 | } else { // not waking this one; skip |
| 1035 | pw = Skip(w); // skip as much as possible |
| 1036 | skipped = true; |
| 1037 | } |
| 1038 | w = pw->next; |
| 1039 | // We want to stop processing after we've considered the original head, |
| 1040 | // orig_h. We can't test for w==orig_h in the loop because w may skip over |
| 1041 | // it; we are guaranteed only that w's predecessor will not skip over |
| 1042 | // orig_h. When we've considered orig_h, either we've processed it and |
| 1043 | // removed it (so orig_h != head), or we considered it and skipped it (so |
| 1044 | // skipped==true && pw == head because skipping from head always skips by |
| 1045 | // just one, leaving pw pointing at head). So we want to |
| 1046 | // continue the loop with the negation of that expression. |
| 1047 | } while (orig_h == head && (pw != head || !skipped)); |
| 1048 | return head; |
| 1049 | } |
| 1050 | |
| 1051 | // Try to remove thread s from the list of waiters on this mutex. |
| 1052 | // Does nothing if s is not on the waiter list. |
| 1053 | void Mutex::TryRemove(PerThreadSynch *s) { |
| 1054 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1055 | // acquire spinlock & lock |
| 1056 | if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait && |
| 1057 | mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter, |
| 1058 | std::memory_order_acquire, |
| 1059 | std::memory_order_relaxed)) { |
| 1060 | PerThreadSynch *h = GetPerThreadSynch(v); |
| 1061 | if (h != nullptr) { |
| 1062 | PerThreadSynch *pw = h; // pw is w's predecessor |
| 1063 | PerThreadSynch *w; |
| 1064 | if ((w = pw->next) != s) { // search for thread, |
| 1065 | do { // processing at least one element |
| 1066 | if (!MuSameCondition(s, w)) { // seeking different condition |
| 1067 | pw = Skip(w); // so skip all that won't match |
| 1068 | // we don't have to worry about dangling skip fields |
| 1069 | // in the threads we skipped; none can point to s |
| 1070 | // because their condition differs from s |
| 1071 | } else { // seeking same condition |
| 1072 | FixSkip(w, s); // fix up any skip pointer from w to s |
| 1073 | pw = w; |
| 1074 | } |
| 1075 | // don't search further if we found the thread, or we're about to |
| 1076 | // process the first thread again. |
| 1077 | } while ((w = pw->next) != s && pw != h); |
| 1078 | } |
| 1079 | if (w == s) { // found thread; remove it |
| 1080 | // pw->skip may be non-zero here; the loop above ensured that |
| 1081 | // no ancestor of s can skip to s, so removal is safe anyway. |
| 1082 | h = Dequeue(h, pw); |
| 1083 | s->next = nullptr; |
| 1084 | s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
| 1085 | } |
| 1086 | } |
| 1087 | intptr_t nv; |
| 1088 | do { // release spinlock and lock |
| 1089 | v = mu_.load(std::memory_order_relaxed); |
| 1090 | nv = v & (kMuDesig | kMuEvent); |
| 1091 | if (h != nullptr) { |
| 1092 | nv |= kMuWait | reinterpret_cast<intptr_t>(h); |
| 1093 | h->readers = 0; // we hold writer lock |
| 1094 | h->maybe_unlocking = false; // finished unlocking |
| 1095 | } |
| 1096 | } while (!mu_.compare_exchange_weak(v, nv, |
| 1097 | std::memory_order_release, |
| 1098 | std::memory_order_relaxed)); |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | // Wait until thread "s", which must be the current thread, is removed from the |
| 1103 | // this mutex's waiter queue. If "s->waitp->timeout" has a timeout, wake up |
| 1104 | // if the wait extends past the absolute time specified, even if "s" is still |
| 1105 | // on the mutex queue. In this case, remove "s" from the queue and return |
| 1106 | // true, otherwise return false. |
| 1107 | ABSL_XRAY_LOG_ARGS(1) void Mutex::Block(PerThreadSynch *s) { |
| 1108 | while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { |
| 1109 | if (!DecrementSynchSem(this, s, s->waitp->timeout)) { |
| 1110 | // After a timeout, we go into a spin loop until we remove ourselves |
| 1111 | // from the queue, or someone else removes us. We can't be sure to be |
| 1112 | // able to remove ourselves in a single lock acquisition because this |
| 1113 | // mutex may be held, and the holder has the right to read the centre |
| 1114 | // of the waiter queue without holding the spinlock. |
| 1115 | this->TryRemove(s); |
| 1116 | int c = 0; |
| 1117 | while (s->next != nullptr) { |
| 1118 | c = Delay(c, GENTLE); |
| 1119 | this->TryRemove(s); |
| 1120 | } |
| 1121 | if (kDebugMode) { |
| 1122 | // This ensures that we test the case that TryRemove() is called when s |
| 1123 | // is not on the queue. |
| 1124 | this->TryRemove(s); |
| 1125 | } |
| 1126 | s->waitp->timeout = KernelTimeout::Never(); // timeout is satisfied |
| 1127 | s->waitp->cond = nullptr; // condition no longer relevant for wakeups |
| 1128 | } |
| 1129 | } |
| 1130 | ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors, |
| 1131 | "detected illegal recursion in Mutex code"); |
| 1132 | s->waitp = nullptr; |
| 1133 | } |
| 1134 | |
| 1135 | // Wake thread w, and return the next thread in the list. |
| 1136 | PerThreadSynch *Mutex::Wakeup(PerThreadSynch *w) { |
| 1137 | PerThreadSynch *next = w->next; |
| 1138 | w->next = nullptr; |
| 1139 | w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
| 1140 | IncrementSynchSem(this, w); |
| 1141 | |
| 1142 | return next; |
| 1143 | } |
| 1144 | |
| 1145 | static GraphId GetGraphIdLocked(Mutex *mu) |
| 1146 | ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) { |
| 1147 | if (!deadlock_graph) { // (re)create the deadlock graph. |
| 1148 | deadlock_graph = |
| 1149 | new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph))) |
| 1150 | GraphCycles; |
| 1151 | } |
| 1152 | return deadlock_graph->GetId(mu); |
| 1153 | } |
| 1154 | |
| 1155 | static GraphId GetGraphId(Mutex *mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) { |
| 1156 | deadlock_graph_mu.Lock(); |
| 1157 | GraphId id = GetGraphIdLocked(mu); |
| 1158 | deadlock_graph_mu.Unlock(); |
| 1159 | return id; |
| 1160 | } |
| 1161 | |
| 1162 | // Record a lock acquisition. This is used in debug mode for deadlock |
| 1163 | // detection. The held_locks pointer points to the relevant data |
| 1164 | // structure for each case. |
| 1165 | static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { |
| 1166 | int n = held_locks->n; |
| 1167 | int i = 0; |
| 1168 | while (i != n && held_locks->locks[i].id != id) { |
| 1169 | i++; |
| 1170 | } |
| 1171 | if (i == n) { |
| 1172 | if (n == ABSL_ARRAYSIZE(held_locks->locks)) { |
| 1173 | held_locks->overflow = true; // lost some data |
| 1174 | } else { // we have room for lock |
| 1175 | held_locks->locks[i].mu = mu; |
| 1176 | held_locks->locks[i].count = 1; |
| 1177 | held_locks->locks[i].id = id; |
| 1178 | held_locks->n = n + 1; |
| 1179 | } |
| 1180 | } else { |
| 1181 | held_locks->locks[i].count++; |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | // Record a lock release. Each call to LockEnter(mu, id, x) should be |
| 1186 | // eventually followed by a call to LockLeave(mu, id, x) by the same thread. |
| 1187 | // It does not process the event if is not needed when deadlock detection is |
| 1188 | // disabled. |
| 1189 | static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld *held_locks) { |
| 1190 | int n = held_locks->n; |
| 1191 | int i = 0; |
| 1192 | while (i != n && held_locks->locks[i].id != id) { |
| 1193 | i++; |
| 1194 | } |
| 1195 | if (i == n) { |
| 1196 | if (!held_locks->overflow) { |
| 1197 | // The deadlock id may have been reassigned after ForgetDeadlockInfo, |
| 1198 | // but in that case mu should still be present. |
| 1199 | i = 0; |
| 1200 | while (i != n && held_locks->locks[i].mu != mu) { |
| 1201 | i++; |
| 1202 | } |
| 1203 | if (i == n) { // mu missing means releasing unheld lock |
| 1204 | SynchEvent *mu_events = GetSynchEvent(mu); |
| 1205 | ABSL_RAW_LOG(FATAL, |
| 1206 | "thread releasing lock it does not hold: %p %s; " |
| 1207 | , |
| 1208 | static_cast<void *>(mu), |
| 1209 | mu_events == nullptr ? "" : mu_events->name); |
| 1210 | } |
| 1211 | } |
| 1212 | } else if (held_locks->locks[i].count == 1) { |
| 1213 | held_locks->n = n - 1; |
| 1214 | held_locks->locks[i] = held_locks->locks[n - 1]; |
| 1215 | held_locks->locks[n - 1].id = InvalidGraphId(); |
| 1216 | held_locks->locks[n - 1].mu = |
| 1217 | nullptr; // clear mu to please the leak detector. |
| 1218 | } else { |
| 1219 | assert(held_locks->locks[i].count > 0); |
| 1220 | held_locks->locks[i].count--; |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | // Call LockEnter() if in debug mode and deadlock detection is enabled. |
| 1225 | static inline void DebugOnlyLockEnter(Mutex *mu) { |
| 1226 | if (kDebugMode) { |
| 1227 | if (synch_deadlock_detection.load(std::memory_order_acquire) != |
| 1228 | OnDeadlockCycle::kIgnore) { |
| 1229 | LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks()); |
| 1230 | } |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | // Call LockEnter() if in debug mode and deadlock detection is enabled. |
| 1235 | static inline void DebugOnlyLockEnter(Mutex *mu, GraphId id) { |
| 1236 | if (kDebugMode) { |
| 1237 | if (synch_deadlock_detection.load(std::memory_order_acquire) != |
| 1238 | OnDeadlockCycle::kIgnore) { |
| 1239 | LockEnter(mu, id, Synch_GetAllLocks()); |
| 1240 | } |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | // Call LockLeave() if in debug mode and deadlock detection is enabled. |
| 1245 | static inline void DebugOnlyLockLeave(Mutex *mu) { |
| 1246 | if (kDebugMode) { |
| 1247 | if (synch_deadlock_detection.load(std::memory_order_acquire) != |
| 1248 | OnDeadlockCycle::kIgnore) { |
| 1249 | LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks()); |
| 1250 | } |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | static char *StackString(void **pcs, int n, char *buf, int maxlen, |
