Brian Silverman | 9c614bc | 2016-02-15 20:20:02 -0500 | [diff] [blame^] | 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2014 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // from google3/util/gtl/map_util.h |
| 32 | // Author: Anton Carver |
| 33 | |
| 34 | #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
| 35 | #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
| 36 | |
| 37 | #include <stddef.h> |
| 38 | #include <iterator> |
| 39 | #include <string> |
| 40 | #include <utility> |
| 41 | #include <vector> |
| 42 | |
| 43 | #include <google/protobuf/stubs/common.h> |
| 44 | |
| 45 | namespace google { |
| 46 | namespace protobuf { |
| 47 | namespace internal { |
| 48 | // Local implementation of RemoveConst to avoid including base/type_traits.h. |
| 49 | template <class T> struct RemoveConst { typedef T type; }; |
| 50 | template <class T> struct RemoveConst<const T> : RemoveConst<T> {}; |
| 51 | } // namespace internal |
| 52 | |
| 53 | // |
| 54 | // Find*() |
| 55 | // |
| 56 | |
| 57 | // Returns a const reference to the value associated with the given key if it |
| 58 | // exists. Crashes otherwise. |
| 59 | // |
| 60 | // This is intended as a replacement for operator[] as an rvalue (for reading) |
| 61 | // when the key is guaranteed to exist. |
| 62 | // |
| 63 | // operator[] for lookup is discouraged for several reasons: |
| 64 | // * It has a side-effect of inserting missing keys |
| 65 | // * It is not thread-safe (even when it is not inserting, it can still |
| 66 | // choose to resize the underlying storage) |
| 67 | // * It invalidates iterators (when it chooses to resize) |
| 68 | // * It default constructs a value object even if it doesn't need to |
| 69 | // |
| 70 | // This version assumes the key is printable, and includes it in the fatal log |
| 71 | // message. |
| 72 | template <class Collection> |
| 73 | const typename Collection::value_type::second_type& |
| 74 | FindOrDie(const Collection& collection, |
| 75 | const typename Collection::value_type::first_type& key) { |
| 76 | typename Collection::const_iterator it = collection.find(key); |
| 77 | GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
| 78 | return it->second; |
| 79 | } |
| 80 | |
| 81 | // Same as above, but returns a non-const reference. |
| 82 | template <class Collection> |
| 83 | typename Collection::value_type::second_type& |
| 84 | FindOrDie(Collection& collection, // NOLINT |
| 85 | const typename Collection::value_type::first_type& key) { |
| 86 | typename Collection::iterator it = collection.find(key); |
| 87 | GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
| 88 | return it->second; |
| 89 | } |
| 90 | |
| 91 | // Same as FindOrDie above, but doesn't log the key on failure. |
| 92 | template <class Collection> |
| 93 | const typename Collection::value_type::second_type& |
| 94 | FindOrDieNoPrint(const Collection& collection, |
| 95 | const typename Collection::value_type::first_type& key) { |
| 96 | typename Collection::const_iterator it = collection.find(key); |
| 97 | GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
| 98 | return it->second; |
| 99 | } |
| 100 | |
| 101 | // Same as above, but returns a non-const reference. |
| 102 | template <class Collection> |
| 103 | typename Collection::value_type::second_type& |
| 104 | FindOrDieNoPrint(Collection& collection, // NOLINT |
| 105 | const typename Collection::value_type::first_type& key) { |
| 106 | typename Collection::iterator it = collection.find(key); |
| 107 | GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
| 108 | return it->second; |
| 109 | } |
| 110 | |
| 111 | // Returns a const reference to the value associated with the given key if it |
| 112 | // exists, otherwise returns a const reference to the provided default value. |
| 113 | // |
| 114 | // WARNING: If a temporary object is passed as the default "value," |
| 115 | // this function will return a reference to that temporary object, |
| 116 | // which will be destroyed at the end of the statement. A common |
| 117 | // example: if you have a map with string values, and you pass a char* |
| 118 | // as the default "value," either use the returned value immediately |
| 119 | // or store it in a string (not string&). |
| 120 | // Details: http://go/findwithdefault |
| 121 | template <class Collection> |
| 122 | const typename Collection::value_type::second_type& |
