Brian Silverman | 9c614bc | 2016-02-15 20:20:02 -0500 | [diff] [blame^] | 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // Author: kenton@google.com (Kenton Varda) |
| 32 | // Based on original Protocol Buffers design by |
| 33 | // Sanjay Ghemawat, Jeff Dean, and others. |
| 34 | // |
| 35 | // Defines Message, the abstract interface implemented by non-lite |
| 36 | // protocol message objects. Although it's possible to implement this |
| 37 | // interface manually, most users will use the protocol compiler to |
| 38 | // generate implementations. |
| 39 | // |
| 40 | // Example usage: |
| 41 | // |
| 42 | // Say you have a message defined as: |
| 43 | // |
| 44 | // message Foo { |
| 45 | // optional string text = 1; |
| 46 | // repeated int32 numbers = 2; |
| 47 | // } |
| 48 | // |
| 49 | // Then, if you used the protocol compiler to generate a class from the above |
| 50 | // definition, you could use it like so: |
| 51 | // |
| 52 | // string data; // Will store a serialized version of the message. |
| 53 | // |
| 54 | // { |
| 55 | // // Create a message and serialize it. |
| 56 | // Foo foo; |
| 57 | // foo.set_text("Hello World!"); |
| 58 | // foo.add_numbers(1); |
| 59 | // foo.add_numbers(5); |
| 60 | // foo.add_numbers(42); |
| 61 | // |
| 62 | // foo.SerializeToString(&data); |
| 63 | // } |
| 64 | // |
| 65 | // { |
| 66 | // // Parse the serialized message and check that it contains the |
| 67 | // // correct data. |
| 68 | // Foo foo; |
| 69 | // foo.ParseFromString(data); |
| 70 | // |
| 71 | // assert(foo.text() == "Hello World!"); |
| 72 | // assert(foo.numbers_size() == 3); |
| 73 | // assert(foo.numbers(0) == 1); |
| 74 | // assert(foo.numbers(1) == 5); |
| 75 | // assert(foo.numbers(2) == 42); |
| 76 | // } |
| 77 | // |
| 78 | // { |
| 79 | // // Same as the last block, but do it dynamically via the Message |
| 80 | // // reflection interface. |
| 81 | // Message* foo = new Foo; |
| 82 | // const Descriptor* descriptor = foo->GetDescriptor(); |
| 83 | // |
| 84 | // // Get the descriptors for the fields we're interested in and verify |
| 85 | // // their types. |
| 86 | // const FieldDescriptor* text_field = descriptor->FindFieldByName("text"); |
| 87 | // assert(text_field != NULL); |
| 88 | // assert(text_field->type() == FieldDescriptor::TYPE_STRING); |
| 89 | // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL); |
| 90 | // const FieldDescriptor* numbers_field = descriptor-> |
| 91 | // FindFieldByName("numbers"); |
| 92 | // assert(numbers_field != NULL); |
| 93 | // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); |
| 94 | // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED); |
| 95 | // |
| 96 | // // Parse the message. |
| 97 | // foo->ParseFromString(data); |
| 98 | // |
| 99 | // // Use the reflection interface to examine the contents. |
| 100 | // const Reflection* reflection = foo->GetReflection(); |
| 101 | // assert(reflection->GetString(*foo, text_field) == "Hello World!"); |
| 102 | // assert(reflection->FieldSize(*foo, numbers_field) == 3); |
| 103 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1); |
| 104 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5); |
| 105 | // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42); |
| 106 | // |
| 107 | // delete foo; |
| 108 | // } |
| 109 | |
| 110 | #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ |
| 111 | #define GOOGLE_PROTOBUF_MESSAGE_H__ |
| 112 | |
| 113 | #include <iosfwd> |
| 114 | #include <string> |
| 115 | #include <google/protobuf/stubs/type_traits.h> |
| 116 | #include <vector> |
| 117 | |
| 118 | #include <google/protobuf/arena.h> |
| 119 | #include <google/protobuf/message_lite.h> |
| 120 | |
| 121 | #include <google/protobuf/stubs/common.h> |
| 122 | #include <google/protobuf/descriptor.h> |
| 123 | |
| 124 | |
| 125 | #define GOOGLE_PROTOBUF_HAS_ONEOF |
| 126 | #define GOOGLE_PROTOBUF_HAS_ARENAS |
| 127 | |
| 128 | namespace google { |
| 129 | namespace protobuf { |
| 130 | |
| 131 | // Defined in this file. |
| 132 | class Message; |
| 133 | class Reflection; |
| 134 | class MessageFactory; |
| 135 | |
| 136 | // Defined in other files. |
| 137 | class MapKey; |
| 138 | class MapValueRef; |
| 139 | class MapIterator; |
| 140 | class MapReflectionTester; |
| 141 | |
| 142 | namespace internal { |
| 143 | class MapFieldBase; |
| 144 | } |
| 145 | class UnknownFieldSet; // unknown_field_set.h |
| 146 | namespace io { |
| 147 | class ZeroCopyInputStream; // zero_copy_stream.h |
| 148 | class ZeroCopyOutputStream; // zero_copy_stream.h |
| 149 | class CodedInputStream; // coded_stream.h |
| 150 | class CodedOutputStream; // coded_stream.h |
| 151 | } |
| 152 | namespace python { |
| 153 | class MapReflectionFriend; // scalar_map_container.h |
| 154 | } |
| 155 | |
| 156 | |
| 157 | template<typename T> |
| 158 | class RepeatedField; // repeated_field.h |
| 159 | |
| 160 | template<typename T> |
| 161 | class RepeatedPtrField; // repeated_field.h |
| 162 | |
| 163 | // A container to hold message metadata. |
| 164 | struct Metadata { |
| 165 | const Descriptor* descriptor; |
| 166 | const Reflection* reflection; |
| 167 | }; |
| 168 | |
| 169 | // Abstract interface for protocol messages. |
| 170 | // |
| 171 | // See also MessageLite, which contains most every-day operations. Message |
| 172 | // adds descriptors and reflection on top of that. |
| 173 | // |
| 174 | // The methods of this class that are virtual but not pure-virtual have |
| 175 | // default implementations based on reflection. Message classes which are |
| 176 | // optimized for speed will want to override these with faster implementations, |
| 177 | // but classes optimized for code size may be happy with keeping them. See |
| 178 | // the optimize_for option in descriptor.proto. |
| 179 | class LIBPROTOBUF_EXPORT Message : public MessageLite { |
| 180 | public: |
| 181 | inline Message() {} |
| 182 | virtual ~Message(); |
| 183 | |
| 184 | // Basic Operations ------------------------------------------------ |
| 185 | |
| 186 | // Construct a new instance of the same type. Ownership is passed to the |
| 187 | // caller. (This is also defined in MessageLite, but is defined again here |
| 188 | // for return-type covariance.) |
| 189 | virtual Message* New() const = 0; |
| 190 | |
| 191 | // Construct a new instance on the arena. Ownership is passed to the caller |
| 192 | // if arena is a NULL. Default implementation allows for API compatibility |
| 193 | // during the Arena transition. |
| 194 | virtual Message* New(::google::protobuf::Arena* arena) const { |
| 195 | Message* message = New(); |
| 196 | if (arena != NULL) { |
| 197 | arena->Own(message); |
| 198 | } |
| 199 | return message; |
| 200 | } |
| 201 | |
| 202 | // Make this message into a copy of the given message. The given message |
| 203 | // must have the same descriptor, but need not necessarily be the same class. |
| 204 | // By default this is just implemented as "Clear(); MergeFrom(from);". |
| 205 | virtual void CopyFrom(const Message& from); |