| 1255 | bool symbolize) { |
| 1256 | static const int kSymLen = 200; |
| 1257 | char sym[kSymLen]; |
| 1258 | int len = 0; |
| 1259 | for (int i = 0; i != n; i++) { |
| 1260 | if (symbolize) { |
| 1261 | if (!symbolizer(pcs[i], sym, kSymLen)) { |
| 1262 | sym[0] = '\0'; |
| 1263 | } |
| 1264 | snprintf(buf + len, maxlen - len, "%s\t@ %p %s\n", |
| 1265 | (i == 0 ? "\n" : ""), |
| 1266 | pcs[i], sym); |
| 1267 | } else { |
| 1268 | snprintf(buf + len, maxlen - len, " %p", pcs[i]); |
| 1269 | } |
| 1270 | len += strlen(&buf[len]); |
| 1271 | } |
| 1272 | return buf; |
| 1273 | } |
| 1274 | |
| 1275 | static char *CurrentStackString(char *buf, int maxlen, bool symbolize) { |
| 1276 | void *pcs[40]; |
| 1277 | return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf, |
| 1278 | maxlen, symbolize); |
| 1279 | } |
| 1280 | |
| 1281 | namespace { |
| 1282 | enum { kMaxDeadlockPathLen = 10 }; // maximum length of a deadlock cycle; |
| 1283 | // a path this long would be remarkable |
| 1284 | // Buffers required to report a deadlock. |
| 1285 | // We do not allocate them on stack to avoid large stack frame. |
| 1286 | struct DeadlockReportBuffers { |
| 1287 | char buf[6100]; |
| 1288 | GraphId path[kMaxDeadlockPathLen]; |
| 1289 | }; |
| 1290 | |
| 1291 | struct ScopedDeadlockReportBuffers { |
| 1292 | ScopedDeadlockReportBuffers() { |
| 1293 | b = reinterpret_cast<DeadlockReportBuffers *>( |
| 1294 | base_internal::LowLevelAlloc::Alloc(sizeof(*b))); |
| 1295 | } |
| 1296 | ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); } |
| 1297 | DeadlockReportBuffers *b; |
| 1298 | }; |
| 1299 | |
| 1300 | // Helper to pass to GraphCycles::UpdateStackTrace. |
| 1301 | int GetStack(void** stack, int max_depth) { |
| 1302 | return absl::GetStackTrace(stack, max_depth, 3); |
| 1303 | } |
| 1304 | } // anonymous namespace |
| 1305 | |
| 1306 | // Called in debug mode when a thread is about to acquire a lock in a way that |
| 1307 | // may block. |
| 1308 | static GraphId DeadlockCheck(Mutex *mu) { |
| 1309 | if (synch_deadlock_detection.load(std::memory_order_acquire) == |
| 1310 | OnDeadlockCycle::kIgnore) { |
| 1311 | return InvalidGraphId(); |
| 1312 | } |
| 1313 | |
| 1314 | SynchLocksHeld *all_locks = Synch_GetAllLocks(); |
| 1315 | |
| 1316 | absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu); |
| 1317 | const GraphId mu_id = GetGraphIdLocked(mu); |
| 1318 | |
| 1319 | if (all_locks->n == 0) { |
| 1320 | // There are no other locks held. Return now so that we don't need to |
| 1321 | // call GetSynchEvent(). This way we do not record the stack trace |
| 1322 | // for this Mutex. It's ok, since if this Mutex is involved in a deadlock, |
| 1323 | // it can't always be the first lock acquired by a thread. |
| 1324 | return mu_id; |
| 1325 | } |
| 1326 | |
| 1327 | // We prefer to keep stack traces that show a thread holding and acquiring |
| 1328 | // as many locks as possible. This increases the chances that a given edge |
| 1329 | // in the acquires-before graph will be represented in the stack traces |
| 1330 | // recorded for the locks. |
| 1331 | deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack); |
| 1332 | |
| 1333 | // For each other mutex already held by this thread: |
| 1334 | for (int i = 0; i != all_locks->n; i++) { |
| 1335 | const GraphId other_node_id = all_locks->locks[i].id; |
| 1336 | const Mutex *other = |
| 1337 | static_cast<const Mutex *>(deadlock_graph->Ptr(other_node_id)); |
| 1338 | if (other == nullptr) { |
| 1339 | // Ignore stale lock |
| 1340 | continue; |
| 1341 | } |
| 1342 | |
| 1343 | // Add the acquired-before edge to the graph. |
| 1344 | if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) { |
| 1345 | ScopedDeadlockReportBuffers scoped_buffers; |
| 1346 | DeadlockReportBuffers *b = scoped_buffers.b; |
| 1347 | static int number_of_reported_deadlocks = 0; |
| 1348 | number_of_reported_deadlocks++; |
| 1349 | // Symbolize only 2 first deadlock report to avoid huge slowdowns. |
| 1350 | bool symbolize = number_of_reported_deadlocks <= 2; |
| 1351 | ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s", |
| 1352 | CurrentStackString(b->buf, sizeof (b->buf), symbolize)); |
| 1353 | int len = 0; |
| 1354 | for (int j = 0; j != all_locks->n; j++) { |
| 1355 | void* pr = deadlock_graph->Ptr(all_locks->locks[j].id); |
| 1356 | if (pr != nullptr) { |
| 1357 | snprintf(b->buf + len, sizeof (b->buf) - len, " %p", pr); |
| 1358 | len += static_cast<int>(strlen(&b->buf[len])); |
| 1359 | } |
| 1360 | } |
| 1361 | ABSL_RAW_LOG(ERROR, "Acquiring %p Mutexes held: %s", |
| 1362 | static_cast<void *>(mu), b->buf); |
| 1363 | ABSL_RAW_LOG(ERROR, "Cycle: "); |
| 1364 | int path_len = deadlock_graph->FindPath( |
| 1365 | mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path); |
| 1366 | for (int j = 0; j != path_len; j++) { |
| 1367 | GraphId id = b->path[j]; |
| 1368 | Mutex *path_mu = static_cast<Mutex *>(deadlock_graph->Ptr(id)); |
| 1369 | if (path_mu == nullptr) continue; |
| 1370 | void** stack; |
| 1371 | int depth = deadlock_graph->GetStackTrace(id, &stack); |
| 1372 | snprintf(b->buf, sizeof(b->buf), |
| 1373 | "mutex@%p stack: ", static_cast<void *>(path_mu)); |
| 1374 | StackString(stack, depth, b->buf + strlen(b->buf), |
| 1375 | static_cast<int>(sizeof(b->buf) - strlen(b->buf)), |
| 1376 | symbolize); |
| 1377 | ABSL_RAW_LOG(ERROR, "%s", b->buf); |
| 1378 | } |
| 1379 | if (synch_deadlock_detection.load(std::memory_order_acquire) == |
| 1380 | OnDeadlockCycle::kAbort) { |
| 1381 | deadlock_graph_mu.Unlock(); // avoid deadlock in fatal sighandler |
| 1382 | ABSL_RAW_LOG(FATAL, "dying due to potential deadlock"); |
| 1383 | return mu_id; |
| 1384 | } |
| 1385 | break; // report at most one potential deadlock per acquisition |
| 1386 | } |
| 1387 | } |
| 1388 | |
| 1389 | return mu_id; |
| 1390 | } |
| 1391 | |
| 1392 | // Invoke DeadlockCheck() iff we're in debug mode and |
| 1393 | // deadlock checking has been enabled. |
| 1394 | static inline GraphId DebugOnlyDeadlockCheck(Mutex *mu) { |
| 1395 | if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != |
| 1396 | OnDeadlockCycle::kIgnore) { |
| 1397 | return DeadlockCheck(mu); |
| 1398 | } else { |
| 1399 | return InvalidGraphId(); |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | void Mutex::ForgetDeadlockInfo() { |
| 1404 | if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != |
| 1405 | OnDeadlockCycle::kIgnore) { |
| 1406 | deadlock_graph_mu.Lock(); |
| 1407 | if (deadlock_graph != nullptr) { |
| 1408 | deadlock_graph->RemoveNode(this); |
| 1409 | } |
| 1410 | deadlock_graph_mu.Unlock(); |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | void Mutex::AssertNotHeld() const { |
| 1415 | // We have the data to allow this check only if in debug mode and deadlock |
| 1416 | // detection is enabled. |
| 1417 | if (kDebugMode && |
| 1418 | (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 && |
| 1419 | synch_deadlock_detection.load(std::memory_order_acquire) != |
| 1420 | OnDeadlockCycle::kIgnore) { |
| 1421 | GraphId id = GetGraphId(const_cast<Mutex *>(this)); |
| 1422 | SynchLocksHeld *locks = Synch_GetAllLocks(); |
| 1423 | for (int i = 0; i != locks->n; i++) { |
| 1424 | if (locks->locks[i].id == id) { |
| 1425 | SynchEvent *mu_events = GetSynchEvent(this); |
| 1426 | ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s", |
| 1427 | static_cast<const void *>(this), |
| 1428 | (mu_events == nullptr ? "" : mu_events->name)); |
| 1429 | } |
| 1430 | } |
| 1431 | } |
| 1432 | } |
| 1433 | |
| 1434 | // Attempt to acquire *mu, and return whether successful. The implementation |
| 1435 | // may spin for a short while if the lock cannot be acquired immediately. |
| 1436 | static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) { |
| 1437 | int c = mutex_globals.spinloop_iterations; |
| 1438 | int result = -1; // result of operation: 0=false, 1=true, -1=unknown |
| 1439 | |
| 1440 | do { // do/while somewhat faster on AMD |
| 1441 | intptr_t v = mu->load(std::memory_order_relaxed); |
| 1442 | if ((v & (kMuReader|kMuEvent)) != 0) { // a reader or tracing -> give up |
| 1443 | result = 0; |
| 1444 | } else if (((v & kMuWriter) == 0) && // no holder -> try to acquire |
| 1445 | mu->compare_exchange_strong(v, kMuWriter | v, |
| 1446 | std::memory_order_acquire, |
| 1447 | std::memory_order_relaxed)) { |
| 1448 | result = 1; |
| 1449 | } |
| 1450 | } while (result == -1 && --c > 0); |
| 1451 | return result == 1; |
| 1452 | } |
| 1453 | |
| 1454 | ABSL_XRAY_LOG_ARGS(1) void Mutex::Lock() { |
| 1455 | ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); |
| 1456 | GraphId id = DebugOnlyDeadlockCheck(this); |
| 1457 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1458 | // try fast acquire, then spin loop |
| 1459 | if ((v & (kMuWriter | kMuReader | kMuEvent)) != 0 || |
| 1460 | !mu_.compare_exchange_strong(v, kMuWriter | v, |
| 1461 | std::memory_order_acquire, |
| 1462 | std::memory_order_relaxed)) { |
| 1463 | // try spin acquire, then slow loop |
| 1464 | if (!TryAcquireWithSpinning(&this->mu_)) { |
| 1465 | this->LockSlow(kExclusive, nullptr, 0); |
| 1466 | } |
| 1467 | } |
| 1468 | DebugOnlyLockEnter(this, id); |
| 1469 | ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); |
| 1470 | } |
| 1471 | |
| 1472 | ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderLock() { |
| 1473 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); |
| 1474 | GraphId id = DebugOnlyDeadlockCheck(this); |
| 1475 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1476 | // try fast acquire, then slow loop |
| 1477 | if ((v & (kMuWriter | kMuWait | kMuEvent)) != 0 || |
| 1478 | !mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, |
| 1479 | std::memory_order_acquire, |