| 123 | FindWithDefault(const Collection& collection, |
| 124 | const typename Collection::value_type::first_type& key, |
| 125 | const typename Collection::value_type::second_type& value) { |
| 126 | typename Collection::const_iterator it = collection.find(key); |
| 127 | if (it == collection.end()) { |
| 128 | return value; |
| 129 | } |
| 130 | return it->second; |
| 131 | } |
| 132 | |
| 133 | // Returns a pointer to the const value associated with the given key if it |
| 134 | // exists, or NULL otherwise. |
| 135 | template <class Collection> |
| 136 | const typename Collection::value_type::second_type* |
| 137 | FindOrNull(const Collection& collection, |
| 138 | const typename Collection::value_type::first_type& key) { |
| 139 | typename Collection::const_iterator it = collection.find(key); |
| 140 | if (it == collection.end()) { |
| 141 | return 0; |
| 142 | } |
| 143 | return &it->second; |
| 144 | } |
| 145 | |
| 146 | // Same as above but returns a pointer to the non-const value. |
| 147 | template <class Collection> |
| 148 | typename Collection::value_type::second_type* |
| 149 | FindOrNull(Collection& collection, // NOLINT |
| 150 | const typename Collection::value_type::first_type& key) { |
| 151 | typename Collection::iterator it = collection.find(key); |
| 152 | if (it == collection.end()) { |
| 153 | return 0; |
| 154 | } |
| 155 | return &it->second; |
| 156 | } |
| 157 | |
| 158 | // Returns the pointer value associated with the given key. If none is found, |
| 159 | // NULL is returned. The function is designed to be used with a map of keys to |
| 160 | // pointers. |
| 161 | // |
| 162 | // This function does not distinguish between a missing key and a key mapped |
| 163 | // to a NULL value. |
| 164 | template <class Collection> |
| 165 | typename Collection::value_type::second_type |
| 166 | FindPtrOrNull(const Collection& collection, |
| 167 | const typename Collection::value_type::first_type& key) { |
| 168 | typename Collection::const_iterator it = collection.find(key); |
| 169 | if (it == collection.end()) { |
| 170 | return typename Collection::value_type::second_type(); |
| 171 | } |
| 172 | return it->second; |
| 173 | } |
| 174 | |
| 175 | // Same as above, except takes non-const reference to collection. |
| 176 | // |
| 177 | // This function is needed for containers that propagate constness to the |
| 178 | // pointee, such as boost::ptr_map. |
| 179 | template <class Collection> |
| 180 | typename Collection::value_type::second_type |
| 181 | FindPtrOrNull(Collection& collection, // NOLINT |
| 182 | const typename Collection::value_type::first_type& key) { |
| 183 | typename Collection::iterator it = collection.find(key); |
| 184 | if (it == collection.end()) { |
| 185 | return typename Collection::value_type::second_type(); |
| 186 | } |
| 187 | return it->second; |
| 188 | } |
| 189 | |
| 190 | // Finds the pointer value associated with the given key in a map whose values |
| 191 | // are linked_ptrs. Returns NULL if key is not found. |
| 192 | template <class Collection> |
| 193 | typename Collection::value_type::second_type::element_type* |
| 194 | FindLinkedPtrOrNull(const Collection& collection, |
| 195 | const typename Collection::value_type::first_type& key) { |
| 196 | typename Collection::const_iterator it = collection.find(key); |
| 197 | if (it == collection.end()) { |
| 198 | return 0; |
| 199 | } |
| 200 | // Since linked_ptr::get() is a const member returning a non const, |
| 201 | // we do not need a version of this function taking a non const collection. |
| 202 | return it->second.get(); |
| 203 | } |
| 204 | |
| 205 | // Same as above, but dies if the key is not found. |
| 206 | template <class Collection> |
| 207 | typename Collection::value_type::second_type::element_type& |
| 208 | FindLinkedPtrOrDie(const Collection& collection, |
| 209 | const typename Collection::value_type::first_type& key) { |
| 210 | typename Collection::const_iterator it = collection.find(key); |
| 211 | CHECK(it != collection.end()) << "key not found: " << key; |
| 212 | // Since linked_ptr::operator*() is a const member returning a non const, |
| 213 | // we do not need a version of this function taking a non const collection. |
| 214 | return *it->second; |
| 215 | } |
| 216 | |
| 217 | // Finds the value associated with the given key and copies it to *value (if not |
