brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 1 | close all; |
| 2 | load 'drivetrain_spin_low' |
| 3 | load 'drivetrain_strait_low' |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 4 | % Max power amps of CIM or maybe half the mass of the robot in lbs or the whole robot in kg. |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 5 | m = 68; |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 6 | % Must be in meters. Maybe width of robot (distance of center wheels from center). |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 7 | rb = 0.617998644 / 2.0; |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 8 | % Moment of Inertia |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 9 | J = 7; |
| 10 | stall_current = 133.0; |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 11 | % Resistance of the motor, divided by the number of motors. |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 12 | R = 12.0 / stall_current / 4 / 0.43; |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 13 | % Motor Constant |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 14 | Km = (12.0 - R * 2.7) / (4650.0 / 60.0 * 2.0 * pi); |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 15 | % Torque Constant |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 16 | Kt = 0.008; |
| 17 | r = 0.04445; % 3.5 inches diameter |
| 18 | G_low = 60.0 / 15.0 * 50.0 / 15.0; |
| 19 | G_high = 45.0 / 30.0 * 50.0 / 15.0; |
| 20 | dt = 0.01; |
| 21 | |
| 22 | G = G_low; |
| 23 | |
James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame] | 24 | % must refer to how each side of the robot affects the other? Units of 1 / kg |
| 25 | % I think that if the center of mass is in the center of the robot, then |
| 26 | % msp will evaluate to 2/(mass of robot) and msn will evaluate to 0. |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 27 | msp = (1.0 / m + rb ^ 2.0 / J); |
| 28 | msn = (1.0 / m - rb ^ 2.0 / J); |
| 29 | tc = -Km * Kt * G ^ 2.0 / (R * r ^ 2.0); |
| 30 | mp = G * Kt / (R * r); |
| 31 | |
| 32 | A = [0 1 0 0; 0 msp*tc 0 msn*tc; 0 0 0 1; 0 msn*tc 0 msp*tc]; |
| 33 | B = [0 0; msp * mp msn * mp; 0 0; msn * mp msp * mp]; |
| 34 | C = [1 0 0 0; 0 0 1 0]; |
| 35 | D = [0 0; 0 0]; |
| 36 | |
| 37 | dm = c2d(ss(A, B, C, D), dt); |
| 38 | |
| 39 | hp = .8; |
| 40 | lp = .85; |
| 41 | K = place(dm.a, dm.b, [hp, hp, lp, lp]); |
| 42 | |
| 43 | hlp = 0.07; |
| 44 | llp = 0.09; |
| 45 | L = place(dm.a', dm.c', [hlp, hlp, llp, llp])'; |
| 46 | |
| 47 | % Plot what we computed |
| 48 | |
Brian Silverman | 14fd0fb | 2014-01-14 21:42:01 -0800 | [diff] [blame] | 49 | fd = fopen('/home/aschuh/frc971/2012/trunk/src/prime/control_loops/Drivetrain.mat', 'w'); |
brians | 343bc11 | 2013-02-10 01:53:46 +0000 | [diff] [blame] | 50 | n = 1; |
| 51 | sm = []; |
| 52 | writeMatHeader(fd, size(dm.a, 1), size(dm.b, 2)); |
| 53 | writeMat(fd, dm.a, 'A'); |
| 54 | writeMat(fd, dm.b, 'B'); |