| 1480 | std::memory_order_relaxed)) { |
| 1481 | this->LockSlow(kShared, nullptr, 0); |
| 1482 | } |
| 1483 | DebugOnlyLockEnter(this, id); |
| 1484 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); |
| 1485 | } |
| 1486 | |
| 1487 | void Mutex::LockWhen(const Condition &cond) { |
| 1488 | ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); |
| 1489 | GraphId id = DebugOnlyDeadlockCheck(this); |
| 1490 | this->LockSlow(kExclusive, &cond, 0); |
| 1491 | DebugOnlyLockEnter(this, id); |
| 1492 | ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); |
| 1493 | } |
| 1494 | |
| 1495 | bool Mutex::LockWhenWithTimeout(const Condition &cond, absl::Duration timeout) { |
| 1496 | return LockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); |
| 1497 | } |
| 1498 | |
| 1499 | bool Mutex::LockWhenWithDeadline(const Condition &cond, absl::Time deadline) { |
| 1500 | ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); |
| 1501 | GraphId id = DebugOnlyDeadlockCheck(this); |
| 1502 | bool res = LockSlowWithDeadline(kExclusive, &cond, |
| 1503 | KernelTimeout(deadline), 0); |
| 1504 | DebugOnlyLockEnter(this, id); |
| 1505 | ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); |
| 1506 | return res; |
| 1507 | } |
| 1508 | |
| 1509 | void Mutex::ReaderLockWhen(const Condition &cond) { |
| 1510 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); |
| 1511 | GraphId id = DebugOnlyDeadlockCheck(this); |
| 1512 | this->LockSlow(kShared, &cond, 0); |
| 1513 | DebugOnlyLockEnter(this, id); |
| 1514 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); |
| 1515 | } |
| 1516 | |
| 1517 | bool Mutex::ReaderLockWhenWithTimeout(const Condition &cond, |
| 1518 | absl::Duration timeout) { |
| 1519 | return ReaderLockWhenWithDeadline(cond, DeadlineFromTimeout(timeout)); |
| 1520 | } |
| 1521 | |
| 1522 | bool Mutex::ReaderLockWhenWithDeadline(const Condition &cond, |
| 1523 | absl::Time deadline) { |
| 1524 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); |
| 1525 | GraphId id = DebugOnlyDeadlockCheck(this); |
| 1526 | bool res = LockSlowWithDeadline(kShared, &cond, KernelTimeout(deadline), 0); |
| 1527 | DebugOnlyLockEnter(this, id); |
| 1528 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); |
| 1529 | return res; |
| 1530 | } |
| 1531 | |
| 1532 | void Mutex::Await(const Condition &cond) { |
| 1533 | if (cond.Eval()) { // condition already true; nothing to do |
| 1534 | if (kDebugMode) { |
| 1535 | this->AssertReaderHeld(); |
| 1536 | } |
| 1537 | } else { // normal case |
| 1538 | ABSL_RAW_CHECK(this->AwaitCommon(cond, KernelTimeout::Never()), |
| 1539 | "condition untrue on return from Await"); |
| 1540 | } |
| 1541 | } |
| 1542 | |
| 1543 | bool Mutex::AwaitWithTimeout(const Condition &cond, absl::Duration timeout) { |
| 1544 | return AwaitWithDeadline(cond, DeadlineFromTimeout(timeout)); |
| 1545 | } |
| 1546 | |
| 1547 | bool Mutex::AwaitWithDeadline(const Condition &cond, absl::Time deadline) { |
| 1548 | if (cond.Eval()) { // condition already true; nothing to do |
| 1549 | if (kDebugMode) { |
| 1550 | this->AssertReaderHeld(); |
| 1551 | } |
| 1552 | return true; |
| 1553 | } |
| 1554 | |
| 1555 | KernelTimeout t{deadline}; |
| 1556 | bool res = this->AwaitCommon(cond, t); |
| 1557 | ABSL_RAW_CHECK(res || t.has_timeout(), |
| 1558 | "condition untrue on return from Await"); |
| 1559 | return res; |
| 1560 | } |
| 1561 | |
| 1562 | bool Mutex::AwaitCommon(const Condition &cond, KernelTimeout t) { |
| 1563 | this->AssertReaderHeld(); |
| 1564 | MuHow how = |
| 1565 | (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared; |
| 1566 | ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how)); |
| 1567 | SynchWaitParams waitp( |
| 1568 | how, &cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), |
| 1569 | nullptr /*no cv_word*/); |
| 1570 | int flags = kMuHasBlocked; |
| 1571 | if (!Condition::GuaranteedEqual(&cond, nullptr)) { |
| 1572 | flags |= kMuIsCond; |
| 1573 | } |
| 1574 | this->UnlockSlow(&waitp); |
| 1575 | this->Block(waitp.thread); |
| 1576 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how)); |
| 1577 | ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how)); |
| 1578 | this->LockSlowLoop(&waitp, flags); |
| 1579 | bool res = waitp.cond != nullptr || // => cond known true from LockSlowLoop |
| 1580 | EvalConditionAnnotated(&cond, this, true, false, how == kShared); |
| 1581 | ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0); |
| 1582 | return res; |
| 1583 | } |
| 1584 | |
| 1585 | ABSL_XRAY_LOG_ARGS(1) bool Mutex::TryLock() { |
| 1586 | ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock); |
| 1587 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1588 | if ((v & (kMuWriter | kMuReader | kMuEvent)) == 0 && // try fast acquire |
| 1589 | mu_.compare_exchange_strong(v, kMuWriter | v, |
| 1590 | std::memory_order_acquire, |
| 1591 | std::memory_order_relaxed)) { |
| 1592 | DebugOnlyLockEnter(this); |
| 1593 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); |
| 1594 | return true; |
| 1595 | } |
| 1596 | if ((v & kMuEvent) != 0) { // we're recording events |
| 1597 | if ((v & kExclusive->slow_need_zero) == 0 && // try fast acquire |
| 1598 | mu_.compare_exchange_strong( |
| 1599 | v, (kExclusive->fast_or | v) + kExclusive->fast_add, |
| 1600 | std::memory_order_acquire, std::memory_order_relaxed)) { |
| 1601 | DebugOnlyLockEnter(this); |
| 1602 | PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS); |
| 1603 | ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); |
| 1604 | return true; |
| 1605 | } else { |
| 1606 | PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED); |
| 1607 | } |
| 1608 | } |
| 1609 | ABSL_TSAN_MUTEX_POST_LOCK( |
| 1610 | this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); |
| 1611 | return false; |
| 1612 | } |
| 1613 | |
| 1614 | ABSL_XRAY_LOG_ARGS(1) bool Mutex::ReaderTryLock() { |
| 1615 | ABSL_TSAN_MUTEX_PRE_LOCK(this, |
| 1616 | __tsan_mutex_read_lock | __tsan_mutex_try_lock); |
| 1617 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1618 | // The while-loops (here and below) iterate only if the mutex word keeps |
| 1619 | // changing (typically because the reader count changes) under the CAS. We |
| 1620 | // limit the number of attempts to avoid having to think about livelock. |
| 1621 | int loop_limit = 5; |
| 1622 | while ((v & (kMuWriter|kMuWait|kMuEvent)) == 0 && loop_limit != 0) { |
| 1623 | if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, |
| 1624 | std::memory_order_acquire, |
| 1625 | std::memory_order_relaxed)) { |
| 1626 | DebugOnlyLockEnter(this); |
| 1627 | ABSL_TSAN_MUTEX_POST_LOCK( |
| 1628 | this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); |
| 1629 | return true; |
| 1630 | } |
| 1631 | loop_limit--; |
| 1632 | v = mu_.load(std::memory_order_relaxed); |
| 1633 | } |
| 1634 | if ((v & kMuEvent) != 0) { // we're recording events |
| 1635 | loop_limit = 5; |
| 1636 | while ((v & kShared->slow_need_zero) == 0 && loop_limit != 0) { |
| 1637 | if (mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, |
| 1638 | std::memory_order_acquire, |
| 1639 | std::memory_order_relaxed)) { |
| 1640 | DebugOnlyLockEnter(this); |
| 1641 | PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS); |
| 1642 | ABSL_TSAN_MUTEX_POST_LOCK( |
| 1643 | this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); |
| 1644 | return true; |
| 1645 | } |
| 1646 | loop_limit--; |
| 1647 | v = mu_.load(std::memory_order_relaxed); |
| 1648 | } |
| 1649 | if ((v & kMuEvent) != 0) { |
| 1650 | PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED); |
| 1651 | } |
| 1652 | } |
| 1653 | ABSL_TSAN_MUTEX_POST_LOCK(this, |
| 1654 | __tsan_mutex_read_lock | __tsan_mutex_try_lock | |
| 1655 | __tsan_mutex_try_lock_failed, |
| 1656 | 0); |
| 1657 | return false; |
| 1658 | } |
| 1659 | |
| 1660 | ABSL_XRAY_LOG_ARGS(1) void Mutex::Unlock() { |
| 1661 | ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0); |
| 1662 | DebugOnlyLockLeave(this); |
| 1663 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1664 | |
| 1665 | if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) { |
| 1666 | ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x", |
| 1667 | static_cast<unsigned>(v)); |
| 1668 | } |
| 1669 | |
| 1670 | // should_try_cas is whether we'll try a compare-and-swap immediately. |
| 1671 | // NOTE: optimized out when kDebugMode is false. |
| 1672 | bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter && |
| 1673 | (v & (kMuWait | kMuDesig)) != kMuWait); |
| 1674 | // But, we can use an alternate computation of it, that compilers |
| 1675 | // currently don't find on their own. When that changes, this function |
| 1676 | // can be simplified. |
| 1677 | intptr_t x = (v ^ (kMuWriter | kMuWait)) & (kMuWriter | kMuEvent); |
| 1678 | intptr_t y = (v ^ (kMuWriter | kMuWait)) & (kMuWait | kMuDesig); |
| 1679 | // Claim: "x == 0 && y > 0" is equal to should_try_cas. |
| 1680 | // Also, because kMuWriter and kMuEvent exceed kMuDesig and kMuWait, |
| 1681 | // all possible non-zero values for x exceed all possible values for y. |
| 1682 | // Therefore, (x == 0 && y > 0) == (x < y). |
| 1683 | if (kDebugMode && should_try_cas != (x < y)) { |
| 1684 | // We would usually use PRIdPTR here, but is not correctly implemented |
| 1685 | // within the android toolchain. |
| 1686 | ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n", |
| 1687 | static_cast<long long>(v), static_cast<long long>(x), |
| 1688 | static_cast<long long>(y)); |
| 1689 | } |
| 1690 | if (x < y && |
| 1691 | mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), |
| 1692 | std::memory_order_release, |
| 1693 | std::memory_order_relaxed)) { |
| 1694 | // fast writer release (writer with no waiters or with designated waker) |