| 218 | // NULL). Returns false if the key was not found, true otherwise. |
| 219 | template <class Collection, class Key, class Value> |
| 220 | bool FindCopy(const Collection& collection, |
| 221 | const Key& key, |
| 222 | Value* const value) { |
| 223 | typename Collection::const_iterator it = collection.find(key); |
| 224 | if (it == collection.end()) { |
| 225 | return false; |
| 226 | } |
| 227 | if (value) { |
| 228 | *value = it->second; |
| 229 | } |
| 230 | return true; |
| 231 | } |
| 232 | |
| 233 | // |
| 234 | // Contains*() |
| 235 | // |
| 236 | |
| 237 | // Returns true if and only if the given collection contains the given key. |
| 238 | template <class Collection, class Key> |
| 239 | bool ContainsKey(const Collection& collection, const Key& key) { |
| 240 | return collection.find(key) != collection.end(); |
| 241 | } |
| 242 | |
| 243 | // Returns true if and only if the given collection contains the given key-value |
| 244 | // pair. |
| 245 | template <class Collection, class Key, class Value> |
| 246 | bool ContainsKeyValuePair(const Collection& collection, |
| 247 | const Key& key, |
| 248 | const Value& value) { |
| 249 | typedef typename Collection::const_iterator const_iterator; |
| 250 | std::pair<const_iterator, const_iterator> range = collection.equal_range(key); |
| 251 | for (const_iterator it = range.first; it != range.second; ++it) { |
| 252 | if (it->second == value) { |
| 253 | return true; |
| 254 | } |
| 255 | } |
| 256 | return false; |
| 257 | } |
| 258 | |
| 259 | // |
| 260 | // Insert*() |
| 261 | // |
| 262 | |
| 263 | // Inserts the given key-value pair into the collection. Returns true if and |
| 264 | // only if the key from the given pair didn't previously exist. Otherwise, the |
| 265 | // value in the map is replaced with the value from the given pair. |
| 266 | template <class Collection> |
| 267 | bool InsertOrUpdate(Collection* const collection, |
| 268 | const typename Collection::value_type& vt) { |
| 269 | std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
| 270 | if (!ret.second) { |
| 271 | // update |
| 272 | ret.first->second = vt.second; |
| 273 | return false; |
| 274 | } |
| 275 | return true; |
| 276 | } |
| 277 | |
| 278 | // Same as above, except that the key and value are passed separately. |
| 279 | template <class Collection> |
| 280 | bool InsertOrUpdate(Collection* const collection, |
| 281 | const typename Collection::value_type::first_type& key, |
| 282 | const typename Collection::value_type::second_type& value) { |
| 283 | return InsertOrUpdate( |
| 284 | collection, typename Collection::value_type(key, value)); |
| 285 | } |
| 286 | |
| 287 | // Inserts/updates all the key-value pairs from the range defined by the |
| 288 | // iterators "first" and "last" into the given collection. |
| 289 | template <class Collection, class InputIterator> |
| 290 | void InsertOrUpdateMany(Collection* const collection, |
| 291 | InputIterator first, InputIterator last) { |
| 292 | for (; first != last; ++first) { |
| 293 | InsertOrUpdate(collection, *first); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | // Change the value associated with a particular key in a map or hash_map |
| 298 | // of the form map<Key, Value*> which owns the objects pointed to by the |
| 299 | // value pointers. If there was an existing value for the key, it is deleted. |
| 300 | // True indicates an insert took place, false indicates an update + delete. |
| 301 | template <class Collection> |
| 302 | bool InsertAndDeleteExisting( |
| 303 | Collection* const collection, |
| 304 | const typename Collection::value_type::first_type& key, |
| 305 | const typename Collection::value_type::second_type& value) { |
| 306 | std::pair<typename Collection::iterator, bool> ret = |
| 307 | collection->insert(typename Collection::value_type(key, value)); |
| 308 | if (!ret.second) { |
| 309 | delete ret.first->second; |
| 310 | ret.first->second = value; |
| 311 | return false; |
| 312 | } |
| 313 | return true; |
| 314 | } |
| 315 | |
| 316 | // Inserts the given key and value into the given collection if and only if the |
| 317 | // given key did NOT already exist in the collection. If the key previously |
| 318 | // existed in the collection, the value is not changed. Returns true if the |
| 319 | // key-value pair was inserted; returns false if the key was already present. |