| 206 | |
| 207 | // Merge the fields from the given message into this message. Singular |
| 208 | // fields will be overwritten, if specified in from, except for embedded |
| 209 | // messages which will be merged. Repeated fields will be concatenated. |
| 210 | // The given message must be of the same type as this message (i.e. the |
| 211 | // exact same class). |
| 212 | virtual void MergeFrom(const Message& from); |
| 213 | |
| 214 | // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with |
| 215 | // a nice error message. |
| 216 | void CheckInitialized() const; |
| 217 | |
| 218 | // Slowly build a list of all required fields that are not set. |
| 219 | // This is much, much slower than IsInitialized() as it is implemented |
| 220 | // purely via reflection. Generally, you should not call this unless you |
| 221 | // have already determined that an error exists by calling IsInitialized(). |
| 222 | void FindInitializationErrors(std::vector<string>* errors) const; |
| 223 | |
| 224 | // Like FindInitializationErrors, but joins all the strings, delimited by |
| 225 | // commas, and returns them. |
| 226 | string InitializationErrorString() const; |
| 227 | |
| 228 | // Clears all unknown fields from this message and all embedded messages. |
| 229 | // Normally, if unknown tag numbers are encountered when parsing a message, |
| 230 | // the tag and value are stored in the message's UnknownFieldSet and |
| 231 | // then written back out when the message is serialized. This allows servers |
| 232 | // which simply route messages to other servers to pass through messages |
| 233 | // that have new field definitions which they don't yet know about. However, |
| 234 | // this behavior can have security implications. To avoid it, call this |
| 235 | // method after parsing. |
| 236 | // |
| 237 | // See Reflection::GetUnknownFields() for more on unknown fields. |
| 238 | virtual void DiscardUnknownFields(); |
| 239 | |
| 240 | // Computes (an estimate of) the total number of bytes currently used for |
| 241 | // storing the message in memory. The default implementation calls the |
| 242 | // Reflection object's SpaceUsed() method. |
| 243 | // |
| 244 | // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented |
| 245 | // using reflection (rather than the generated code implementation for |
| 246 | // ByteSize()). Like ByteSize(), its CPU time is linear in the number of |
| 247 | // fields defined for the proto. |
| 248 | virtual int SpaceUsed() const; |
| 249 | |
| 250 | // Debugging & Testing---------------------------------------------- |
| 251 | |
| 252 | // Generates a human readable form of this message, useful for debugging |
| 253 | // and other purposes. |
| 254 | string DebugString() const; |
| 255 | // Like DebugString(), but with less whitespace. |
| 256 | string ShortDebugString() const; |
| 257 | // Like DebugString(), but do not escape UTF-8 byte sequences. |
| 258 | string Utf8DebugString() const; |
| 259 | // Convenience function useful in GDB. Prints DebugString() to stdout. |
| 260 | void PrintDebugString() const; |
| 261 | |
| 262 | // Heavy I/O ------------------------------------------------------- |
| 263 | // Additional parsing and serialization methods not implemented by |
| 264 | // MessageLite because they are not supported by the lite library. |
| 265 | |
| 266 | // Parse a protocol buffer from a file descriptor. If successful, the entire |
| 267 | // input will be consumed. |
| 268 | bool ParseFromFileDescriptor(int file_descriptor); |
| 269 | // Like ParseFromFileDescriptor(), but accepts messages that are missing |
| 270 | // required fields. |
| 271 | bool ParsePartialFromFileDescriptor(int file_descriptor); |
| 272 | // Parse a protocol buffer from a C++ istream. If successful, the entire |
| 273 | // input will be consumed. |
| 274 | bool ParseFromIstream(istream* input); |
| 275 | // Like ParseFromIstream(), but accepts messages that are missing |
| 276 | // required fields. |
| 277 | bool ParsePartialFromIstream(istream* input); |
| 278 | |
| 279 | // Serialize the message and write it to the given file descriptor. All |
| 280 | // required fields must be set. |
| 281 | bool SerializeToFileDescriptor(int file_descriptor) const; |
| 282 | // Like SerializeToFileDescriptor(), but allows missing required fields. |
| 283 | bool SerializePartialToFileDescriptor(int file_descriptor) const; |
| 284 | // Serialize the message and write it to the given C++ ostream. All |
| 285 | // required fields must be set. |
| 286 | bool SerializeToOstream(ostream* output) const; |
| 287 | // Like SerializeToOstream(), but allows missing required fields. |
| 288 | bool SerializePartialToOstream(ostream* output) const; |
| 289 | |
| 290 | |
| 291 | // Reflection-based methods ---------------------------------------- |
| 292 | // These methods are pure-virtual in MessageLite, but Message provides |
| 293 | // reflection-based default implementations. |
| 294 | |
| 295 | virtual string GetTypeName() const; |
| 296 | virtual void Clear(); |
| 297 | virtual bool IsInitialized() const; |
| 298 | virtual void CheckTypeAndMergeFrom(const MessageLite& other); |
| 299 | virtual bool MergePartialFromCodedStream(io::CodedInputStream* input); |
| 300 | virtual int ByteSize() const; |
| 301 | virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const; |
| 302 | |
| 303 | private: |
| 304 | // This is called only by the default implementation of ByteSize(), to |
| 305 | // update the cached size. If you override ByteSize(), you do not need |
| 306 | // to override this. If you do not override ByteSize(), you MUST override |
| 307 | // this; the default implementation will crash. |
| 308 | // |
| 309 | // The method is private because subclasses should never call it; only |
| 310 | // override it. Yes, C++ lets you do that. Crazy, huh? |
| 311 | virtual void SetCachedSize(int size) const; |
| 312 | |
| 313 | public: |
| 314 | |
| 315 | // Introspection --------------------------------------------------- |
| 316 | |
| 317 | // Typedef for backwards-compatibility. |
| 318 | typedef google::protobuf::Reflection Reflection; |
| 319 | |
| 320 | // Get a Descriptor for this message's type. This describes what |
| 321 | // fields the message contains, the types of those fields, etc. |
| 322 | const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } |
| 323 | |
| 324 | // Get the Reflection interface for this Message, which can be used to |
| 325 | // read and modify the fields of the Message dynamically (in other words, |
| 326 | // without knowing the message type at compile time). This object remains |
| 327 | // property of the Message. |
| 328 | // |
| 329 | // This method remains virtual in case a subclass does not implement |
| 330 | // reflection and wants to override the default behavior. |
| 331 | virtual const Reflection* GetReflection() const { |
| 332 | return GetMetadata().reflection; |
| 333 | } |
| 334 | |
| 335 | protected: |
| 336 | // Get a struct containing the metadata for the Message. Most subclasses only |