| 1695 | } else { |
| 1696 | this->UnlockSlow(nullptr /*no waitp*/); // take slow path |
| 1697 | } |
| 1698 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0); |
| 1699 | } |
| 1700 | |
| 1701 | // Requires v to represent a reader-locked state. |
| 1702 | static bool ExactlyOneReader(intptr_t v) { |
| 1703 | assert((v & (kMuWriter|kMuReader)) == kMuReader); |
| 1704 | assert((v & kMuHigh) != 0); |
| 1705 | // The more straightforward "(v & kMuHigh) == kMuOne" also works, but |
| 1706 | // on some architectures the following generates slightly smaller code. |
| 1707 | // It may be faster too. |
| 1708 | constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne; |
| 1709 | return (v & kMuMultipleWaitersMask) == 0; |
| 1710 | } |
| 1711 | |
| 1712 | ABSL_XRAY_LOG_ARGS(1) void Mutex::ReaderUnlock() { |
| 1713 | ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock); |
| 1714 | DebugOnlyLockLeave(this); |
| 1715 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1716 | assert((v & (kMuWriter|kMuReader)) == kMuReader); |
| 1717 | if ((v & (kMuReader|kMuWait|kMuEvent)) == kMuReader) { |
| 1718 | // fast reader release (reader with no waiters) |
| 1719 | intptr_t clear = ExactlyOneReader(v) ? kMuReader|kMuOne : kMuOne; |
| 1720 | if (mu_.compare_exchange_strong(v, v - clear, |
| 1721 | std::memory_order_release, |
| 1722 | std::memory_order_relaxed)) { |
| 1723 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); |
| 1724 | return; |
| 1725 | } |
| 1726 | } |
| 1727 | this->UnlockSlow(nullptr /*no waitp*/); // take slow path |
| 1728 | ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); |
| 1729 | } |
| 1730 | |
| 1731 | // The zap_desig_waker bitmask is used to clear the designated waker flag in |
| 1732 | // the mutex if this thread has blocked, and therefore may be the designated |
| 1733 | // waker. |
| 1734 | static const intptr_t zap_desig_waker[] = { |
| 1735 | ~static_cast<intptr_t>(0), // not blocked |
| 1736 | ~static_cast<intptr_t>( |
| 1737 | kMuDesig) // blocked; turn off the designated waker bit |
| 1738 | }; |
| 1739 | |
| 1740 | // The ignore_waiting_writers bitmask is used to ignore the existence |
| 1741 | // of waiting writers if a reader that has already blocked once |
| 1742 | // wakes up. |
| 1743 | static const intptr_t ignore_waiting_writers[] = { |
| 1744 | ~static_cast<intptr_t>(0), // not blocked |
| 1745 | ~static_cast<intptr_t>( |
| 1746 | kMuWrWait) // blocked; pretend there are no waiting writers |
| 1747 | }; |
| 1748 | |
| 1749 | // Internal version of LockWhen(). See LockSlowWithDeadline() |
| 1750 | void Mutex::LockSlow(MuHow how, const Condition *cond, int flags) { |
| 1751 | ABSL_RAW_CHECK( |
| 1752 | this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags), |
| 1753 | "condition untrue on return from LockSlow"); |
| 1754 | } |
| 1755 | |
| 1756 | // Compute cond->Eval() and tell race detectors that we do it under mutex mu. |
| 1757 | static inline bool EvalConditionAnnotated(const Condition *cond, Mutex *mu, |
| 1758 | bool locking, bool trylock, |
| 1759 | bool read_lock) { |
| 1760 | // Delicate annotation dance. |
| 1761 | // We are currently inside of read/write lock/unlock operation. |
| 1762 | // All memory accesses are ignored inside of mutex operations + for unlock |
| 1763 | // operation tsan considers that we've already released the mutex. |
| 1764 | bool res = false; |
| 1765 | #ifdef THREAD_SANITIZER |
| 1766 | const int flags = read_lock ? __tsan_mutex_read_lock : 0; |
| 1767 | const int tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0); |
| 1768 | #endif |
| 1769 | if (locking) { |
| 1770 | // For lock we pretend that we have finished the operation, |
| 1771 | // evaluate the predicate, then unlock the mutex and start locking it again |
| 1772 | // to match the annotation at the end of outer lock operation. |
| 1773 | // Note: we can't simply do POST_LOCK, Eval, PRE_LOCK, because then tsan |
| 1774 | // will think the lock acquisition is recursive which will trigger |
| 1775 | // deadlock detector. |
| 1776 | ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0); |
| 1777 | res = cond->Eval(); |
| 1778 | // There is no "try" version of Unlock, so use flags instead of tryflags. |
| 1779 | ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); |
| 1780 | ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); |
| 1781 | ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags); |
| 1782 | } else { |
| 1783 | // Similarly, for unlock we pretend that we have unlocked the mutex, |
| 1784 | // lock the mutex, evaluate the predicate, and start unlocking it again |
| 1785 | // to match the annotation at the end of outer unlock operation. |
| 1786 | ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); |
| 1787 | ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags); |
| 1788 | ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0); |
| 1789 | res = cond->Eval(); |
| 1790 | ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); |
| 1791 | } |
| 1792 | // Prevent unused param warnings in non-TSAN builds. |
| 1793 | static_cast<void>(mu); |
| 1794 | static_cast<void>(trylock); |
| 1795 | static_cast<void>(read_lock); |
| 1796 | return res; |
| 1797 | } |
| 1798 | |
| 1799 | // Compute cond->Eval() hiding it from race detectors. |
| 1800 | // We are hiding it because inside of UnlockSlow we can evaluate a predicate |
| 1801 | // that was just added by a concurrent Lock operation; Lock adds the predicate |
| 1802 | // to the internal Mutex list without actually acquiring the Mutex |
| 1803 | // (it only acquires the internal spinlock, which is rightfully invisible for |
| 1804 | // tsan). As the result there is no tsan-visible synchronization between the |
| 1805 | // addition and this thread. So if we would enable race detection here, |
| 1806 | // it would race with the predicate initialization. |
| 1807 | static inline bool EvalConditionIgnored(Mutex *mu, const Condition *cond) { |
| 1808 | // Memory accesses are already ignored inside of lock/unlock operations, |
| 1809 | // but synchronization operations are also ignored. When we evaluate the |
| 1810 | // predicate we must ignore only memory accesses but not synchronization, |
| 1811 | // because missed synchronization can lead to false reports later. |
| 1812 | // So we "divert" (which un-ignores both memory accesses and synchronization) |
| 1813 | // and then separately turn on ignores of memory accesses. |
| 1814 | ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); |
| 1815 | ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); |
| 1816 | bool res = cond->Eval(); |
| 1817 | ANNOTATE_IGNORE_READS_AND_WRITES_END(); |
| 1818 | ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); |
| 1819 | static_cast<void>(mu); // Prevent unused param warning in non-TSAN builds. |
| 1820 | return res; |
| 1821 | } |
| 1822 | |
| 1823 | // Internal equivalent of *LockWhenWithDeadline(), where |
| 1824 | // "t" represents the absolute timeout; !t.has_timeout() means "forever". |
| 1825 | // "how" is "kShared" (for ReaderLockWhen) or "kExclusive" (for LockWhen) |
| 1826 | // In flags, bits are ored together: |
| 1827 | // - kMuHasBlocked indicates that the client has already blocked on the call so |
| 1828 | // the designated waker bit must be cleared and waiting writers should not |
| 1829 | // obstruct this call |
| 1830 | // - kMuIsCond indicates that this is a conditional acquire (condition variable, |
| 1831 | // Await, LockWhen) so contention profiling should be suppressed. |
| 1832 | bool Mutex::LockSlowWithDeadline(MuHow how, const Condition *cond, |
| 1833 | KernelTimeout t, int flags) { |
| 1834 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1835 | bool unlock = false; |
| 1836 | if ((v & how->fast_need_zero) == 0 && // try fast acquire |
| 1837 | mu_.compare_exchange_strong( |
| 1838 | v, (how->fast_or | (v & zap_desig_waker[flags & kMuHasBlocked])) + |
| 1839 | how->fast_add, |
| 1840 | std::memory_order_acquire, std::memory_order_relaxed)) { |
| 1841 | if (cond == nullptr || |
| 1842 | EvalConditionAnnotated(cond, this, true, false, how == kShared)) { |
| 1843 | return true; |
| 1844 | } |
| 1845 | unlock = true; |
| 1846 | } |
| 1847 | SynchWaitParams waitp( |
| 1848 | how, cond, t, nullptr /*no cvmu*/, Synch_GetPerThreadAnnotated(this), |
| 1849 | nullptr /*no cv_word*/); |
| 1850 | if (!Condition::GuaranteedEqual(cond, nullptr)) { |
| 1851 | flags |= kMuIsCond; |
| 1852 | } |
| 1853 | if (unlock) { |
| 1854 | this->UnlockSlow(&waitp); |
| 1855 | this->Block(waitp.thread); |
| 1856 | flags |= kMuHasBlocked; |
| 1857 | } |
| 1858 | this->LockSlowLoop(&waitp, flags); |
| 1859 | return waitp.cond != nullptr || // => cond known true from LockSlowLoop |
| 1860 | cond == nullptr || |
| 1861 | EvalConditionAnnotated(cond, this, true, false, how == kShared); |
| 1862 | } |
| 1863 | |
| 1864 | // RAW_CHECK_FMT() takes a condition, a printf-style format string, and |
| 1865 | // the printf-style argument list. The format string must be a literal. |
| 1866 | // Arguments after the first are not evaluated unless the condition is true. |
| 1867 | #define RAW_CHECK_FMT(cond, ...) \ |
| 1868 | do { \ |
| 1869 | if (ABSL_PREDICT_FALSE(!(cond))) { \ |
| 1870 | ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \ |
| 1871 | } \ |
| 1872 | } while (0) |
| 1873 | |
| 1874 | static void CheckForMutexCorruption(intptr_t v, const char* label) { |
| 1875 | // Test for either of two situations that should not occur in v: |
| 1876 | // kMuWriter and kMuReader |
| 1877 | // kMuWrWait and !kMuWait |
| 1878 | const uintptr_t w = v ^ kMuWait; |
| 1879 | // By flipping that bit, we can now test for: |
| 1880 | // kMuWriter and kMuReader in w |
| 1881 | // kMuWrWait and kMuWait in w |