| 320 | template <class Collection> |
| 321 | bool InsertIfNotPresent(Collection* const collection, |
| 322 | const typename Collection::value_type& vt) { |
| 323 | return collection->insert(vt).second; |
| 324 | } |
| 325 | |
| 326 | // Same as above except the key and value are passed separately. |
| 327 | template <class Collection> |
| 328 | bool InsertIfNotPresent( |
| 329 | Collection* const collection, |
| 330 | const typename Collection::value_type::first_type& key, |
| 331 | const typename Collection::value_type::second_type& value) { |
| 332 | return InsertIfNotPresent( |
| 333 | collection, typename Collection::value_type(key, value)); |
| 334 | } |
| 335 | |
| 336 | // Same as above except dies if the key already exists in the collection. |
| 337 | template <class Collection> |
| 338 | void InsertOrDie(Collection* const collection, |
| 339 | const typename Collection::value_type& value) { |
| 340 | CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; |
| 341 | } |
| 342 | |
| 343 | // Same as above except doesn't log the value on error. |
| 344 | template <class Collection> |
| 345 | void InsertOrDieNoPrint(Collection* const collection, |
| 346 | const typename Collection::value_type& value) { |
| 347 | CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; |
| 348 | } |
| 349 | |
| 350 | // Inserts the key-value pair into the collection. Dies if key was already |
| 351 | // present. |
| 352 | template <class Collection> |
| 353 | void InsertOrDie(Collection* const collection, |
| 354 | const typename Collection::value_type::first_type& key, |
| 355 | const typename Collection::value_type::second_type& data) { |
| 356 | GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) |
| 357 | << "duplicate key: " << key; |
| 358 | } |
| 359 | |
| 360 | // Same as above except doesn't log the key on error. |
| 361 | template <class Collection> |
| 362 | void InsertOrDieNoPrint( |
| 363 | Collection* const collection, |
| 364 | const typename Collection::value_type::first_type& key, |
| 365 | const typename Collection::value_type::second_type& data) { |
| 366 | GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; |
| 367 | } |
| 368 | |
| 369 | // Inserts a new key and default-initialized value. Dies if the key was already |
| 370 | // present. Returns a reference to the value. Example usage: |
| 371 | // |
| 372 | // map<int, SomeProto> m; |
| 373 | // SomeProto& proto = InsertKeyOrDie(&m, 3); |
| 374 | // proto.set_field("foo"); |
| 375 | template <class Collection> |
| 376 | typename Collection::value_type::second_type& InsertKeyOrDie( |
| 377 | Collection* const collection, |
| 378 | const typename Collection::value_type::first_type& key) { |
| 379 | typedef typename Collection::value_type value_type; |
| 380 | std::pair<typename Collection::iterator, bool> res = |
| 381 | collection->insert(value_type(key, typename value_type::second_type())); |
| 382 | GOOGLE_CHECK(res.second) << "duplicate key: " << key; |
| 383 | return res.first->second; |
| 384 | } |
| 385 | |
| 386 | // |
| 387 | // Lookup*() |
| 388 | // |
| 389 | |
| 390 | // Looks up a given key and value pair in a collection and inserts the key-value |
| 391 | // pair if it's not already present. Returns a reference to the value associated |
| 392 | // with the key. |
| 393 | template <class Collection> |
| 394 | typename Collection::value_type::second_type& |
| 395 | LookupOrInsert(Collection* const collection, |
| 396 | const typename Collection::value_type& vt) { |
| 397 | return collection->insert(vt).first->second; |
| 398 | } |
| 399 | |
| 400 | // Same as above except the key-value are passed separately. |
| 401 | template <class Collection> |
| 402 | typename Collection::value_type::second_type& |
| 403 | LookupOrInsert(Collection* const collection, |
| 404 | const typename Collection::value_type::first_type& key, |
| 405 | const typename Collection::value_type::second_type& value) { |
| 406 | return LookupOrInsert( |
| 407 | collection, typename Collection::value_type(key, value)); |
| 408 | } |
| 409 | |
| 410 | // Counts the number of equivalent elements in the given "sequence", and stores |
| 411 | // the results in "count_map" with element as the key and count as the value. |
| 412 | // |
| 413 | // Example: |
| 414 | // vector<string> v = {"a", "b", "c", "a", "b"}; |
| 415 | // map<string, int> m; |