| 337 | // need to implement this method, rather than the GetDescriptor() and |
| 338 | // GetReflection() wrappers. |
| 339 | virtual Metadata GetMetadata() const = 0; |
| 340 | |
| 341 | |
| 342 | private: |
| 343 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); |
| 344 | }; |
| 345 | |
| 346 | namespace internal { |
| 347 | // Forward-declare interfaces used to implement RepeatedFieldRef. |
| 348 | // These are protobuf internals that users shouldn't care about. |
| 349 | class RepeatedFieldAccessor; |
| 350 | } // namespace internal |
| 351 | |
| 352 | // Forward-declare RepeatedFieldRef templates. The second type parameter is |
| 353 | // used for SFINAE tricks. Users should ignore it. |
| 354 | template<typename T, typename Enable = void> |
| 355 | class RepeatedFieldRef; |
| 356 | |
| 357 | template<typename T, typename Enable = void> |
| 358 | class MutableRepeatedFieldRef; |
| 359 | |
| 360 | // This interface contains methods that can be used to dynamically access |
| 361 | // and modify the fields of a protocol message. Their semantics are |
| 362 | // similar to the accessors the protocol compiler generates. |
| 363 | // |
| 364 | // To get the Reflection for a given Message, call Message::GetReflection(). |
| 365 | // |
| 366 | // This interface is separate from Message only for efficiency reasons; |
| 367 | // the vast majority of implementations of Message will share the same |
| 368 | // implementation of Reflection (GeneratedMessageReflection, |
| 369 | // defined in generated_message.h), and all Messages of a particular class |
| 370 | // should share the same Reflection object (though you should not rely on |
| 371 | // the latter fact). |
| 372 | // |
| 373 | // There are several ways that these methods can be used incorrectly. For |
| 374 | // example, any of the following conditions will lead to undefined |
| 375 | // results (probably assertion failures): |
| 376 | // - The FieldDescriptor is not a field of this message type. |
| 377 | // - The method called is not appropriate for the field's type. For |
| 378 | // each field type in FieldDescriptor::TYPE_*, there is only one |
| 379 | // Get*() method, one Set*() method, and one Add*() method that is |
| 380 | // valid for that type. It should be obvious which (except maybe |
| 381 | // for TYPE_BYTES, which are represented using strings in C++). |
| 382 | // - A Get*() or Set*() method for singular fields is called on a repeated |
| 383 | // field. |
| 384 | // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated |
| 385 | // field. |
| 386 | // - The Message object passed to any method is not of the right type for |
| 387 | // this Reflection object (i.e. message.GetReflection() != reflection). |
| 388 | // |
| 389 | // You might wonder why there is not any abstract representation for a field |
| 390 | // of arbitrary type. E.g., why isn't there just a "GetField()" method that |
| 391 | // returns "const Field&", where "Field" is some class with accessors like |
| 392 | // "GetInt32Value()". The problem is that someone would have to deal with |
| 393 | // allocating these Field objects. For generated message classes, having to |
| 394 | // allocate space for an additional object to wrap every field would at least |
| 395 | // double the message's memory footprint, probably worse. Allocating the |
| 396 | // objects on-demand, on the other hand, would be expensive and prone to |
| 397 | // memory leaks. So, instead we ended up with this flat interface. |
| 398 | // |
| 399 | // TODO(kenton): Create a utility class which callers can use to read and |
| 400 | // write fields from a Reflection without paying attention to the type. |
| 401 | class LIBPROTOBUF_EXPORT Reflection { |
| 402 | public: |
| 403 | inline Reflection() {} |
| 404 | virtual ~Reflection(); |
| 405 | |
| 406 | // Get the UnknownFieldSet for the message. This contains fields which |
| 407 | // were seen when the Message was parsed but were not recognized according |
| 408 | // to the Message's definition. For proto3 protos, this method will always |
| 409 | // return an empty UnknownFieldSet. |
| 410 | virtual const UnknownFieldSet& GetUnknownFields( |
| 411 | const Message& message) const = 0; |
| 412 | // Get a mutable pointer to the UnknownFieldSet for the message. This |
| 413 | // contains fields which were seen when the Message was parsed but were not |
| 414 | // recognized according to the Message's definition. For proto3 protos, this |
| 415 | // method will return a valid mutable UnknownFieldSet pointer but modifying |
| 416 | // it won't affect the serialized bytes of the message. |
| 417 | virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0; |
| 418 | |
| 419 | // Estimate the amount of memory used by the message object. |
| 420 | virtual int SpaceUsed(const Message& message) const = 0; |
| 421 | |
| 422 | // Check if the given non-repeated field is set. |
| 423 | virtual bool HasField(const Message& message, |
| 424 | const FieldDescriptor* field) const = 0; |
| 425 | |
| 426 | // Get the number of elements of a repeated field. |
| 427 | virtual int FieldSize(const Message& message, |
| 428 | const FieldDescriptor* field) const = 0; |
| 429 | |
| 430 | // Clear the value of a field, so that HasField() returns false or |
| 431 | // FieldSize() returns zero. |
| 432 | virtual void ClearField(Message* message, |
| 433 | const FieldDescriptor* field) const = 0; |
| 434 | |
| 435 | // Check if the oneof is set. Returns true if any field in oneof |
| 436 | // is set, false otherwise. |
| 437 | // TODO(jieluo) - make it pure virtual after updating all |
| 438 | // the subclasses. |
| 439 | virtual bool HasOneof(const Message& /*message*/, |
| 440 | const OneofDescriptor* /*oneof_descriptor*/) const { |
| 441 | return false; |
| 442 | } |
| 443 | |
| 444 | virtual void ClearOneof(Message* /*message*/, |
| 445 | const OneofDescriptor* /*oneof_descriptor*/) const {} |
| 446 | |
| 447 | // Returns the field descriptor if the oneof is set. NULL otherwise. |
| 448 | // TODO(jieluo) - make it pure virtual. |
| 449 | virtual const FieldDescriptor* GetOneofFieldDescriptor( |
| 450 | const Message& /*message*/, |
| 451 | const OneofDescriptor* /*oneof_descriptor*/) const { |
| 452 | return NULL; |
| 453 | } |
| 454 | |
| 455 | // Removes the last element of a repeated field. |
| 456 | // We don't provide a way to remove any element other than the last |
| 457 | // because it invites inefficient use, such as O(n^2) filtering loops |
| 458 | // that should have been O(n). If you want to remove an element other |
| 459 | // than the last, the best way to do it is to re-arrange the elements |
| 460 | // (using Swap()) so that the one you want removed is at the end, then |
| 461 | // call RemoveLast(). |
| 462 | virtual void RemoveLast(Message* message, |
| 463 | const FieldDescriptor* field) const = 0; |
| 464 | // Removes the last element of a repeated message field, and returns the |
| 465 | // pointer to the caller. Caller takes ownership of the returned pointer. |