| 1882 | // We've chosen these two pairs of values to be so that they will overlap, |
| 1883 | // respectively, when the word is left shifted by three. This allows us to |
| 1884 | // save a branch in the common (correct) case of them not being coincident. |
| 1885 | static_assert(kMuReader << 3 == kMuWriter, "must match"); |
| 1886 | static_assert(kMuWait << 3 == kMuWrWait, "must match"); |
| 1887 | if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return; |
| 1888 | RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader), |
| 1889 | "%s: Mutex corrupt: both reader and writer lock held: %p", |
| 1890 | label, reinterpret_cast<void *>(v)); |
| 1891 | RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait, |
| 1892 | "%s: Mutex corrupt: waiting writer with no waiters: %p", |
| 1893 | label, reinterpret_cast<void *>(v)); |
| 1894 | assert(false); |
| 1895 | } |
| 1896 | |
| 1897 | void Mutex::LockSlowLoop(SynchWaitParams *waitp, int flags) { |
| 1898 | int c = 0; |
| 1899 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 1900 | if ((v & kMuEvent) != 0) { |
| 1901 | PostSynchEvent(this, |
| 1902 | waitp->how == kExclusive? SYNCH_EV_LOCK: SYNCH_EV_READERLOCK); |
| 1903 | } |
| 1904 | ABSL_RAW_CHECK( |
| 1905 | waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, |
| 1906 | "detected illegal recursion into Mutex code"); |
| 1907 | for (;;) { |
| 1908 | v = mu_.load(std::memory_order_relaxed); |
| 1909 | CheckForMutexCorruption(v, "Lock"); |
| 1910 | if ((v & waitp->how->slow_need_zero) == 0) { |
| 1911 | if (mu_.compare_exchange_strong( |
| 1912 | v, (waitp->how->fast_or | |
| 1913 | (v & zap_desig_waker[flags & kMuHasBlocked])) + |
| 1914 | waitp->how->fast_add, |
| 1915 | std::memory_order_acquire, std::memory_order_relaxed)) { |
| 1916 | if (waitp->cond == nullptr || |
| 1917 | EvalConditionAnnotated(waitp->cond, this, true, false, |
| 1918 | waitp->how == kShared)) { |
| 1919 | break; // we timed out, or condition true, so return |
| 1920 | } |
| 1921 | this->UnlockSlow(waitp); // got lock but condition false |
| 1922 | this->Block(waitp->thread); |
| 1923 | flags |= kMuHasBlocked; |
| 1924 | c = 0; |
| 1925 | } |
| 1926 | } else { // need to access waiter list |
| 1927 | bool dowait = false; |
| 1928 | if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters |
| 1929 | // This thread tries to become the one and only waiter. |
| 1930 | PerThreadSynch *new_h = Enqueue(nullptr, waitp, v, flags); |
| 1931 | intptr_t nv = (v & zap_desig_waker[flags & kMuHasBlocked] & kMuLow) | |
| 1932 | kMuWait; |
| 1933 | ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed"); |
| 1934 | if (waitp->how == kExclusive && (v & kMuReader) != 0) { |
| 1935 | nv |= kMuWrWait; |
| 1936 | } |
| 1937 | if (mu_.compare_exchange_strong( |
| 1938 | v, reinterpret_cast<intptr_t>(new_h) | nv, |
| 1939 | std::memory_order_release, std::memory_order_relaxed)) { |
| 1940 | dowait = true; |
| 1941 | } else { // attempted Enqueue() failed |
| 1942 | // zero out the waitp field set by Enqueue() |
| 1943 | waitp->thread->waitp = nullptr; |
| 1944 | } |
| 1945 | } else if ((v & waitp->how->slow_inc_need_zero & |
| 1946 | ignore_waiting_writers[flags & kMuHasBlocked]) == 0) { |
| 1947 | // This is a reader that needs to increment the reader count, |
| 1948 | // but the count is currently held in the last waiter. |
| 1949 | if (mu_.compare_exchange_strong( |
| 1950 | v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin | |
| 1951 | kMuReader, |
| 1952 | std::memory_order_acquire, std::memory_order_relaxed)) { |
| 1953 | PerThreadSynch *h = GetPerThreadSynch(v); |
| 1954 | h->readers += kMuOne; // inc reader count in waiter |
| 1955 | do { // release spinlock |
| 1956 | v = mu_.load(std::memory_order_relaxed); |
| 1957 | } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader, |
| 1958 | std::memory_order_release, |
| 1959 | std::memory_order_relaxed)); |
| 1960 | if (waitp->cond == nullptr || |
| 1961 | EvalConditionAnnotated(waitp->cond, this, true, false, |
| 1962 | waitp->how == kShared)) { |
| 1963 | break; // we timed out, or condition true, so return |
| 1964 | } |
| 1965 | this->UnlockSlow(waitp); // got lock but condition false |
| 1966 | this->Block(waitp->thread); |
| 1967 | flags |= kMuHasBlocked; |
| 1968 | c = 0; |
| 1969 | } |
| 1970 | } else if ((v & kMuSpin) == 0 && // attempt to queue ourselves |
| 1971 | mu_.compare_exchange_strong( |
| 1972 | v, (v & zap_desig_waker[flags & kMuHasBlocked]) | kMuSpin | |
| 1973 | kMuWait, |
| 1974 | std::memory_order_acquire, std::memory_order_relaxed)) { |
| 1975 | PerThreadSynch *h = GetPerThreadSynch(v); |
| 1976 | PerThreadSynch *new_h = Enqueue(h, waitp, v, flags); |
| 1977 | intptr_t wr_wait = 0; |
| 1978 | ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed"); |
| 1979 | if (waitp->how == kExclusive && (v & kMuReader) != 0) { |
| 1980 | wr_wait = kMuWrWait; // give priority to a waiting writer |
| 1981 | } |
| 1982 | do { // release spinlock |
| 1983 | v = mu_.load(std::memory_order_relaxed); |
| 1984 | } while (!mu_.compare_exchange_weak( |
| 1985 | v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait | |
| 1986 | reinterpret_cast<intptr_t>(new_h), |
| 1987 | std::memory_order_release, std::memory_order_relaxed)); |
| 1988 | dowait = true; |
| 1989 | } |
| 1990 | if (dowait) { |
| 1991 | this->Block(waitp->thread); // wait until removed from list or timeout |
| 1992 | flags |= kMuHasBlocked; |
| 1993 | c = 0; |
| 1994 | } |
| 1995 | } |
| 1996 | ABSL_RAW_CHECK( |
| 1997 | waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, |
| 1998 | "detected illegal recursion into Mutex code"); |
| 1999 | c = Delay(c, GENTLE); // delay, then try again |
| 2000 | } |
| 2001 | ABSL_RAW_CHECK( |
| 2002 | waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, |
| 2003 | "detected illegal recursion into Mutex code"); |
| 2004 | if ((v & kMuEvent) != 0) { |
| 2005 | PostSynchEvent(this, |
| 2006 | waitp->how == kExclusive? SYNCH_EV_LOCK_RETURNING : |
| 2007 | SYNCH_EV_READERLOCK_RETURNING); |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | // Unlock this mutex, which is held by the current thread. |
| 2012 | // If waitp is non-zero, it must be the wait parameters for the current thread |
| 2013 | // which holds the lock but is not runnable because its condition is false |
| 2014 | // or it is in the process of blocking on a condition variable; it must requeue |
| 2015 | // itself on the mutex/condvar to wait for its condition to become true. |
| 2016 | void Mutex::UnlockSlow(SynchWaitParams *waitp) { |
| 2017 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 2018 | this->AssertReaderHeld(); |
| 2019 | CheckForMutexCorruption(v, "Unlock"); |
| 2020 | if ((v & kMuEvent) != 0) { |
| 2021 | PostSynchEvent(this, |
| 2022 | (v & kMuWriter) != 0? SYNCH_EV_UNLOCK: SYNCH_EV_READERUNLOCK); |
| 2023 | } |
| 2024 | int c = 0; |
| 2025 | // the waiter under consideration to wake, or zero |
| 2026 | PerThreadSynch *w = nullptr; |
| 2027 | // the predecessor to w or zero |
| 2028 | PerThreadSynch *pw = nullptr; |
| 2029 | // head of the list searched previously, or zero |
| 2030 | PerThreadSynch *old_h = nullptr; |
| 2031 | // a condition that's known to be false. |
| 2032 | const Condition *known_false = nullptr; |
| 2033 | PerThreadSynch *wake_list = kPerThreadSynchNull; // list of threads to wake |
| 2034 | intptr_t wr_wait = 0; // set to kMuWrWait if we wake a reader and a |
| 2035 | // later writer could have acquired the lock |
| 2036 | // (starvation avoidance) |
| 2037 | ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr || |
| 2038 | waitp->thread->suppress_fatal_errors, |
| 2039 | "detected illegal recursion into Mutex code"); |
| 2040 | // This loop finds threads wake_list to wakeup if any, and removes them from |
| 2041 | // the list of waiters. In addition, it places waitp.thread on the queue of |
| 2042 | // waiters if waitp is non-zero. |
| 2043 | for (;;) { |
| 2044 | v = mu_.load(std::memory_order_relaxed); |
| 2045 | if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait && |
| 2046 | waitp == nullptr) { |
| 2047 | // fast writer release (writer with no waiters or with designated waker) |
| 2048 | if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), |
| 2049 | std::memory_order_release, |
| 2050 | std::memory_order_relaxed)) { |
| 2051 | return; |
| 2052 | } |
| 2053 | } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) { |
| 2054 | // fast reader release (reader with no waiters) |
| 2055 | intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne; |
| 2056 | if (mu_.compare_exchange_strong(v, v - clear, |
| 2057 | std::memory_order_release, |
| 2058 | std::memory_order_relaxed)) { |
| 2059 | return; |
| 2060 | } |
| 2061 | } else if ((v & kMuSpin) == 0 && // attempt to get spinlock |
| 2062 | mu_.compare_exchange_strong(v, v | kMuSpin, |
| 2063 | std::memory_order_acquire, |
| 2064 | std::memory_order_relaxed)) { |
| 2065 | if ((v & kMuWait) == 0) { // no one to wake |
| 2066 | intptr_t nv; |
| 2067 | bool do_enqueue = true; // always Enqueue() the first time |
| 2068 | ABSL_RAW_CHECK(waitp != nullptr, |
| 2069 | "UnlockSlow is confused"); // about to sleep |
| 2070 | do { // must loop to release spinlock as reader count may change |
| 2071 | v = mu_.load(std::memory_order_relaxed); |
| 2072 | // decrement reader count if there are readers |
| 2073 | intptr_t new_readers = (v >= kMuOne)? v - kMuOne : v; |
| 2074 | PerThreadSynch *new_h = nullptr; |
| 2075 | if (do_enqueue) { |
| 2076 | // If we are enqueuing on a CondVar (waitp->cv_word != nullptr) then |
| 2077 | // we must not retry here. The initial attempt will always have |
| 2078 | // succeeded, further attempts would enqueue us against *this due to |
| 2079 | // Fer() handling. |