| 416 | // AddTokenCounts(v, 1, &m); |
| 417 | // assert(m["a"] == 2); |
| 418 | // assert(m["b"] == 2); |
| 419 | // assert(m["c"] == 1); |
| 420 | template <typename Sequence, typename Collection> |
| 421 | void AddTokenCounts( |
| 422 | const Sequence& sequence, |
| 423 | const typename Collection::value_type::second_type& increment, |
| 424 | Collection* const count_map) { |
| 425 | for (typename Sequence::const_iterator it = sequence.begin(); |
| 426 | it != sequence.end(); ++it) { |
| 427 | typename Collection::value_type::second_type& value = |
| 428 | LookupOrInsert(count_map, *it, |
| 429 | typename Collection::value_type::second_type()); |
| 430 | value += increment; |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | // Returns a reference to the value associated with key. If not found, a value |
| 435 | // is default constructed on the heap and added to the map. |
| 436 | // |
| 437 | // This function is useful for containers of the form map<Key, Value*>, where |
| 438 | // inserting a new key, value pair involves constructing a new heap-allocated |
| 439 | // Value, and storing a pointer to that in the collection. |
| 440 | template <class Collection> |
| 441 | typename Collection::value_type::second_type& |
| 442 | LookupOrInsertNew(Collection* const collection, |
| 443 | const typename Collection::value_type::first_type& key) { |
| 444 | typedef typename std::iterator_traits< |
| 445 | typename Collection::value_type::second_type>::value_type Element; |
| 446 | std::pair<typename Collection::iterator, bool> ret = |
| 447 | collection->insert(typename Collection::value_type( |
| 448 | key, |
| 449 | static_cast<typename Collection::value_type::second_type>(NULL))); |
| 450 | if (ret.second) { |
| 451 | ret.first->second = new Element(); |
| 452 | } |
| 453 | return ret.first->second; |
| 454 | } |
| 455 | |
| 456 | // Same as above but constructs the value using the single-argument constructor |
| 457 | // and the given "arg". |
| 458 | template <class Collection, class Arg> |
| 459 | typename Collection::value_type::second_type& |
| 460 | LookupOrInsertNew(Collection* const collection, |
| 461 | const typename Collection::value_type::first_type& key, |
| 462 | const Arg& arg) { |
| 463 | typedef typename std::iterator_traits< |
| 464 | typename Collection::value_type::second_type>::value_type Element; |
| 465 | std::pair<typename Collection::iterator, bool> ret = |
| 466 | collection->insert(typename Collection::value_type( |
| 467 | key, |
| 468 | static_cast<typename Collection::value_type::second_type>(NULL))); |
| 469 | if (ret.second) { |
| 470 | ret.first->second = new Element(arg); |
| 471 | } |
| 472 | return ret.first->second; |
| 473 | } |
| 474 | |
| 475 | // Lookup of linked/shared pointers is used in two scenarios: |
| 476 | // |
| 477 | // Use LookupOrInsertNewLinkedPtr if the container owns the elements. |
| 478 | // In this case it is fine working with the raw pointer as long as it is |
| 479 | // guaranteed that no other thread can delete/update an accessed element. |
| 480 | // A mutex will need to lock the container operation as well as the use |
| 481 | // of the returned elements. Finding an element may be performed using |
| 482 | // FindLinkedPtr*(). |
| 483 | // |
| 484 | // Use LookupOrInsertNewSharedPtr if the container does not own the elements |
| 485 | // for their whole lifetime. This is typically the case when a reader allows |
| 486 | // parallel updates to the container. In this case a Mutex only needs to lock |
| 487 | // container operations, but all element operations must be performed on the |
| 488 | // shared pointer. Finding an element must be performed using FindPtr*() and |
| 489 | // cannot be done with FindLinkedPtr*() even though it compiles. |
| 490 | |
| 491 | // Lookup a key in a map or hash_map whose values are linked_ptrs. If it is |
| 492 | // missing, set collection[key].reset(new Value::element_type) and return that. |
| 493 | // Value::element_type must be default constructable. |
| 494 | template <class Collection> |
| 495 | typename Collection::value_type::second_type::element_type* |
| 496 | LookupOrInsertNewLinkedPtr( |
| 497 | Collection* const collection, |
| 498 | const typename Collection::value_type::first_type& key) { |
| 499 | typedef typename Collection::value_type::second_type Value; |
| 500 | std::pair<typename Collection::iterator, bool> ret = |