| 55 | writeMat(fd, dm.c, 'C'); |
| 56 | writeMat(fd, dm.d, 'D'); |
| 57 | writeMat(fd, L, 'L'); |
| 58 | writeMat(fd, K, 'K'); |
| 59 | writeMat(fd, [12; 12], 'U_max'); |
| 60 | writeMat(fd, [-12; -12], 'U_min'); |
| 61 | writeMatFooter(fd); |
| 62 | fclose(fd); |
| 63 | |
| 64 | full_model = dss([dm.a (-dm.b * K); eye(4) (dm.a - dm.b * K - L * dm.c)], [0, 0; 0, 0; 0, 0; 0, 0; L], [C, [0, 0, 0, 0; 0, 0, 0, 0]], 0, eye(8), 0.01); |
| 65 | |
| 66 | n = 1; |
| 67 | sm_strait = []; |
| 68 | t = drivetrain_strait_low(1, 1) + dt * (n - 1); |
| 69 | x = [drivetrain_strait_low(1, 2); 0; drivetrain_strait_low(1, 3); 0]; |
| 70 | while t < drivetrain_strait_low(end, 1) |
| 71 | sm_strait(n, 1) = t; |
| 72 | sm_strait(n, 2) = (x(1,1) + x(3,1)) / 2.0; |
| 73 | t = t + dt; |
| 74 | x = dm.a * x + dm.b * [drivetrain_strait_low(n, 4); drivetrain_strait_low(n, 5)]; |
| 75 | n = n + 1; |
| 76 | end |
| 77 | |
| 78 | figure; |
| 79 | plot(drivetrain_strait_low(:, 1), (drivetrain_strait_low(:, 2) + drivetrain_strait_low(:, 3)) / 2.0, sm_strait(:, 1), sm_strait(:, 2)); |
| 80 | legend('actual', 'sim'); |
| 81 | |
| 82 | n = 1; |
| 83 | sm_spin = []; |
| 84 | t = drivetrain_spin_low(1, 1) + dt * (n - 1); |
| 85 | x = [drivetrain_spin_low(1, 2); 0; drivetrain_spin_low(1, 3); 0]; |
| 86 | while t < drivetrain_spin_low(end, 1) |
| 87 | sm_spin(n, 1) = t; |
| 88 | sm_spin(n, 2) = (x(1,1) - x(3,1)) / 2.0; |
| 89 | t = t + dt; |
| 90 | x = dm.a * x + dm.b * [drivetrain_spin_low(n, 4); drivetrain_spin_low(n, 5)]; |
| 91 | n = n + 1; |
| 92 | end |
| 93 | |
| 94 | figure; |
| 95 | plot(drivetrain_spin_low(:, 1), (drivetrain_spin_low(:, 2) - drivetrain_spin_low(:, 3)) / 2.0, sm_spin(:, 1), sm_spin(:, 2)); |
| 96 | legend('actual', 'sim'); |
| 97 | |
| 98 | %figure; |
| 99 | %nyquist(full_model); |
| 100 | |
| 101 | |
| 102 | %% |
| 103 | t = 0; |
| 104 | x = [0; 0; 0; 0;]; |
| 105 | while t < logging(end, 1) |
| 106 | sm(n, 1) = t; |
| 107 | sm(n, 2) = x(1,1); |
| 108 | sm(n, 3) = x(3,1); |
| 109 | t = t + dt; |
| 110 | x = dm.a * x + dm.b * [12.0; 12.0]; |
| 111 | n = n + 1; |
| 112 | end |
| 113 | |
| 114 | figure; |
| 115 | plot(logging(:, 1), logging(:, 2), sm(:, 1), sm(:, 2)); |
| 116 | legend('actual', 'sim'); |
| 117 | |
| 118 | %% Simulation of a small turn angle with a large distance to travel |
| 119 | tf = 2; |
| 120 | x = [0; 0; 0.1; 0;]; |
| 121 | r = [10; 0; 10; 0]; |
| 122 | |
| 123 | smt = zeros(tf / dt, 8); |
| 124 | t = 0; |
| 125 | xhat = x; |
| 126 | n = 1; |
| 127 | % 1 means scale |
| 128 | % 2 means just limit to 12 volts |
| 129 | % 3 means preserve the difference in power |
| 130 | captype = 1; |
| 131 | while n <= size(smt, 1) |
| 132 | smt(n, 1) = t; |
| 133 | smt(n, 2) = x(1,1); |
| 134 | smt(n, 3) = x(3,1); |
| 135 | t = t + dt; |
| 136 | |
| 137 | u = K * (r - xhat); |
| 138 | smt(n, 4) = u(1,1); |
| 139 | smt(n, 5) = u(2,1); |
| 140 | |
| 141 | if captype == 1 |