| 2080 | do_enqueue = (waitp->cv_word == nullptr); |
| 2081 | new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond); |
| 2082 | } |
| 2083 | intptr_t clear = kMuWrWait | kMuWriter; // by default clear write bit |
| 2084 | if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { // last reader |
| 2085 | clear = kMuWrWait | kMuReader; // clear read bit |
| 2086 | } |
| 2087 | nv = (v & kMuLow & ~clear & ~kMuSpin); |
| 2088 | if (new_h != nullptr) { |
| 2089 | nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); |
| 2090 | } else { // new_h could be nullptr if we queued ourselves on a |
| 2091 | // CondVar |
| 2092 | // In that case, we must place the reader count back in the mutex |
| 2093 | // word, as Enqueue() did not store it in the new waiter. |
| 2094 | nv |= new_readers & kMuHigh; |
| 2095 | } |
| 2096 | // release spinlock & our lock; retry if reader-count changed |
| 2097 | // (writer count cannot change since we hold lock) |
| 2098 | } while (!mu_.compare_exchange_weak(v, nv, |
| 2099 | std::memory_order_release, |
| 2100 | std::memory_order_relaxed)); |
| 2101 | break; |
| 2102 | } |
| 2103 | |
| 2104 | // There are waiters. |
| 2105 | // Set h to the head of the circular waiter list. |
| 2106 | PerThreadSynch *h = GetPerThreadSynch(v); |
| 2107 | if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) { |
| 2108 | // a reader but not the last |
| 2109 | h->readers -= kMuOne; // release our lock |
| 2110 | intptr_t nv = v; // normally just release spinlock |
| 2111 | if (waitp != nullptr) { // but waitp!=nullptr => must queue ourselves |
| 2112 | PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); |
| 2113 | ABSL_RAW_CHECK(new_h != nullptr, |
| 2114 | "waiters disappeared during Enqueue()!"); |
| 2115 | nv &= kMuLow; |
| 2116 | nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); |
| 2117 | } |
| 2118 | mu_.store(nv, std::memory_order_release); // release spinlock |
| 2119 | // can release with a store because there were waiters |
| 2120 | break; |
| 2121 | } |
| 2122 | |
| 2123 | // Either we didn't search before, or we marked the queue |
| 2124 | // as "maybe_unlocking" and no one else should have changed it. |
| 2125 | ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking, |
| 2126 | "Mutex queue changed beneath us"); |
| 2127 | |
| 2128 | // The lock is becoming free, and there's a waiter |
| 2129 | if (old_h != nullptr && |
| 2130 | !old_h->may_skip) { // we used old_h as a terminator |
| 2131 | old_h->may_skip = true; // allow old_h to skip once more |
| 2132 | ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head"); |
| 2133 | if (h != old_h && MuSameCondition(old_h, old_h->next)) { |
| 2134 | old_h->skip = old_h->next; // old_h not head & can skip to successor |
| 2135 | } |
| 2136 | } |
| 2137 | if (h->next->waitp->how == kExclusive && |
| 2138 | Condition::GuaranteedEqual(h->next->waitp->cond, nullptr)) { |
| 2139 | // easy case: writer with no condition; no need to search |
| 2140 | pw = h; // wake w, the successor of h (=pw) |
| 2141 | w = h->next; |
| 2142 | w->wake = true; |
| 2143 | // We are waking up a writer. This writer may be racing against |
| 2144 | // an already awake reader for the lock. We want the |
| 2145 | // writer to usually win this race, |
| 2146 | // because if it doesn't, we can potentially keep taking a reader |
| 2147 | // perpetually and writers will starve. Worse than |
| 2148 | // that, this can also starve other readers if kMuWrWait gets set |
| 2149 | // later. |
| 2150 | wr_wait = kMuWrWait; |
| 2151 | } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) { |
| 2152 | // we found a waiter w to wake on a previous iteration and either it's |
| 2153 | // a writer, or we've searched the entire list so we have all the |
| 2154 | // readers. |
| 2155 | if (pw == nullptr) { // if w's predecessor is unknown, it must be h |
| 2156 | pw = h; |
| 2157 | } |
| 2158 | } else { |
| 2159 | // At this point we don't know all the waiters to wake, and the first |
| 2160 | // waiter has a condition or is a reader. We avoid searching over |
| 2161 | // waiters we've searched on previous iterations by starting at |
| 2162 | // old_h if it's set. If old_h==h, there's no one to wakeup at all. |
| 2163 | if (old_h == h) { // we've searched before, and nothing's new |
| 2164 | // so there's no one to wake. |
| 2165 | intptr_t nv = (v & ~(kMuReader|kMuWriter|kMuWrWait)); |
| 2166 | h->readers = 0; |
| 2167 | h->maybe_unlocking = false; // finished unlocking |
| 2168 | if (waitp != nullptr) { // we must queue ourselves and sleep |
| 2169 | PerThreadSynch *new_h = Enqueue(h, waitp, v, kMuIsCond); |
| 2170 | nv &= kMuLow; |
| 2171 | if (new_h != nullptr) { |
| 2172 | nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); |
| 2173 | } // else new_h could be nullptr if we queued ourselves on a |
| 2174 | // CondVar |
| 2175 | } |
| 2176 | // release spinlock & lock |
| 2177 | // can release with a store because there were waiters |
| 2178 | mu_.store(nv, std::memory_order_release); |
| 2179 | break; |
| 2180 | } |
| 2181 | |
| 2182 | // set up to walk the list |
| 2183 | PerThreadSynch *w_walk; // current waiter during list walk |
| 2184 | PerThreadSynch *pw_walk; // previous waiter during list walk |
| 2185 | if (old_h != nullptr) { // we've searched up to old_h before |
| 2186 | pw_walk = old_h; |
| 2187 | w_walk = old_h->next; |
| 2188 | } else { // no prior search, start at beginning |
| 2189 | pw_walk = |
| 2190 | nullptr; // h->next's predecessor may change; don't record it |
| 2191 | w_walk = h->next; |
| 2192 | } |
| 2193 | |
| 2194 | h->may_skip = false; // ensure we never skip past h in future searches |
| 2195 | // even if other waiters are queued after it. |
| 2196 | ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head"); |
| 2197 | |
| 2198 | h->maybe_unlocking = true; // we're about to scan the waiter list |
| 2199 | // without the spinlock held. |
| 2200 | // Enqueue must be conservative about |
| 2201 | // priority queuing. |
| 2202 | |
| 2203 | // We must release the spinlock to evaluate the conditions. |
| 2204 | mu_.store(v, std::memory_order_release); // release just spinlock |
| 2205 | // can release with a store because there were waiters |
| 2206 | |
| 2207 | // h is the last waiter queued, and w_walk the first unsearched waiter. |
| 2208 | // Without the spinlock, the locations mu_ and h->next may now change |
| 2209 | // underneath us, but since we hold the lock itself, the only legal |
| 2210 | // change is to add waiters between h and w_walk. Therefore, it's safe |
| 2211 | // to walk the path from w_walk to h inclusive. (TryRemove() can remove |
| 2212 | // a waiter anywhere, but it acquires both the spinlock and the Mutex) |
| 2213 | |
| 2214 | old_h = h; // remember we searched to here |
| 2215 | |
| 2216 | // Walk the path upto and including h looking for waiters we can wake. |
| 2217 | while (pw_walk != h) { |
| 2218 | w_walk->wake = false; |
| 2219 | if (w_walk->waitp->cond == |
| 2220 | nullptr || // no condition => vacuously true OR |
| 2221 | (w_walk->waitp->cond != known_false && |
| 2222 | // this thread's condition is not known false, AND |
| 2223 | // is in fact true |
| 2224 | EvalConditionIgnored(this, w_walk->waitp->cond))) { |
| 2225 | if (w == nullptr) { |
| 2226 | w_walk->wake = true; // can wake this waiter |
| 2227 | w = w_walk; |
| 2228 | pw = pw_walk; |
| 2229 | if (w_walk->waitp->how == kExclusive) { |
| 2230 | wr_wait = kMuWrWait; |
| 2231 | break; // bail if waking this writer |
| 2232 | } |
| 2233 | } else if (w_walk->waitp->how == kShared) { // wake if a reader |
| 2234 | w_walk->wake = true; |
| 2235 | } else { // writer with true condition |
| 2236 | wr_wait = kMuWrWait; |
| 2237 | } |
| 2238 | } else { // can't wake; condition false |
| 2239 | known_false = w_walk->waitp->cond; // remember last false condition |
| 2240 | } |
| 2241 | if (w_walk->wake) { // we're waking reader w_walk |
| 2242 | pw_walk = w_walk; // don't skip similar waiters |
| 2243 | } else { // not waking; skip as much as possible |
| 2244 | pw_walk = Skip(w_walk); |
| 2245 | } |
| 2246 | // If pw_walk == h, then load of pw_walk->next can race with |
| 2247 | // concurrent write in Enqueue(). However, at the same time |
| 2248 | // we do not need to do the load, because we will bail out |
| 2249 | // from the loop anyway. |
| 2250 | if (pw_walk != h) { |
| 2251 | w_walk = pw_walk->next; |
| 2252 | } |
| 2253 | } |
| 2254 | |
| 2255 | continue; // restart for(;;)-loop to wakeup w or to find more waiters |
| 2256 | } |
| 2257 | ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor"); |
| 2258 | // The first (and perhaps only) waiter we've chosen to wake is w, whose |
| 2259 | // predecessor is pw. If w is a reader, we must wake all the other |
| 2260 | // waiters with wake==true as well. We may also need to queue |
| 2261 | // ourselves if waitp != null. The spinlock and the lock are still |
| 2262 | // held. |
| 2263 | |
| 2264 | // This traverses the list in [ pw->next, h ], where h is the head, |
| 2265 | // removing all elements with wake==true and placing them in the |
| 2266 | // singly-linked list wake_list. Returns the new head. |
| 2267 | h = DequeueAllWakeable(h, pw, &wake_list); |
| 2268 | |
| 2269 | intptr_t nv = (v & kMuEvent) | kMuDesig; |
| 2270 | // assume no waiters left, |
| 2271 | // set kMuDesig for INV1a |
| 2272 | |
| 2273 | if (waitp != nullptr) { // we must queue ourselves and sleep |
| 2274 | h = Enqueue(h, waitp, v, kMuIsCond); |
| 2275 | // h is new last waiter; could be null if we queued ourselves on a |
| 2276 | // CondVar |
| 2277 | } |
| 2278 | |
| 2279 | ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull, |
| 2280 | "unexpected empty wake list"); |
| 2281 | |
| 2282 | if (h != nullptr) { // there are waiters left |