| 501 | collection->insert(typename Collection::value_type(key, Value())); |
| 502 | if (ret.second) { |
| 503 | ret.first->second.reset(new typename Value::element_type); |
| 504 | } |
| 505 | return ret.first->second.get(); |
| 506 | } |
| 507 | |
| 508 | // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using |
| 509 | // a single-parameter constructor. Note: the constructor argument is computed |
| 510 | // even if it will not be used, so only values cheap to compute should be passed |
| 511 | // here. On the other hand it does not matter how expensive the construction of |
| 512 | // the actual stored value is, as that only occurs if necessary. |
| 513 | template <class Collection, class Arg> |
| 514 | typename Collection::value_type::second_type::element_type* |
| 515 | LookupOrInsertNewLinkedPtr( |
| 516 | Collection* const collection, |
| 517 | const typename Collection::value_type::first_type& key, |
| 518 | const Arg& arg) { |
| 519 | typedef typename Collection::value_type::second_type Value; |
| 520 | std::pair<typename Collection::iterator, bool> ret = |
| 521 | collection->insert(typename Collection::value_type(key, Value())); |
| 522 | if (ret.second) { |
| 523 | ret.first->second.reset(new typename Value::element_type(arg)); |
| 524 | } |
| 525 | return ret.first->second.get(); |
| 526 | } |
| 527 | |
| 528 | // Lookup a key in a map or hash_map whose values are shared_ptrs. If it is |
| 529 | // missing, set collection[key].reset(new Value::element_type). Unlike |
| 530 | // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of |
| 531 | // the raw pointer. Value::element_type must be default constructable. |
| 532 | template <class Collection> |
| 533 | typename Collection::value_type::second_type& |
| 534 | LookupOrInsertNewSharedPtr( |
| 535 | Collection* const collection, |
| 536 | const typename Collection::value_type::first_type& key) { |
| 537 | typedef typename Collection::value_type::second_type SharedPtr; |
| 538 | typedef typename Collection::value_type::second_type::element_type Element; |
| 539 | std::pair<typename Collection::iterator, bool> ret = |
| 540 | collection->insert(typename Collection::value_type(key, SharedPtr())); |
| 541 | if (ret.second) { |
| 542 | ret.first->second.reset(new Element()); |
| 543 | } |
| 544 | return ret.first->second; |
| 545 | } |
| 546 | |
| 547 | // A variant of LookupOrInsertNewSharedPtr where the value is constructed using |
| 548 | // a single-parameter constructor. Note: the constructor argument is computed |
| 549 | // even if it will not be used, so only values cheap to compute should be passed |
| 550 | // here. On the other hand it does not matter how expensive the construction of |
| 551 | // the actual stored value is, as that only occurs if necessary. |
| 552 | template <class Collection, class Arg> |
| 553 | typename Collection::value_type::second_type& |
| 554 | LookupOrInsertNewSharedPtr( |
| 555 | Collection* const collection, |
| 556 | const typename Collection::value_type::first_type& key, |
| 557 | const Arg& arg) { |
| 558 | typedef typename Collection::value_type::second_type SharedPtr; |
| 559 | typedef typename Collection::value_type::second_type::element_type Element; |
| 560 | std::pair<typename Collection::iterator, bool> ret = |
| 561 | collection->insert(typename Collection::value_type(key, SharedPtr())); |
| 562 | if (ret.second) { |
| 563 | ret.first->second.reset(new Element(arg)); |
| 564 | } |
| 565 | return ret.first->second; |
| 566 | } |
| 567 | |
| 568 | // |
| 569 | // Misc Utility Functions |
| 570 | // |
| 571 | |
| 572 | // Updates the value associated with the given key. If the key was not already |
| 573 | // present, then the key-value pair are inserted and "previous" is unchanged. If |
| 574 | // the key was already present, the value is updated and "*previous" will |
| 575 | // contain a copy of the old value. |
| 576 | // |
| 577 | // InsertOrReturnExisting has complementary behavior that returns the |
| 578 | // address of an already existing value, rather than updating it. |
| 579 | template <class Collection> |
| 580 | bool UpdateReturnCopy(Collection* const collection, |
| 581 | const typename Collection::value_type::first_type& key, |
| 582 | const typename Collection::value_type::second_type& value, |
| 583 | typename Collection::value_type::second_type* previous) { |