| 466 | virtual Message* ReleaseLast(Message* message, |
| 467 | const FieldDescriptor* field) const = 0; |
| 468 | |
| 469 | // Swap the complete contents of two messages. |
| 470 | virtual void Swap(Message* message1, Message* message2) const = 0; |
| 471 | |
| 472 | // Swap fields listed in fields vector of two messages. |
| 473 | virtual void SwapFields(Message* message1, |
| 474 | Message* message2, |
| 475 | const std::vector<const FieldDescriptor*>& fields) |
| 476 | const = 0; |
| 477 | |
| 478 | // Swap two elements of a repeated field. |
| 479 | virtual void SwapElements(Message* message, |
| 480 | const FieldDescriptor* field, |
| 481 | int index1, |
| 482 | int index2) const = 0; |
| 483 | |
| 484 | // List all fields of the message which are currently set. This includes |
| 485 | // extensions. Singular fields will only be listed if HasField(field) would |
| 486 | // return true and repeated fields will only be listed if FieldSize(field) |
| 487 | // would return non-zero. Fields (both normal fields and extension fields) |
| 488 | // will be listed ordered by field number. |
| 489 | virtual void ListFields( |
| 490 | const Message& message, |
| 491 | std::vector<const FieldDescriptor*>* output) const = 0; |
| 492 | |
| 493 | // Singular field getters ------------------------------------------ |
| 494 | // These get the value of a non-repeated field. They return the default |
| 495 | // value for fields that aren't set. |
| 496 | |
| 497 | virtual int32 GetInt32 (const Message& message, |
| 498 | const FieldDescriptor* field) const = 0; |
| 499 | virtual int64 GetInt64 (const Message& message, |
| 500 | const FieldDescriptor* field) const = 0; |
| 501 | virtual uint32 GetUInt32(const Message& message, |
| 502 | const FieldDescriptor* field) const = 0; |
| 503 | virtual uint64 GetUInt64(const Message& message, |
| 504 | const FieldDescriptor* field) const = 0; |
| 505 | virtual float GetFloat (const Message& message, |
| 506 | const FieldDescriptor* field) const = 0; |
| 507 | virtual double GetDouble(const Message& message, |
| 508 | const FieldDescriptor* field) const = 0; |
| 509 | virtual bool GetBool (const Message& message, |
| 510 | const FieldDescriptor* field) const = 0; |
| 511 | virtual string GetString(const Message& message, |
| 512 | const FieldDescriptor* field) const = 0; |
| 513 | virtual const EnumValueDescriptor* GetEnum( |
| 514 | const Message& message, const FieldDescriptor* field) const = 0; |
| 515 | |
| 516 | // GetEnumValue() returns an enum field's value as an integer rather than |
| 517 | // an EnumValueDescriptor*. If the integer value does not correspond to a |
| 518 | // known value descriptor, a new value descriptor is created. (Such a value |
| 519 | // will only be present when the new unknown-enum-value semantics are enabled |
| 520 | // for a message.) |
| 521 | virtual int GetEnumValue( |
| 522 | const Message& message, const FieldDescriptor* field) const; |
| 523 | |
| 524 | // See MutableMessage() for the meaning of the "factory" parameter. |
| 525 | virtual const Message& GetMessage(const Message& message, |
| 526 | const FieldDescriptor* field, |
| 527 | MessageFactory* factory = NULL) const = 0; |
| 528 | |
| 529 | // Get a string value without copying, if possible. |
| 530 | // |
| 531 | // GetString() necessarily returns a copy of the string. This can be |
| 532 | // inefficient when the string is already stored in a string object in the |
| 533 | // underlying message. GetStringReference() will return a reference to the |
| 534 | // underlying string in this case. Otherwise, it will copy the string into |
| 535 | // *scratch and return that. |
| 536 | // |
| 537 | // Note: It is perfectly reasonable and useful to write code like: |
| 538 | // str = reflection->GetStringReference(field, &str); |
| 539 | // This line would ensure that only one copy of the string is made |
| 540 | // regardless of the field's underlying representation. When initializing |
| 541 | // a newly-constructed string, though, it's just as fast and more readable |
| 542 | // to use code like: |
| 543 | // string str = reflection->GetString(message, field); |
| 544 | virtual const string& GetStringReference(const Message& message, |
| 545 | const FieldDescriptor* field, |
| 546 | string* scratch) const = 0; |
| 547 | |
| 548 | |
| 549 | // Singular field mutators ----------------------------------------- |
| 550 | // These mutate the value of a non-repeated field. |
| 551 | |
| 552 | virtual void SetInt32 (Message* message, |
| 553 | const FieldDescriptor* field, int32 value) const = 0; |
| 554 | virtual void SetInt64 (Message* message, |
| 555 | const FieldDescriptor* field, int64 value) const = 0; |
| 556 | virtual void SetUInt32(Message* message, |
| 557 | const FieldDescriptor* field, uint32 value) const = 0; |
| 558 | virtual void SetUInt64(Message* message, |
| 559 | const FieldDescriptor* field, uint64 value) const = 0; |
| 560 | virtual void SetFloat (Message* message, |
| 561 | const FieldDescriptor* field, float value) const = 0; |
| 562 | virtual void SetDouble(Message* message, |
| 563 | const FieldDescriptor* field, double value) const = 0; |
| 564 | virtual void SetBool (Message* message, |
| 565 | const FieldDescriptor* field, bool value) const = 0; |
| 566 | virtual void SetString(Message* message, |
| 567 | const FieldDescriptor* field, |
| 568 | const string& value) const = 0; |
| 569 | virtual void SetEnum (Message* message, |
| 570 | const FieldDescriptor* field, |
| 571 | const EnumValueDescriptor* value) const = 0; |
| 572 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| 573 | // If the value does not correspond to a known enum value, either behavior is |
| 574 | // undefined (for proto2 messages), or the value is accepted silently for |
| 575 | // messages with new unknown-enum-value semantics. |
| 576 | virtual void SetEnumValue(Message* message, |
| 577 | const FieldDescriptor* field, |
| 578 | int value) const; |
| 579 | |
| 580 | // Get a mutable pointer to a field with a message type. If a MessageFactory |
| 581 | // is provided, it will be used to construct instances of the sub-message; |
| 582 | // otherwise, the default factory is used. If the field is an extension that |
| 583 | // does not live in the same pool as the containing message's descriptor (e.g. |
| 584 | // it lives in an overlay pool), then a MessageFactory must be provided. |
| 585 | // If you have no idea what that meant, then you probably don't need to worry |
| 586 | // about it (don't provide a MessageFactory). WARNING: If the |
| 587 | // FieldDescriptor is for a compiled-in extension, then |
| 588 | // factory->GetPrototype(field->message_type() MUST return an instance of the |
| 589 | // compiled-in class for this type, NOT DynamicMessage. |
| 590 | virtual Message* MutableMessage(Message* message, |
| 591 | const FieldDescriptor* field, |
| 592 | MessageFactory* factory = NULL) const = 0; |
| 593 | // Replaces the message specified by 'field' with the already-allocated object |