| 142 | if sum(abs(u) > 12.0) |
| 143 | % We have a problem! |
| 144 | % Check to see if it's a big steering power problem, |
| 145 | % or a big drive error. |
| 146 | turnPower = (u(1, 1) - u(2, 1)); |
| 147 | drivePower = (u(1, 1) + u(2, 1)); |
| 148 | scaleFactor = 12.0 / max(abs(u)); |
| 149 | smt(n, 8) = 1.0 / scaleFactor; |
| 150 | % Only start scaling the turn power up if we are far out of |
| 151 | % range. |
| 152 | if abs(turnPower) < 0.5 * abs(drivePower) |
| 153 | % Turn power is swamped. |
| 154 | deltaTurn = turnPower / 2.0 / scaleFactor * 0.5; |
| 155 | u(1, 1) = u(1, 1) + deltaTurn; |
| 156 | u(2, 1) = u(2, 1) - deltaTurn; |
| 157 | scaleFactor = 12.0 / max(abs(u)); |
| 158 | else |
| 159 | if 0.5 * abs(turnPower) > abs(drivePower) |
| 160 | % Drive power is swamped. |
| 161 | deltaDrive = drivePower / 2.0 / scaleFactor * 0.5; |
| 162 | u(1, 1) = u(1, 1) + deltaDrive; |
| 163 | u(2, 1) = u(2, 1) + deltaDrive; |
| 164 | scaleFactor = 12.0 / max(abs(u)); |
| 165 | end |
| 166 | end |
| 167 | u = u * scaleFactor; |
| 168 | end |
| 169 | else |
| 170 | if captype == 2 |
| 171 | if u(1, 1) > 12.0 |
| 172 | u(1, 1) = 12.0; |
| 173 | end |
| 174 | if u(1, 1) < -12.0 |
| 175 | u(1, 1) = -12.0; |
| 176 | end |
| 177 | if u(2, 1) > 12.0 |
| 178 | u(2, 1) = 12.0; |
| 179 | end |
| 180 | if u(2, 1) < -12.0 |
| 181 | u(2, 1) = -12.0; |
| 182 | end |
| 183 | else |
| 184 | if captype == 3 |
| 185 | if u(1, 1) > 12.0 |
| 186 | u(2, 1) = u(2, 1) - (u(1, 1) - 12.0); |
| 187 | else |
| 188 | if u(1, 1) < -12.0 |
| 189 | u(2, 1) = u(2, 1) - (u(1, 1) + 12.0); |
| 190 | end |
| 191 | end |
| 192 | if u(2, 1) > 12.0 |
| 193 | u(1, 1) = u(1, 1) - (u(2, 1) - 12.0); |
| 194 | else |
| 195 | if u(2, 1) < -12.0 |
| 196 | u(1, 1) = u(1, 1) - (u(2, 1) + 12.0); |
| 197 | end |
| 198 | end |
| 199 | if u(1, 1) > 12.0 |
| 200 | u(1, 1) = 12.0; |
| 201 | end |
| 202 | if u(1, 1) < -12.0 |
| 203 | u(1, 1) = -12.0; |
| 204 | end |
| 205 | if u(2, 1) > 12.0 |
| 206 | u(2, 1) = 12.0; |
| 207 | end |
| 208 | if u(2, 1) < -12.0 |
| 209 | u(2, 1) = -12.0; |
| 210 | end |
| 211 | end |
| 212 | end |
| 213 | |
| 214 | end |
| 215 | smt(n, 6) = u(1,1); |
| 216 | smt(n, 7) = u(2,1); |
| 217 | xhat = dm.a * xhat + dm.b * u + L * (dm.c * x - dm.c * xhat); |
| 218 | x = dm.a * x + dm.b * u; |
| 219 | |
| 220 | n = n + 1; |
| 221 | end |
| 222 | |
| 223 | figure; |
| 224 | subplot(6, 1, 1); |
| 225 | plot(smt(:, 1), smt(:, 2) + smt(:, 3)); |
| 226 | legend('dist'); |
| 227 | subplot(6, 1, 2); |
| 228 | plot(smt(:, 1), smt(:, 2) - smt(:, 3)); |
| 229 | legend('angle'); |
| 230 | subplot(3, 1, 2); |
| 231 | plot(smt(:, 1), smt(:, 4), smt(:, 1), smt(:, 5)); |
| 232 | legend('lu', 'ru'); |
| 233 | subplot(3, 1, 3); |
| 234 | plot(smt(:, 1), smt(:, 6), smt(:, 1), smt(:, 7)); |
| 235 | legend('lu_{real}', 'ru_{real}'); |
| 236 | |
| 237 | %figure; |
| 238 | %plot(smt(:, 1), smt(:, 8)) |
| 239 | %legend('Scale Factor'); |
| 240 | |