| 584 | std::pair<typename Collection::iterator, bool> ret = |
| 585 | collection->insert(typename Collection::value_type(key, value)); |
| 586 | if (!ret.second) { |
| 587 | // update |
| 588 | if (previous) { |
| 589 | *previous = ret.first->second; |
| 590 | } |
| 591 | ret.first->second = value; |
| 592 | return true; |
| 593 | } |
| 594 | return false; |
| 595 | } |
| 596 | |
| 597 | // Same as above except that the key and value are passed as a pair. |
| 598 | template <class Collection> |
| 599 | bool UpdateReturnCopy(Collection* const collection, |
| 600 | const typename Collection::value_type& vt, |
| 601 | typename Collection::value_type::second_type* previous) { |
| 602 | std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
| 603 | if (!ret.second) { |
| 604 | // update |
| 605 | if (previous) { |
| 606 | *previous = ret.first->second; |
| 607 | } |
| 608 | ret.first->second = vt.second; |
| 609 | return true; |
| 610 | } |
| 611 | return false; |
| 612 | } |
| 613 | |
| 614 | // Tries to insert the given key-value pair into the collection. Returns NULL if |
| 615 | // the insert succeeds. Otherwise, returns a pointer to the existing value. |
| 616 | // |
| 617 | // This complements UpdateReturnCopy in that it allows to update only after |
| 618 | // verifying the old value and still insert quickly without having to look up |
| 619 | // twice. Unlike UpdateReturnCopy this also does not come with the issue of an |
| 620 | // undefined previous* in case new data was inserted. |
| 621 | template <class Collection> |
| 622 | typename Collection::value_type::second_type* const |
| 623 | InsertOrReturnExisting(Collection* const collection, |
| 624 | const typename Collection::value_type& vt) { |
| 625 | std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
| 626 | if (ret.second) { |
| 627 | return NULL; // Inserted, no existing previous value. |
| 628 | } else { |
| 629 | return &ret.first->second; // Return address of already existing value. |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | // Same as above, except for explicit key and data. |
| 634 | template <class Collection> |
| 635 | typename Collection::value_type::second_type* const |
| 636 | InsertOrReturnExisting( |
| 637 | Collection* const collection, |
| 638 | const typename Collection::value_type::first_type& key, |
| 639 | const typename Collection::value_type::second_type& data) { |
| 640 | return InsertOrReturnExisting(collection, |
| 641 | typename Collection::value_type(key, data)); |
| 642 | } |
| 643 | |
| 644 | // Erases the collection item identified by the given key, and returns the value |
| 645 | // associated with that key. It is assumed that the value (i.e., the |
| 646 | // mapped_type) is a pointer. Returns NULL if the key was not found in the |
| 647 | // collection. |
| 648 | // |
| 649 | // Examples: |
| 650 | // map<string, MyType*> my_map; |
| 651 | // |
| 652 | // One line cleanup: |
| 653 | // delete EraseKeyReturnValuePtr(&my_map, "abc"); |
| 654 | // |
| 655 | // Use returned value: |
| 656 | // scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc")); |
| 657 | // if (value_ptr.get()) |
| 658 | // value_ptr->DoSomething(); |
| 659 | // |
| 660 | template <class Collection> |
| 661 | typename Collection::value_type::second_type EraseKeyReturnValuePtr( |
| 662 | Collection* const collection, |
| 663 | const typename Collection::value_type::first_type& key) { |
| 664 | typename Collection::iterator it = collection->find(key); |
| 665 | if (it == collection->end()) { |
| 666 | return NULL; |
| 667 | } |
| 668 | typename Collection::value_type::second_type v = it->second; |
| 669 | collection->erase(it); |
| 670 | return v; |
| 671 | } |
| 672 | |
| 673 | // Inserts all the keys from map_container into key_container, which must |
| 674 | // support insert(MapContainer::key_type). |
| 675 | // |
| 676 | // Note: any initial contents of the key_container are not cleared. |
| 677 | template <class MapContainer, class KeyContainer> |
| 678 | void InsertKeysFromMap(const MapContainer& map_container, |
| 679 | KeyContainer* key_container) { |
| 680 | GOOGLE_CHECK(key_container != NULL); |
| 681 | for (typename MapContainer::const_iterator it = map_container.begin(); |
| 682 | it != map_container.end(); ++it) { |
| 683 | key_container->insert(it->first); |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | // Appends all the keys from map_container into key_container, which must |