| 594 | // sub_message, passing ownership to the message. If the field contained a |
| 595 | // message, that message is deleted. If sub_message is NULL, the field is |
| 596 | // cleared. |
| 597 | virtual void SetAllocatedMessage(Message* message, |
| 598 | Message* sub_message, |
| 599 | const FieldDescriptor* field) const = 0; |
| 600 | // Releases the message specified by 'field' and returns the pointer, |
| 601 | // ReleaseMessage() will return the message the message object if it exists. |
| 602 | // Otherwise, it may or may not return NULL. In any case, if the return value |
| 603 | // is non-NULL, the caller takes ownership of the pointer. |
| 604 | // If the field existed (HasField() is true), then the returned pointer will |
| 605 | // be the same as the pointer returned by MutableMessage(). |
| 606 | // This function has the same effect as ClearField(). |
| 607 | virtual Message* ReleaseMessage(Message* message, |
| 608 | const FieldDescriptor* field, |
| 609 | MessageFactory* factory = NULL) const = 0; |
| 610 | |
| 611 | |
| 612 | // Repeated field getters ------------------------------------------ |
| 613 | // These get the value of one element of a repeated field. |
| 614 | |
| 615 | virtual int32 GetRepeatedInt32 (const Message& message, |
| 616 | const FieldDescriptor* field, |
| 617 | int index) const = 0; |
| 618 | virtual int64 GetRepeatedInt64 (const Message& message, |
| 619 | const FieldDescriptor* field, |
| 620 | int index) const = 0; |
| 621 | virtual uint32 GetRepeatedUInt32(const Message& message, |
| 622 | const FieldDescriptor* field, |
| 623 | int index) const = 0; |
| 624 | virtual uint64 GetRepeatedUInt64(const Message& message, |
| 625 | const FieldDescriptor* field, |
| 626 | int index) const = 0; |
| 627 | virtual float GetRepeatedFloat (const Message& message, |
| 628 | const FieldDescriptor* field, |
| 629 | int index) const = 0; |
| 630 | virtual double GetRepeatedDouble(const Message& message, |
| 631 | const FieldDescriptor* field, |
| 632 | int index) const = 0; |
| 633 | virtual bool GetRepeatedBool (const Message& message, |
| 634 | const FieldDescriptor* field, |
| 635 | int index) const = 0; |
| 636 | virtual string GetRepeatedString(const Message& message, |
| 637 | const FieldDescriptor* field, |
| 638 | int index) const = 0; |
| 639 | virtual const EnumValueDescriptor* GetRepeatedEnum( |
| 640 | const Message& message, |
| 641 | const FieldDescriptor* field, int index) const = 0; |
| 642 | // GetRepeatedEnumValue() returns an enum field's value as an integer rather |
| 643 | // than an EnumValueDescriptor*. If the integer value does not correspond to a |
| 644 | // known value descriptor, a new value descriptor is created. (Such a value |
| 645 | // will only be present when the new unknown-enum-value semantics are enabled |
| 646 | // for a message.) |
| 647 | virtual int GetRepeatedEnumValue( |
| 648 | const Message& message, |
| 649 | const FieldDescriptor* field, int index) const; |
| 650 | virtual const Message& GetRepeatedMessage( |
| 651 | const Message& message, |
| 652 | const FieldDescriptor* field, int index) const = 0; |
| 653 | |
| 654 | // See GetStringReference(), above. |
| 655 | virtual const string& GetRepeatedStringReference( |
| 656 | const Message& message, const FieldDescriptor* field, |
| 657 | int index, string* scratch) const = 0; |
| 658 | |
| 659 | |
| 660 | // Repeated field mutators ----------------------------------------- |
| 661 | // These mutate the value of one element of a repeated field. |
| 662 | |
| 663 | virtual void SetRepeatedInt32 (Message* message, |
| 664 | const FieldDescriptor* field, |
| 665 | int index, int32 value) const = 0; |
| 666 | virtual void SetRepeatedInt64 (Message* message, |
| 667 | const FieldDescriptor* field, |
| 668 | int index, int64 value) const = 0; |
| 669 | virtual void SetRepeatedUInt32(Message* message, |
| 670 | const FieldDescriptor* field, |
| 671 | int index, uint32 value) const = 0; |
| 672 | virtual void SetRepeatedUInt64(Message* message, |
| 673 | const FieldDescriptor* field, |
| 674 | int index, uint64 value) const = 0; |
| 675 | virtual void SetRepeatedFloat (Message* message, |
| 676 | const FieldDescriptor* field, |
| 677 | int index, float value) const = 0; |
| 678 | virtual void SetRepeatedDouble(Message* message, |
| 679 | const FieldDescriptor* field, |
| 680 | int index, double value) const = 0; |
| 681 | virtual void SetRepeatedBool (Message* message, |
| 682 | const FieldDescriptor* field, |
| 683 | int index, bool value) const = 0; |
| 684 | virtual void SetRepeatedString(Message* message, |
| 685 | const FieldDescriptor* field, |
| 686 | int index, const string& value) const = 0; |
| 687 | virtual void SetRepeatedEnum(Message* message, |
| 688 | const FieldDescriptor* field, int index, |
| 689 | const EnumValueDescriptor* value) const = 0; |
| 690 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| 691 | // If the value does not correspond to a known enum value, either behavior is |
| 692 | // undefined (for proto2 messages), or the value is accepted silently for |
| 693 | // messages with new unknown-enum-value semantics. |
| 694 | virtual void SetRepeatedEnumValue(Message* message, |
| 695 | const FieldDescriptor* field, int index, |
| 696 | int value) const; |
| 697 | // Get a mutable pointer to an element of a repeated field with a message |
| 698 | // type. |
| 699 | virtual Message* MutableRepeatedMessage( |
| 700 | Message* message, const FieldDescriptor* field, int index) const = 0; |
| 701 | |
| 702 | |
| 703 | // Repeated field adders ------------------------------------------- |
| 704 | // These add an element to a repeated field. |
| 705 | |
| 706 | virtual void AddInt32 (Message* message, |
| 707 | const FieldDescriptor* field, int32 value) const = 0; |
| 708 | virtual void AddInt64 (Message* message, |
| 709 | const FieldDescriptor* field, int64 value) const = 0; |
| 710 | virtual void AddUInt32(Message* message, |
| 711 | const FieldDescriptor* field, uint32 value) const = 0; |
| 712 | virtual void AddUInt64(Message* message, |
| 713 | const FieldDescriptor* field, uint64 value) const = 0; |
| 714 | virtual void AddFloat (Message* message, |
| 715 | const FieldDescriptor* field, float value) const = 0; |
| 716 | virtual void AddDouble(Message* message, |
| 717 | const FieldDescriptor* field, double value) const = 0; |
| 718 | virtual void AddBool (Message* message, |
| 719 | const FieldDescriptor* field, bool value) const = 0; |
| 720 | virtual void AddString(Message* message, |
| 721 | const FieldDescriptor* field, |
| 722 | const string& value) const = 0; |
| 723 | virtual void AddEnum (Message* message, |
| 724 | const FieldDescriptor* field, |
| 725 | const EnumValueDescriptor* value) const = 0; |
| 726 | // Set an enum field's value with an integer rather than EnumValueDescriptor. |
| 727 | // If the value does not correspond to a known enum value, either behavior is |
| 728 | // undefined (for proto2 messages), or the value is accepted silently for |
| 729 | // messages with new unknown-enum-value semantics. |
| 730 | virtual void AddEnumValue(Message* message, |
| 731 | const FieldDescriptor* field, |
| 732 | int value) const; |
| 733 | // See MutableMessage() for comments on the "factory" parameter. |
| 734 | virtual Message* AddMessage(Message* message, |
| 735 | const FieldDescriptor* field, |
| 736 | MessageFactory* factory = NULL) const = 0; |
| 737 | |
| 738 | // Appends an already-allocated object 'new_entry' to the repeated field |
| 739 | // specifyed by 'field' passing ownership to the message. |
| 740 | // TODO(tmarek): Make virtual after all subclasses have been |
| 741 | // updated. |
| 742 | virtual void AddAllocatedMessage(Message* /* message */, |
| 743 | const FieldDescriptor* /*field */, |
| 744 | Message* /* new_entry */) const {} |
| 745 | |
| 746 | |
| 747 | // Get a RepeatedFieldRef object that can be used to read the underlying |
| 748 | // repeated field. The type parameter T must be set according to the |
| 749 | // field's cpp type. The following table shows the mapping from cpp type |
| 750 | // to acceptable T. |
| 751 | // |
| 752 | // field->cpp_type() T |
| 753 | // CPPTYPE_INT32 int32 |
| 754 | // CPPTYPE_UINT32 uint32 |
| 755 | // CPPTYPE_INT64 int64 |
| 756 | // CPPTYPE_UINT64 uint64 |
| 757 | // CPPTYPE_DOUBLE double |
| 758 | // CPPTYPE_FLOAT float |
| 759 | // CPPTYPE_BOOL bool |
| 760 | // CPPTYPE_ENUM generated enum type or int32 |
| 761 | // CPPTYPE_STRING string |
| 762 | // CPPTYPE_MESSAGE generated message type or google::protobuf::Message |
| 763 | // |
| 764 | // A RepeatedFieldRef object can be copied and the resulted object will point |
| 765 | // to the same repeated field in the same message. The object can be used as |
| 766 | // long as the message is not destroyed. |
| 767 | // |
| 768 | // Note that to use this method users need to include the header file |
| 769 | // "google/protobuf/reflection.h" (which defines the RepeatedFieldRef |
| 770 | // class templates). |
| 771 | template<typename T> |
| 772 | RepeatedFieldRef<T> GetRepeatedFieldRef( |
| 773 | const Message& message, const FieldDescriptor* field) const; |
| 774 | |
| 775 | // Like GetRepeatedFieldRef() but return an object that can also be used |
| 776 | // manipulate the underlying repeated field. |
| 777 | template<typename T> |
| 778 | MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef( |
| 779 | Message* message, const FieldDescriptor* field) const; |
| 780 | |
| 781 | // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field |
| 782 | // access. The following repeated field accesors will be removed in the |
| 783 | // future. |
| 784 | // |
| 785 | // Repeated field accessors ------------------------------------------------- |
| 786 | // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular |
| 787 | // access to the data in a RepeatedField. The methods below provide aggregate |
| 788 | // access by exposing the RepeatedField object itself with the Message. |
| 789 | // Applying these templates to inappropriate types will lead to an undefined |
| 790 | // reference at link time (e.g. GetRepeatedField<***double>), or possibly a |
| 791 | // template matching error at compile time (e.g. GetRepeatedPtrField<File>). |
| 792 | // |
| 793 | // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd); |
| 794 | |
| 795 | // DEPRECATED. Please use GetRepeatedFieldRef(). |
| 796 | // |
| 797 | // for T = Cord and all protobuf scalar types except enums. |
| 798 | template<typename T> |
| 799 | const RepeatedField<T>& GetRepeatedField( |
| 800 | const Message&, const FieldDescriptor*) const; |
| 801 | |
| 802 | // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
| 803 | // |
| 804 | // for T = Cord and all protobuf scalar types except enums. |
| 805 | template<typename T> |
| 806 | RepeatedField<T>* MutableRepeatedField( |
| 807 | Message*, const FieldDescriptor*) const; |
| 808 | |
| 809 | // DEPRECATED. Please use GetRepeatedFieldRef(). |
| 810 | // |
| 811 | // for T = string, google::protobuf::internal::StringPieceField |
| 812 | // google::protobuf::Message & descendants. |
| 813 | template<typename T> |
| 814 | const RepeatedPtrField<T>& GetRepeatedPtrField( |
| 815 | const Message&, const FieldDescriptor*) const; |
| 816 | |
| 817 | // DEPRECATED. Please use GetMutableRepeatedFieldRef(). |
| 818 | // |
| 819 | // for T = string, google::protobuf::internal::StringPieceField |
| 820 | // google::protobuf::Message & descendants. |
| 821 | template<typename T> |
| 822 | RepeatedPtrField<T>* MutableRepeatedPtrField( |
| 823 | Message*, const FieldDescriptor*) const; |
| 824 | |
| 825 | // Extensions ---------------------------------------------------------------- |
| 826 | |
| 827 | // Try to find an extension of this message type by fully-qualified field |
| 828 | // name. Returns NULL if no extension is known for this name or number. |
| 829 | virtual const FieldDescriptor* FindKnownExtensionByName( |
| 830 | const string& name) const = 0; |
| 831 | |
| 832 | // Try to find an extension of this message type by field number. |
| 833 | // Returns NULL if no extension is known for this name or number. |
| 834 | virtual const FieldDescriptor* FindKnownExtensionByNumber( |
| 835 | int number) const = 0; |
| 836 | |
| 837 | // Feature Flags ------------------------------------------------------------- |
| 838 | |
| 839 | // Does this message support storing arbitrary integer values in enum fields? |
| 840 | // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions |
| 841 | // take arbitrary integer values, and the legacy GetEnum() getter will |
| 842 | // dynamically create an EnumValueDescriptor for any integer value without |
| 843 | // one. If |false|, setting an unknown enum value via the integer-based |
| 844 | // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails). |
| 845 | // |
| 846 | // Generic code that uses reflection to handle messages with enum fields |
| 847 | // should check this flag before using the integer-based setter, and either |
| 848 | // downgrade to a compatible value or use the UnknownFieldSet if not. For |
| 849 | // example: |
| 850 | // |
| 851 | // int new_value = GetValueFromApplicationLogic(); |
| 852 | // if (reflection->SupportsUnknownEnumValues()) { |
| 853 | // reflection->SetEnumValue(message, field, new_value); |
| 854 | // } else { |
| 855 | // if (field_descriptor->enum_type()-> |
| 856 | // FindValueByNumver(new_value) != NULL) { |
| 857 | // reflection->SetEnumValue(message, field, new_value); |
| 858 | // } else if (emit_unknown_enum_values) { |
| 859 | // reflection->MutableUnknownFields(message)->AddVarint( |
| 860 | // field->number(), |
| 861 | // new_value); |
| 862 | // } else { |
| 863 | // // convert value to a compatible/default value. |
| 864 | // new_value = CompatibleDowngrade(new_value); |
| 865 | // reflection->SetEnumValue(message, field, new_value); |
| 866 | // } |
| 867 | // } |
| 868 | virtual bool SupportsUnknownEnumValues() const { return false; } |