| 2283 | h->readers = 0; |
| 2284 | h->maybe_unlocking = false; // finished unlocking |
| 2285 | nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h); |
| 2286 | } |
| 2287 | |
| 2288 | // release both spinlock & lock |
| 2289 | // can release with a store because there were waiters |
| 2290 | mu_.store(nv, std::memory_order_release); |
| 2291 | break; // out of for(;;)-loop |
| 2292 | } |
| 2293 | c = Delay(c, AGGRESSIVE); // aggressive here; no one can proceed till we do |
| 2294 | } // end of for(;;)-loop |
| 2295 | |
| 2296 | if (wake_list != kPerThreadSynchNull) { |
| 2297 | int64_t enqueue_timestamp = wake_list->waitp->contention_start_cycles; |
| 2298 | bool cond_waiter = wake_list->cond_waiter; |
| 2299 | do { |
| 2300 | wake_list = Wakeup(wake_list); // wake waiters |
| 2301 | } while (wake_list != kPerThreadSynchNull); |
| 2302 | if (!cond_waiter) { |
| 2303 | // Sample lock contention events only if the (first) waiter was trying to |
| 2304 | // acquire the lock, not waiting on a condition variable or Condition. |
| 2305 | int64_t wait_cycles = base_internal::CycleClock::Now() - enqueue_timestamp; |
| 2306 | mutex_tracer("slow release", this, wait_cycles); |
| 2307 | ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0); |
| 2308 | submit_profile_data(enqueue_timestamp); |
| 2309 | ABSL_TSAN_MUTEX_POST_DIVERT(this, 0); |
| 2310 | } |
| 2311 | } |
| 2312 | } |
| 2313 | |
| 2314 | // Used by CondVar implementation to reacquire mutex after waking from |
| 2315 | // condition variable. This routine is used instead of Lock() because the |
| 2316 | // waiting thread may have been moved from the condition variable queue to the |
| 2317 | // mutex queue without a wakeup, by Trans(). In that case, when the thread is |
| 2318 | // finally woken, the woken thread will believe it has been woken from the |
| 2319 | // condition variable (i.e. its PC will be in when in the CondVar code), when |
| 2320 | // in fact it has just been woken from the mutex. Thus, it must enter the slow |
| 2321 | // path of the mutex in the same state as if it had just woken from the mutex. |
| 2322 | // That is, it must ensure to clear kMuDesig (INV1b). |
| 2323 | void Mutex::Trans(MuHow how) { |
| 2324 | this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond); |
| 2325 | } |
| 2326 | |
| 2327 | // Used by CondVar implementation to effectively wake thread w from the |
| 2328 | // condition variable. If this mutex is free, we simply wake the thread. |
| 2329 | // It will later acquire the mutex with high probability. Otherwise, we |
| 2330 | // enqueue thread w on this mutex. |
| 2331 | void Mutex::Fer(PerThreadSynch *w) { |
| 2332 | int c = 0; |
| 2333 | ABSL_RAW_CHECK(w->waitp->cond == nullptr, |
| 2334 | "Mutex::Fer while waiting on Condition"); |
| 2335 | ABSL_RAW_CHECK(!w->waitp->timeout.has_timeout(), |
| 2336 | "Mutex::Fer while in timed wait"); |
| 2337 | ABSL_RAW_CHECK(w->waitp->cv_word == nullptr, |
| 2338 | "Mutex::Fer with pending CondVar queueing"); |
| 2339 | for (;;) { |
| 2340 | intptr_t v = mu_.load(std::memory_order_relaxed); |
| 2341 | // Note: must not queue if the mutex is unlocked (nobody will wake it). |
| 2342 | // For example, we can have only kMuWait (conditional) or maybe |
| 2343 | // kMuWait|kMuWrWait. |
| 2344 | // conflicting != 0 implies that the waking thread cannot currently take |
| 2345 | // the mutex, which in turn implies that someone else has it and can wake |
| 2346 | // us if we queue. |
| 2347 | const intptr_t conflicting = |
| 2348 | kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader); |
| 2349 | if ((v & conflicting) == 0) { |
| 2350 | w->next = nullptr; |
| 2351 | w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
| 2352 | IncrementSynchSem(this, w); |
| 2353 | return; |
| 2354 | } else { |
| 2355 | if ((v & (kMuSpin|kMuWait)) == 0) { // no waiters |
| 2356 | // This thread tries to become the one and only waiter. |
| 2357 | PerThreadSynch *new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond); |
| 2358 | ABSL_RAW_CHECK(new_h != nullptr, |
| 2359 | "Enqueue failed"); // we must queue ourselves |
| 2360 | if (mu_.compare_exchange_strong( |
| 2361 | v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait, |
| 2362 | std::memory_order_release, std::memory_order_relaxed)) { |
| 2363 | return; |
| 2364 | } |
| 2365 | } else if ((v & kMuSpin) == 0 && |
| 2366 | mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) { |
| 2367 | PerThreadSynch *h = GetPerThreadSynch(v); |
| 2368 | PerThreadSynch *new_h = Enqueue(h, w->waitp, v, kMuIsCond); |
| 2369 | ABSL_RAW_CHECK(new_h != nullptr, |
| 2370 | "Enqueue failed"); // we must queue ourselves |
| 2371 | do { |
| 2372 | v = mu_.load(std::memory_order_relaxed); |
| 2373 | } while (!mu_.compare_exchange_weak( |
| 2374 | v, |
| 2375 | (v & kMuLow & ~kMuSpin) | kMuWait | |
| 2376 | reinterpret_cast<intptr_t>(new_h), |
| 2377 | std::memory_order_release, std::memory_order_relaxed)); |
| 2378 | return; |
| 2379 | } |
| 2380 | } |
| 2381 | c = Delay(c, GENTLE); |
| 2382 | } |
| 2383 | } |
| 2384 | |
| 2385 | void Mutex::AssertHeld() const { |
| 2386 | if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) { |
| 2387 | SynchEvent *e = GetSynchEvent(this); |
| 2388 | ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s", |
| 2389 | static_cast<const void *>(this), |
| 2390 | (e == nullptr ? "" : e->name)); |
| 2391 | } |
| 2392 | } |
| 2393 | |
| 2394 | void Mutex::AssertReaderHeld() const { |
| 2395 | if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) { |
| 2396 | SynchEvent *e = GetSynchEvent(this); |
| 2397 | ABSL_RAW_LOG( |
| 2398 | FATAL, "thread should hold at least a read lock on Mutex %p %s", |
| 2399 | static_cast<const void *>(this), (e == nullptr ? "" : e->name)); |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | // -------------------------------- condition variables |
| 2404 | static const intptr_t kCvSpin = 0x0001L; // spinlock protects waiter list |
| 2405 | static const intptr_t kCvEvent = 0x0002L; // record events |
| 2406 | |
| 2407 | static const intptr_t kCvLow = 0x0003L; // low order bits of CV |
| 2408 | |
| 2409 | // Hack to make constant values available to gdb pretty printer |
| 2410 | enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, }; |
| 2411 | |
| 2412 | static_assert(PerThreadSynch::kAlignment > kCvLow, |
| 2413 | "PerThreadSynch::kAlignment must be greater than kCvLow"); |
| 2414 | |
| 2415 | void CondVar::EnableDebugLog(const char *name) { |
| 2416 | SynchEvent *e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin); |
| 2417 | e->log = true; |
| 2418 | UnrefSynchEvent(e); |
| 2419 | } |
| 2420 | |
| 2421 | CondVar::~CondVar() { |
| 2422 | if ((cv_.load(std::memory_order_relaxed) & kCvEvent) != 0) { |
| 2423 | ForgetSynchEvent(&this->cv_, kCvEvent, kCvSpin); |
| 2424 | } |
| 2425 | } |
| 2426 | |
| 2427 | |
| 2428 | // Remove thread s from the list of waiters on this condition variable. |
| 2429 | void CondVar::Remove(PerThreadSynch *s) { |
| 2430 | intptr_t v; |
| 2431 | int c = 0; |
| 2432 | for (v = cv_.load(std::memory_order_relaxed);; |
| 2433 | v = cv_.load(std::memory_order_relaxed)) { |
| 2434 | if ((v & kCvSpin) == 0 && // attempt to acquire spinlock |
| 2435 | cv_.compare_exchange_strong(v, v | kCvSpin, |
| 2436 | std::memory_order_acquire, |
| 2437 | std::memory_order_relaxed)) { |
| 2438 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
| 2439 | if (h != nullptr) { |
| 2440 | PerThreadSynch *w = h; |
| 2441 | while (w->next != s && w->next != h) { // search for thread |
| 2442 | w = w->next; |
| 2443 | } |
| 2444 | if (w->next == s) { // found thread; remove it |
| 2445 | w->next = s->next; |
| 2446 | if (h == s) { |
| 2447 | h = (w == s) ? nullptr : w; |
| 2448 | } |
| 2449 | s->next = nullptr; |
| 2450 | s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
| 2451 | } |
| 2452 | } |
| 2453 | // release spinlock |
| 2454 | cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), |
| 2455 | std::memory_order_release); |
| 2456 | return; |
| 2457 | } else { |
| 2458 | c = Delay(c, GENTLE); // try again after a delay |
| 2459 | } |
| 2460 | } |
| 2461 | } |
| 2462 | |
| 2463 | // Queue thread waitp->thread on condition variable word cv_word using |
| 2464 | // wait parameters waitp. |
| 2465 | // We split this into a separate routine, rather than simply doing it as part |
| 2466 | // of WaitCommon(). If we were to queue ourselves on the condition variable |
| 2467 | // before calling Mutex::UnlockSlow(), the Mutex code might be re-entered (via |
| 2468 | // the logging code, or via a Condition function) and might potentially attempt |
| 2469 | // to block this thread. That would be a problem if the thread were already on |
| 2470 | // a the condition variable waiter queue. Thus, we use the waitp->cv_word |
| 2471 | // to tell the unlock code to call CondVarEnqueue() to queue the thread on the |
| 2472 | // condition variable queue just before the mutex is to be unlocked, and (most |
| 2473 | // importantly) after any call to an external routine that might re-enter the |
| 2474 | // mutex code. |
| 2475 | static void CondVarEnqueue(SynchWaitParams *waitp) { |
| 2476 | // This thread might be transferred to the Mutex queue by Fer() when |
| 2477 | // we are woken. To make sure that is what happens, Enqueue() doesn't |
| 2478 | // call CondVarEnqueue() again but instead uses its normal code. We |
| 2479 | // must do this before we queue ourselves so that cv_word will be null |
| 2480 | // when seen by the dequeuer, who may wish immediately to requeue |
| 2481 | // this thread on another queue. |
| 2482 | std::atomic<intptr_t> *cv_word = waitp->cv_word; |
| 2483 | waitp->cv_word = nullptr; |
| 2484 | |
| 2485 | intptr_t v = cv_word->load(std::memory_order_relaxed); |