| 688 | // support push_back(MapContainer::key_type). |
| 689 | // |
| 690 | // Note: any initial contents of the key_container are not cleared. |
| 691 | template <class MapContainer, class KeyContainer> |
| 692 | void AppendKeysFromMap(const MapContainer& map_container, |
| 693 | KeyContainer* key_container) { |
| 694 | GOOGLE_CHECK(key_container != NULL); |
| 695 | for (typename MapContainer::const_iterator it = map_container.begin(); |
| 696 | it != map_container.end(); ++it) { |
| 697 | key_container->push_back(it->first); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | // A more specialized overload of AppendKeysFromMap to optimize reallocations |
| 702 | // for the common case in which we're appending keys to a vector and hence can |
| 703 | // (and sometimes should) call reserve() first. |
| 704 | // |
| 705 | // (It would be possible to play SFINAE games to call reserve() for any |
| 706 | // container that supports it, but this seems to get us 99% of what we need |
| 707 | // without the complexity of a SFINAE-based solution.) |
| 708 | template <class MapContainer, class KeyType> |
| 709 | void AppendKeysFromMap(const MapContainer& map_container, |
| 710 | vector<KeyType>* key_container) { |
| 711 | GOOGLE_CHECK(key_container != NULL); |
| 712 | // We now have the opportunity to call reserve(). Calling reserve() every |
| 713 | // time is a bad idea for some use cases: libstdc++'s implementation of |
| 714 | // vector<>::reserve() resizes the vector's backing store to exactly the |
| 715 | // given size (unless it's already at least that big). Because of this, |
| 716 | // the use case that involves appending a lot of small maps (total size |
| 717 | // N) one by one to a vector would be O(N^2). But never calling reserve() |
| 718 | // loses the opportunity to improve the use case of adding from a large |
| 719 | // map to an empty vector (this improves performance by up to 33%). A |
| 720 | // number of heuristics are possible; see the discussion in |
| 721 | // cl/34081696. Here we use the simplest one. |
| 722 | if (key_container->empty()) { |
| 723 | key_container->reserve(map_container.size()); |
| 724 | } |
| 725 | for (typename MapContainer::const_iterator it = map_container.begin(); |
| 726 | it != map_container.end(); ++it) { |
| 727 | key_container->push_back(it->first); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | // Inserts all the values from map_container into value_container, which must |
| 732 | // support push_back(MapContainer::mapped_type). |
| 733 | // |
| 734 | // Note: any initial contents of the value_container are not cleared. |
| 735 | template <class MapContainer, class ValueContainer> |
| 736 | void AppendValuesFromMap(const MapContainer& map_container, |
| 737 | ValueContainer* value_container) { |
| 738 | GOOGLE_CHECK(value_container != NULL); |
| 739 | for (typename MapContainer::const_iterator it = map_container.begin(); |
| 740 | it != map_container.end(); ++it) { |
| 741 | value_container->push_back(it->second); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | // A more specialized overload of AppendValuesFromMap to optimize reallocations |
| 746 | // for the common case in which we're appending values to a vector and hence |
| 747 | // can (and sometimes should) call reserve() first. |
| 748 | // |
| 749 | // (It would be possible to play SFINAE games to call reserve() for any |
| 750 | // container that supports it, but this seems to get us 99% of what we need |
| 751 | // without the complexity of a SFINAE-based solution.) |
| 752 | template <class MapContainer, class ValueType> |
| 753 | void AppendValuesFromMap(const MapContainer& map_container, |
| 754 | vector<ValueType>* value_container) { |
| 755 | GOOGLE_CHECK(value_container != NULL); |
| 756 | // See AppendKeysFromMap for why this is done. |
| 757 | if (value_container->empty()) { |
| 758 | value_container->reserve(map_container.size()); |
| 759 | } |
| 760 | for (typename MapContainer::const_iterator it = map_container.begin(); |
| 761 | it != map_container.end(); ++it) { |
| 762 | value_container->push_back(it->second); |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | } // namespace protobuf |
| 767 | } // namespace google |
| 768 | |
| 769 | #endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |