blob: 5efc3c94fa1f7bcc47fd6f92b867cb74a2a3a608 [file] [log] [blame]
James Kuszmaul0af658b2019-01-25 18:36:29 -08001#ifndef AOS_UTIL_MATH_H_
2#define AOS_UTIL_MATH_H_
3
4#include <cmath>
5
6#include "Eigen/Dense"
7
8namespace aos {
9namespace math {
10
11// Normalizes an angle to be in (-M_PI, M_PI]
12template <typename Scalar>
13constexpr Scalar NormalizeAngle(Scalar theta) {
14 // First clause takes care of getting theta into
15 // (-3 * M_PI, M_PI)
16 const int n_pi_pos = (theta + M_PI) / 2.0 / M_PI;
17 theta -= n_pi_pos * 2.0 * M_PI;
18 // Next we fix it to cut off the bottom half of the above
19 // range and bring us into (-M_PI, M_PI]
20 const int n_pi_neg = (theta - M_PI) / 2.0 / M_PI;
21 theta -= n_pi_neg * 2.0 * M_PI;
22 return theta;
23}
24
25// Calculate a - b and return the result in (-M_PI, M_PI]
26template <typename Scalar>
27constexpr Scalar DiffAngle(Scalar a, Scalar b) {
28 return NormalizeAngle(a - b);
29}
30
31// Returns whether points A, B, C are arranged in a counter-clockwise manner on
32// a 2-D plane.
33// Collinear points of any sort will cause this to return false.
34// Source: https://bryceboe.com/2006/10/23/line-segment-intersection-algorithm/
35// Mathod:
36// 3 points on a plane will form a triangle (unless they are collinear), e.g.:
37// A-------------------C
38// \ /
39// \ /
40// \ /
41// \ /
42// \ /
43// \ /
44// \ /
45// \ /
46// \ /
47// B
48// We are interested in whether A->B->C is the counter-clockwise direction
49// around the triangle (it is in this picture).
50// Essentially, we want to know whether the angle between A->B and A->C is
51// positive or negative.
52// For this, consider the cross-product, where we imagine a third z-axis
53// coming out of the page. The cross-product AB x AC will be positive if ABC
54// is counter-clockwise and negative if clockwise (and zero if collinear).
55// The z-component (which is the only non-zero component) of the cross-product
56// is AC.y * AB.x - AB.y * AC.x > 0, which turns into:
57// AC.y * AB.x > AB.y * AC.x
58// (C.y - A.y) * (B.x - A.x) > (B.y - A.y) * (C.x - A.x)
59// which is exactly what we have below.
60template <typename Scalar>
61constexpr bool PointsAreCCW(const Eigen::Ref<Eigen::Matrix<Scalar, 2, 1>> &A,
62 const Eigen::Ref<Eigen::Matrix<Scalar, 2, 1>> &B,
63 const Eigen::Ref<Eigen::Matrix<Scalar, 2, 1>> &C) {
64 return (C.y() - A.y()) * (B.x() - A.x()) > (B.y() - A.y()) * (C.x() - A.x());
65}
66
67} // namespace math
68} // namespace aos
69
70#endif // AOS_UTIL_MATH_H_