| 869 | |
| 870 | // Returns the MessageFactory associated with this message. This can be |
| 871 | // useful for determining if a message is a generated message or not, for |
| 872 | // example: |
| 873 | // |
| 874 | // if (message->GetReflection()->GetMessageFactory() == |
| 875 | // google::protobuf::MessageFactory::generated_factory()) { |
| 876 | // // This is a generated message. |
| 877 | // } |
| 878 | // |
| 879 | // It can also be used to create more messages of this type, though |
| 880 | // Message::New() is an easier way to accomplish this. |
| 881 | virtual MessageFactory* GetMessageFactory() const; |
| 882 | |
| 883 | // --------------------------------------------------------------------------- |
| 884 | |
| 885 | protected: |
| 886 | // Obtain a pointer to a Repeated Field Structure and do some type checking: |
| 887 | // on field->cpp_type(), |
| 888 | // on field->field_option().ctype() (if ctype >= 0) |
| 889 | // of field->message_type() (if message_type != NULL). |
| 890 | // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer). |
| 891 | virtual void* MutableRawRepeatedField( |
| 892 | Message* message, const FieldDescriptor* field, FieldDescriptor::CppType, |
| 893 | int ctype, const Descriptor* message_type) const = 0; |
| 894 | |
| 895 | // TODO(jieluo) - make it pure virtual after updating all the subclasses. |
| 896 | virtual const void* GetRawRepeatedField( |
| 897 | const Message& message, const FieldDescriptor* field, |
| 898 | FieldDescriptor::CppType cpptype, int ctype, |
| 899 | const Descriptor* message_type) const { |
| 900 | return MutableRawRepeatedField( |
| 901 | const_cast<Message*>(&message), field, cpptype, ctype, message_type); |
| 902 | } |
| 903 | |
| 904 | // The following methods are used to implement (Mutable)RepeatedFieldRef. |
| 905 | // A Ref object will store a raw pointer to the repeated field data (obtained |
| 906 | // from RepeatedFieldData()) and a pointer to a Accessor (obtained from |
| 907 | // RepeatedFieldAccessor) which will be used to access the raw data. |
| 908 | // |
| 909 | // TODO(xiaofeng): Make these methods pure-virtual. |
| 910 | |
| 911 | // Returns a raw pointer to the repeated field |
| 912 | // |
| 913 | // "cpp_type" and "message_type" are decuded from the type parameter T passed |
| 914 | // to Get(Mutable)RepeatedFieldRef. If T is a generated message type, |
| 915 | // "message_type" should be set to its descriptor. Otherwise "message_type" |
| 916 | // should be set to NULL. Implementations of this method should check whether |
| 917 | // "cpp_type"/"message_type" is consistent with the actual type of the field. |
| 918 | // We use 1 routine rather than 2 (const vs mutable) because it is protected |
| 919 | // and it doesn't change the message. |
| 920 | virtual void* RepeatedFieldData( |
| 921 | Message* message, const FieldDescriptor* field, |
| 922 | FieldDescriptor::CppType cpp_type, |
| 923 | const Descriptor* message_type) const; |
| 924 | |
| 925 | // The returned pointer should point to a singleton instance which implements |
| 926 | // the RepeatedFieldAccessor interface. |
| 927 | virtual const internal::RepeatedFieldAccessor* RepeatedFieldAccessor( |
| 928 | const FieldDescriptor* field) const; |
| 929 | |
| 930 | private: |
| 931 | template<typename T, typename Enable> |
| 932 | friend class RepeatedFieldRef; |
| 933 | template<typename T, typename Enable> |
| 934 | friend class MutableRepeatedFieldRef; |
| 935 | friend class ::google::protobuf::python::MapReflectionFriend; |
| 936 | |
| 937 | // Special version for specialized implementations of string. We can't call |
| 938 | // MutableRawRepeatedField directly here because we don't have access to |
| 939 | // FieldOptions::* which are defined in descriptor.pb.h. Including that |
| 940 | // file here is not possible because it would cause a circular include cycle. |
| 941 | // We use 1 routine rather than 2 (const vs mutable) because it is private |
| 942 | // and mutable a repeated string field doesn't change the message. |
| 943 | void* MutableRawRepeatedString( |
| 944 | Message* message, const FieldDescriptor* field, bool is_string) const; |
| 945 | |
| 946 | friend class MapReflectionTester; |
| 947 | // TODO(jieluo) - make the map APIs pure virtual after updating |
| 948 | // all the subclasses. |
| 949 | // Returns true if key is in map. Returns false if key is not in map field. |
| 950 | virtual bool ContainsMapKey(const Message& /* message*/, |
| 951 | const FieldDescriptor* /* field */, |
| 952 | const MapKey& /* key */) const { |
| 953 | return false; |
| 954 | } |
| 955 | |
| 956 | // If key is in map field: Saves the value pointer to val and returns |
| 957 | // false. If key in not in map field: Insert the key into map, saves |
| 958 | // value pointer to val and retuns true. |
| 959 | virtual bool InsertOrLookupMapValue(Message* /* message */, |
| 960 | const FieldDescriptor* /* field */, |
| 961 | const MapKey& /* key */, |
| 962 | MapValueRef* /* val */) const { |
| 963 | return false; |
| 964 | } |
| 965 | |
| 966 | // Delete and returns true if key is in the map field. Returns false |
| 967 | // otherwise. |
| 968 | virtual bool DeleteMapValue(Message* /* mesage */, |
| 969 | const FieldDescriptor* /* field */, |
| 970 | const MapKey& /* key */) const { |
| 971 | return false; |
| 972 | } |
| 973 | |
| 974 | // Returns a MapIterator referring to the first element in the map field. |
| 975 | // If the map field is empty, this function returns the same as |
| 976 | // reflection::MapEnd. Mutation to the field may invalidate the iterator. |
| 977 | virtual MapIterator MapBegin( |
| 978 | Message* message, |
| 979 | const FieldDescriptor* field) const; |
| 980 | |
| 981 | // Returns a MapIterator referring to the theoretical element that would |
| 982 | // follow the last element in the map field. It does not point to any |
| 983 | // real element. Mutation to the field may invalidate the iterator. |
| 984 | virtual MapIterator MapEnd( |
| 985 | Message* message, |
| 986 | const FieldDescriptor* field) const; |
| 987 | |
| 988 | // Get the number of <key, value> pair of a map field. The result may be |
| 989 | // different from FieldSize which can have duplicate keys. |
| 990 | virtual int MapSize(const Message& /* message */, |
| 991 | const FieldDescriptor* /* field */) const { |
| 992 | return 0; |
| 993 | } |
| 994 | |
| 995 | // Help method for MapIterator. |
| 996 | friend class MapIterator; |
| 997 | virtual internal::MapFieldBase* MapData( |
| 998 | Message* /* message */, const FieldDescriptor* /* field */) const { |
| 999 | return NULL; |
| 1000 | } |
| 1001 | |
| 1002 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); |
| 1003 | }; |
| 1004 | |
| 1005 | // Abstract interface for a factory for message objects. |
| 1006 | class LIBPROTOBUF_EXPORT MessageFactory { |
| 1007 | public: |
| 1008 | inline MessageFactory() {} |
| 1009 | virtual ~MessageFactory(); |
| 1010 | |
| 1011 | // Given a Descriptor, gets or constructs the default (prototype) Message |