| 2486 | int c = 0; |
| 2487 | while ((v & kCvSpin) != 0 || // acquire spinlock |
| 2488 | !cv_word->compare_exchange_weak(v, v | kCvSpin, |
| 2489 | std::memory_order_acquire, |
| 2490 | std::memory_order_relaxed)) { |
| 2491 | c = Delay(c, GENTLE); |
| 2492 | v = cv_word->load(std::memory_order_relaxed); |
| 2493 | } |
| 2494 | ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be"); |
| 2495 | waitp->thread->waitp = waitp; // prepare ourselves for waiting |
| 2496 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
| 2497 | if (h == nullptr) { // add this thread to waiter list |
| 2498 | waitp->thread->next = waitp->thread; |
| 2499 | } else { |
| 2500 | waitp->thread->next = h->next; |
| 2501 | h->next = waitp->thread; |
| 2502 | } |
| 2503 | waitp->thread->state.store(PerThreadSynch::kQueued, |
| 2504 | std::memory_order_relaxed); |
| 2505 | cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread), |
| 2506 | std::memory_order_release); |
| 2507 | } |
| 2508 | |
| 2509 | bool CondVar::WaitCommon(Mutex *mutex, KernelTimeout t) { |
| 2510 | bool rc = false; // return value; true iff we timed-out |
| 2511 | |
| 2512 | intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed); |
| 2513 | Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared; |
| 2514 | ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how)); |
| 2515 | |
| 2516 | // maybe trace this call |
| 2517 | intptr_t v = cv_.load(std::memory_order_relaxed); |
| 2518 | cond_var_tracer("Wait", this); |
| 2519 | if ((v & kCvEvent) != 0) { |
| 2520 | PostSynchEvent(this, SYNCH_EV_WAIT); |
| 2521 | } |
| 2522 | |
| 2523 | // Release mu and wait on condition variable. |
| 2524 | SynchWaitParams waitp(mutex_how, nullptr, t, mutex, |
| 2525 | Synch_GetPerThreadAnnotated(mutex), &cv_); |
| 2526 | // UnlockSlow() will call CondVarEnqueue() just before releasing the |
| 2527 | // Mutex, thus queuing this thread on the condition variable. See |
| 2528 | // CondVarEnqueue() for the reasons. |
| 2529 | mutex->UnlockSlow(&waitp); |
| 2530 | |
| 2531 | // wait for signal |
| 2532 | while (waitp.thread->state.load(std::memory_order_acquire) == |
| 2533 | PerThreadSynch::kQueued) { |
| 2534 | if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) { |
| 2535 | this->Remove(waitp.thread); |
| 2536 | rc = true; |
| 2537 | } |
| 2538 | } |
| 2539 | |
| 2540 | ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be"); |
| 2541 | waitp.thread->waitp = nullptr; // cleanup |
| 2542 | |
| 2543 | // maybe trace this call |
| 2544 | cond_var_tracer("Unwait", this); |
| 2545 | if ((v & kCvEvent) != 0) { |
| 2546 | PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING); |
| 2547 | } |
| 2548 | |
| 2549 | // From synchronization point of view Wait is unlock of the mutex followed |
| 2550 | // by lock of the mutex. We've annotated start of unlock in the beginning |
| 2551 | // of the function. Now, finish unlock and annotate lock of the mutex. |
| 2552 | // (Trans is effectively lock). |
| 2553 | ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how)); |
| 2554 | ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how)); |
| 2555 | mutex->Trans(mutex_how); // Reacquire mutex |
| 2556 | ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0); |
| 2557 | return rc; |
| 2558 | } |
| 2559 | |
| 2560 | bool CondVar::WaitWithTimeout(Mutex *mu, absl::Duration timeout) { |
| 2561 | return WaitWithDeadline(mu, DeadlineFromTimeout(timeout)); |
| 2562 | } |
| 2563 | |
| 2564 | bool CondVar::WaitWithDeadline(Mutex *mu, absl::Time deadline) { |
| 2565 | return WaitCommon(mu, KernelTimeout(deadline)); |
| 2566 | } |
| 2567 | |
| 2568 | void CondVar::Wait(Mutex *mu) { |
| 2569 | WaitCommon(mu, KernelTimeout::Never()); |
| 2570 | } |
| 2571 | |
| 2572 | // Wake thread w |
| 2573 | // If it was a timed wait, w will be waiting on w->cv |
| 2574 | // Otherwise, if it was not a Mutex mutex, w will be waiting on w->sem |
| 2575 | // Otherwise, w is transferred to the Mutex mutex via Mutex::Fer(). |
| 2576 | void CondVar::Wakeup(PerThreadSynch *w) { |
| 2577 | if (w->waitp->timeout.has_timeout() || w->waitp->cvmu == nullptr) { |
| 2578 | // The waiting thread only needs to observe "w->state == kAvailable" to be |
| 2579 | // released, we must cache "cvmu" before clearing "next". |
| 2580 | Mutex *mu = w->waitp->cvmu; |
| 2581 | w->next = nullptr; |
| 2582 | w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); |
| 2583 | Mutex::IncrementSynchSem(mu, w); |
| 2584 | } else { |
| 2585 | w->waitp->cvmu->Fer(w); |
| 2586 | } |
| 2587 | } |
| 2588 | |
| 2589 | void CondVar::Signal() { |
| 2590 | ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); |
| 2591 | intptr_t v; |
| 2592 | int c = 0; |
| 2593 | for (v = cv_.load(std::memory_order_relaxed); v != 0; |
| 2594 | v = cv_.load(std::memory_order_relaxed)) { |
| 2595 | if ((v & kCvSpin) == 0 && // attempt to acquire spinlock |
| 2596 | cv_.compare_exchange_strong(v, v | kCvSpin, |
| 2597 | std::memory_order_acquire, |
| 2598 | std::memory_order_relaxed)) { |
| 2599 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
| 2600 | PerThreadSynch *w = nullptr; |
| 2601 | if (h != nullptr) { // remove first waiter |
| 2602 | w = h->next; |
| 2603 | if (w == h) { |
| 2604 | h = nullptr; |
| 2605 | } else { |
| 2606 | h->next = w->next; |
| 2607 | } |
| 2608 | } |
| 2609 | // release spinlock |
| 2610 | cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), |
| 2611 | std::memory_order_release); |
| 2612 | if (w != nullptr) { |
| 2613 | CondVar::Wakeup(w); // wake waiter, if there was one |
| 2614 | cond_var_tracer("Signal wakeup", this); |
| 2615 | } |
| 2616 | if ((v & kCvEvent) != 0) { |
| 2617 | PostSynchEvent(this, SYNCH_EV_SIGNAL); |
| 2618 | } |
| 2619 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
| 2620 | return; |
| 2621 | } else { |
| 2622 | c = Delay(c, GENTLE); |
| 2623 | } |
| 2624 | } |
| 2625 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
| 2626 | } |
| 2627 | |
| 2628 | void CondVar::SignalAll () { |
| 2629 | ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); |
| 2630 | intptr_t v; |
| 2631 | int c = 0; |
| 2632 | for (v = cv_.load(std::memory_order_relaxed); v != 0; |
| 2633 | v = cv_.load(std::memory_order_relaxed)) { |
| 2634 | // empty the list if spinlock free |
| 2635 | // We do this by simply setting the list to empty using |
| 2636 | // compare and swap. We then have the entire list in our hands, |
| 2637 | // which cannot be changing since we grabbed it while no one |
| 2638 | // held the lock. |
| 2639 | if ((v & kCvSpin) == 0 && |
| 2640 | cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire, |
| 2641 | std::memory_order_relaxed)) { |
| 2642 | PerThreadSynch *h = reinterpret_cast<PerThreadSynch *>(v & ~kCvLow); |
| 2643 | if (h != nullptr) { |
| 2644 | PerThreadSynch *w; |
| 2645 | PerThreadSynch *n = h->next; |
| 2646 | do { // for every thread, wake it up |
| 2647 | w = n; |
| 2648 | n = n->next; |
| 2649 | CondVar::Wakeup(w); |
| 2650 | } while (w != h); |
| 2651 | cond_var_tracer("SignalAll wakeup", this); |
| 2652 | } |
| 2653 | if ((v & kCvEvent) != 0) { |
| 2654 | PostSynchEvent(this, SYNCH_EV_SIGNALALL); |
| 2655 | } |
| 2656 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
| 2657 | return; |
| 2658 | } else { |
| 2659 | c = Delay(c, GENTLE); // try again after a delay |
| 2660 | } |
| 2661 | } |
| 2662 | ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); |
| 2663 | } |
| 2664 | |
| 2665 | void ReleasableMutexLock::Release() { |
| 2666 | ABSL_RAW_CHECK(this->mu_ != nullptr, |
| 2667 | "ReleasableMutexLock::Release may only be called once"); |
| 2668 | this->mu_->Unlock(); |
| 2669 | this->mu_ = nullptr; |
| 2670 | } |
| 2671 | |
| 2672 | #ifdef THREAD_SANITIZER |
| 2673 | extern "C" void __tsan_read1(void *addr); |
| 2674 | #else |
| 2675 | #define __tsan_read1(addr) // do nothing if TSan not enabled |
| 2676 | #endif |
| 2677 | |
| 2678 | // A function that just returns its argument, dereferenced |
| 2679 | static bool Dereference(void *arg) { |
| 2680 | // ThreadSanitizer does not instrument this file for memory accesses. |
| 2681 | // This function dereferences a user variable that can participate |
| 2682 | // in a data race, so we need to manually tell TSan about this memory access. |
| 2683 | __tsan_read1(arg); |
| 2684 | return *(static_cast<bool *>(arg)); |
| 2685 | } |
| 2686 | |
| 2687 | Condition::Condition() {} // null constructor, used for kTrue only |
| 2688 | const Condition Condition::kTrue; |
| 2689 | |
| 2690 | Condition::Condition(bool (*func)(void *), void *arg) |
| 2691 | : eval_(&CallVoidPtrFunction), |
| 2692 | function_(func), |
| 2693 | method_(nullptr), |
| 2694 | arg_(arg) {} |
| 2695 | |
| 2696 | bool Condition::CallVoidPtrFunction(const Condition *c) { |
| 2697 | return (*c->function_)(c->arg_); |
| 2698 | } |
| 2699 | |
| 2700 | Condition::Condition(const bool *cond) |
| 2701 | : eval_(CallVoidPtrFunction), |
| 2702 | function_(Dereference), |
| 2703 | method_(nullptr), |
| 2704 | // const_cast is safe since Dereference does not modify arg |
| 2705 | arg_(const_cast<bool *>(cond)) {} |
| 2706 | |
| 2707 | bool Condition::Eval() const { |
| 2708 | // eval_ == null for kTrue |
| 2709 | return (this->eval_ == nullptr) || (*this->eval_)(this); |
| 2710 | } |
| 2711 | |
| 2712 | bool Condition::GuaranteedEqual(const Condition *a, const Condition *b) { |
| 2713 | if (a == nullptr) { |
| 2714 | return b == nullptr || b->eval_ == nullptr; |
| 2715 | } |
| 2716 | if (b == nullptr || b->eval_ == nullptr) { |
| 2717 | return a->eval_ == nullptr; |
| 2718 | } |
| 2719 | return a->eval_ == b->eval_ && a->function_ == b->function_ && |
| 2720 | a->arg_ == b->arg_ && a->method_ == b->method_; |
| 2721 | } |
| 2722 | |
| 2723 | } // namespace absl |