| 1012 | // of that type. You can then call that message's New() method to construct |
| 1013 | // a mutable message of that type. |
| 1014 | // |
| 1015 | // Calling this method twice with the same Descriptor returns the same |
| 1016 | // object. The returned object remains property of the factory. Also, any |
| 1017 | // objects created by calling the prototype's New() method share some data |
| 1018 | // with the prototype, so these must be destroyed before the MessageFactory |
| 1019 | // is destroyed. |
| 1020 | // |
| 1021 | // The given descriptor must outlive the returned message, and hence must |
| 1022 | // outlive the MessageFactory. |
| 1023 | // |
| 1024 | // Some implementations do not support all types. GetPrototype() will |
| 1025 | // return NULL if the descriptor passed in is not supported. |
| 1026 | // |
| 1027 | // This method may or may not be thread-safe depending on the implementation. |
| 1028 | // Each implementation should document its own degree thread-safety. |
| 1029 | virtual const Message* GetPrototype(const Descriptor* type) = 0; |
| 1030 | |
| 1031 | // Gets a MessageFactory which supports all generated, compiled-in messages. |
| 1032 | // In other words, for any compiled-in type FooMessage, the following is true: |
| 1033 | // MessageFactory::generated_factory()->GetPrototype( |
| 1034 | // FooMessage::descriptor()) == FooMessage::default_instance() |
| 1035 | // This factory supports all types which are found in |
| 1036 | // DescriptorPool::generated_pool(). If given a descriptor from any other |
| 1037 | // pool, GetPrototype() will return NULL. (You can also check if a |
| 1038 | // descriptor is for a generated message by checking if |
| 1039 | // descriptor->file()->pool() == DescriptorPool::generated_pool().) |
| 1040 | // |
| 1041 | // This factory is 100% thread-safe; calling GetPrototype() does not modify |
| 1042 | // any shared data. |
| 1043 | // |
| 1044 | // This factory is a singleton. The caller must not delete the object. |
| 1045 | static MessageFactory* generated_factory(); |
| 1046 | |
| 1047 | // For internal use only: Registers a .proto file at static initialization |
| 1048 | // time, to be placed in generated_factory. The first time GetPrototype() |
| 1049 | // is called with a descriptor from this file, |register_messages| will be |
| 1050 | // called, with the file name as the parameter. It must call |
| 1051 | // InternalRegisterGeneratedMessage() (below) to register each message type |
| 1052 | // in the file. This strange mechanism is necessary because descriptors are |
| 1053 | // built lazily, so we can't register types by their descriptor until we |
| 1054 | // know that the descriptor exists. |filename| must be a permanent string. |
| 1055 | static void InternalRegisterGeneratedFile( |
| 1056 | const char* filename, void (*register_messages)(const string&)); |
| 1057 | |
| 1058 | // For internal use only: Registers a message type. Called only by the |
| 1059 | // functions which are registered with InternalRegisterGeneratedFile(), |
| 1060 | // above. |
| 1061 | static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, |
| 1062 | const Message* prototype); |
| 1063 | |
| 1064 | |
| 1065 | private: |
| 1066 | GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); |
| 1067 | }; |
| 1068 | |
| 1069 | #define DECLARE_GET_REPEATED_FIELD(TYPE) \ |
| 1070 | template<> \ |
| 1071 | LIBPROTOBUF_EXPORT \ |
| 1072 | const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>( \ |
| 1073 | const Message& message, const FieldDescriptor* field) const; \ |
| 1074 | \ |
| 1075 | template<> \ |
| 1076 | LIBPROTOBUF_EXPORT \ |
| 1077 | RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \ |
| 1078 | Message* message, const FieldDescriptor* field) const; |
| 1079 | |
| 1080 | DECLARE_GET_REPEATED_FIELD(int32) |
| 1081 | DECLARE_GET_REPEATED_FIELD(int64) |
| 1082 | DECLARE_GET_REPEATED_FIELD(uint32) |
| 1083 | DECLARE_GET_REPEATED_FIELD(uint64) |
| 1084 | DECLARE_GET_REPEATED_FIELD(float) |
| 1085 | DECLARE_GET_REPEATED_FIELD(double) |
| 1086 | DECLARE_GET_REPEATED_FIELD(bool) |
| 1087 | |
| 1088 | #undef DECLARE_GET_REPEATED_FIELD |
| 1089 | |
| 1090 | // ============================================================================= |
| 1091 | // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide |
| 1092 | // specializations for <string>, <StringPieceField> and <Message> and handle |
| 1093 | // everything else with the default template which will match any type having |
| 1094 | // a method with signature "static const google::protobuf::Descriptor* descriptor()". |
| 1095 | // Such a type presumably is a descendant of google::protobuf::Message. |
| 1096 | |
| 1097 | template<> |
| 1098 | inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>( |
| 1099 | const Message& message, const FieldDescriptor* field) const { |
| 1100 | return *static_cast<RepeatedPtrField<string>* >( |
| 1101 | MutableRawRepeatedString(const_cast<Message*>(&message), field, true)); |
| 1102 | } |
| 1103 | |
| 1104 | template<> |
| 1105 | inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>( |
| 1106 | Message* message, const FieldDescriptor* field) const { |
| 1107 | return static_cast<RepeatedPtrField<string>* >( |
| 1108 | MutableRawRepeatedString(message, field, true)); |
| 1109 | } |
| 1110 | |
| 1111 | |
| 1112 | // ----- |
| 1113 | |
| 1114 | template<> |
| 1115 | inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField( |
| 1116 | const Message& message, const FieldDescriptor* field) const { |
| 1117 | return *static_cast<const RepeatedPtrField<Message>* >( |
| 1118 | GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, |
| 1119 | -1, NULL)); |
| 1120 | } |
| 1121 | |
| 1122 | template<> |
| 1123 | inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField( |
| 1124 | Message* message, const FieldDescriptor* field) const { |
| 1125 | return static_cast<RepeatedPtrField<Message>* >( |
| 1126 | MutableRawRepeatedField(message, field, |
| 1127 | FieldDescriptor::CPPTYPE_MESSAGE, -1, |
| 1128 | NULL)); |
| 1129 | } |
| 1130 | |
| 1131 | template<typename PB> |
| 1132 | inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField( |
| 1133 | const Message& message, const FieldDescriptor* field) const { |
| 1134 | return *static_cast<const RepeatedPtrField<PB>* >( |
| 1135 | GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, |
| 1136 | -1, PB::default_instance().GetDescriptor())); |
| 1137 | } |
| 1138 | |
| 1139 | template<typename PB> |
| 1140 | inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField( |
| 1141 | Message* message, const FieldDescriptor* field) const { |
| 1142 | return static_cast<RepeatedPtrField<PB>* >( |
| 1143 | MutableRawRepeatedField(message, field, |
| 1144 | FieldDescriptor::CPPTYPE_MESSAGE, -1, |
| 1145 | PB::default_instance().GetDescriptor())); |
| 1146 | } |
| 1147 | } // namespace protobuf |
| 1148 | |
| 1149 | } // namespace google |
| 1150 | #endif // GOOGLE_PROTOBUF_MESSAGE_H__ |