Brian Silverman | 9c614bc | 2016-02-15 20:20:02 -0500 | [diff] [blame^] | 1 | #region Copyright notice and license
|
| 2 | // Protocol Buffers - Google's data interchange format
|
| 3 | // Copyright 2008 Google Inc. All rights reserved.
|
| 4 | // https://developers.google.com/protocol-buffers/
|
| 5 | //
|
| 6 | // Redistribution and use in source and binary forms, with or without
|
| 7 | // modification, are permitted provided that the following conditions are
|
| 8 | // met:
|
| 9 | //
|
| 10 | // * Redistributions of source code must retain the above copyright
|
| 11 | // notice, this list of conditions and the following disclaimer.
|
| 12 | // * Redistributions in binary form must reproduce the above
|
| 13 | // copyright notice, this list of conditions and the following disclaimer
|
| 14 | // in the documentation and/or other materials provided with the
|
| 15 | // distribution.
|
| 16 | // * Neither the name of Google Inc. nor the names of its
|
| 17 | // contributors may be used to endorse or promote products derived from
|
| 18 | // this software without specific prior written permission.
|
| 19 | //
|
| 20 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| 21 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| 22 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| 23 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| 24 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| 25 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| 26 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| 27 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| 28 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| 29 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 30 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 31 | #endregion
|
| 32 |
|
| 33 | using Google.Protobuf.Collections;
|
| 34 | using System;
|
| 35 | using System.Collections.Generic;
|
| 36 | using System.IO;
|
| 37 |
|
| 38 | namespace Google.Protobuf
|
| 39 | {
|
| 40 | /// <summary>
|
| 41 | /// Reads and decodes protocol message fields.
|
| 42 | /// </summary>
|
| 43 | /// <remarks>
|
| 44 | /// <para>
|
| 45 | /// This class is generally used by generated code to read appropriate
|
| 46 | /// primitives from the stream. It effectively encapsulates the lowest
|
| 47 | /// levels of protocol buffer format.
|
| 48 | /// </para>
|
| 49 | /// <para>
|
| 50 | /// Repeated fields and map fields are not handled by this class; use <see cref="RepeatedField{T}"/>
|
| 51 | /// and <see cref="MapField{TKey, TValue}"/> to serialize such fields.
|
| 52 | /// </para>
|
| 53 | /// </remarks>
|
| 54 | public sealed class CodedInputStream
|
| 55 | {
|
| 56 | /// <summary>
|
| 57 | /// Buffer of data read from the stream or provided at construction time.
|
| 58 | /// </summary>
|
| 59 | private readonly byte[] buffer;
|
| 60 |
|
| 61 | /// <summary>
|
| 62 | /// The index of the buffer at which we need to refill from the stream (if there is one).
|
| 63 | /// </summary>
|
| 64 | private int bufferSize;
|
| 65 |
|
| 66 | private int bufferSizeAfterLimit = 0;
|
| 67 | /// <summary>
|
| 68 | /// The position within the current buffer (i.e. the next byte to read)
|
| 69 | /// </summary>
|
| 70 | private int bufferPos = 0;
|
| 71 |
|
| 72 | /// <summary>
|
| 73 | /// The stream to read further input from, or null if the byte array buffer was provided
|
| 74 | /// directly on construction, with no further data available.
|
| 75 | /// </summary>
|
| 76 | private readonly Stream input;
|
| 77 |
|
| 78 | /// <summary>
|
| 79 | /// The last tag we read. 0 indicates we've read to the end of the stream
|
| 80 | /// (or haven't read anything yet).
|
| 81 | /// </summary>
|
| 82 | private uint lastTag = 0;
|
| 83 |
|
| 84 | /// <summary>
|
| 85 | /// The next tag, used to store the value read by PeekTag.
|
| 86 | /// </summary>
|
| 87 | private uint nextTag = 0;
|
| 88 | private bool hasNextTag = false;
|
| 89 |
|
| 90 | internal const int DefaultRecursionLimit = 64;
|
| 91 | internal const int DefaultSizeLimit = 64 << 20; // 64MB
|
| 92 | internal const int BufferSize = 4096;
|
| 93 |
|
| 94 | /// <summary>
|
| 95 | /// The total number of bytes read before the current buffer. The
|
| 96 | /// total bytes read up to the current position can be computed as
|
| 97 | /// totalBytesRetired + bufferPos.
|
| 98 | /// </summary>
|
| 99 | private int totalBytesRetired = 0;
|
| 100 |
|
| 101 | /// <summary>
|
| 102 | /// The absolute position of the end of the current message.
|
| 103 | /// </summary>
|
| 104 | private int currentLimit = int.MaxValue;
|
| 105 |
|
| 106 | private int recursionDepth = 0;
|
| 107 |
|
| 108 | private readonly int recursionLimit;
|
| 109 | private readonly int sizeLimit;
|
| 110 |
|
| 111 | #region Construction
|
| 112 | // Note that the checks are performed such that we don't end up checking obviously-valid things
|
| 113 | // like non-null references for arrays we've just created.
|
| 114 |
|
| 115 | /// <summary>
|
| 116 | /// Creates a new CodedInputStream reading data from the given byte array.
|
| 117 | /// </summary>
|
| 118 | public CodedInputStream(byte[] buffer) : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), 0, buffer.Length)
|
| 119 | {
|
| 120 | }
|
| 121 |
|
| 122 | /// <summary>
|
| 123 | /// Creates a new CodedInputStream that reads from the given byte array slice.
|
| 124 | /// </summary>
|
| 125 | public CodedInputStream(byte[] buffer, int offset, int length)
|
| 126 | : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), offset, offset + length)
|
| 127 | {
|
| 128 | if (offset < 0 || offset > buffer.Length)
|
| 129 | {
|
| 130 | throw new ArgumentOutOfRangeException("offset", "Offset must be within the buffer");
|
| 131 | }
|
| 132 | if (length < 0 || offset + length > buffer.Length)
|
| 133 | {
|
| 134 | throw new ArgumentOutOfRangeException("length", "Length must be non-negative and within the buffer");
|
| 135 | }
|
| 136 | }
|
| 137 |
|
| 138 | /// <summary>
|
| 139 | /// Creates a new CodedInputStream reading data from the given stream.
|
| 140 | /// </summary>
|
| 141 | public CodedInputStream(Stream input) : this(input, new byte[BufferSize], 0, 0)
|
| 142 | {
|
| 143 | ProtoPreconditions.CheckNotNull(input, "input");
|
| 144 | }
|
| 145 |
|
| 146 | /// <summary>
|
| 147 | /// Creates a new CodedInputStream reading data from the given
|
| 148 | /// stream and buffer, using the default limits.
|
| 149 | /// </summary>
|
| 150 | internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize)
|
| 151 | {
|
| 152 | this.input = input;
|
| 153 | this.buffer = buffer;
|
| 154 | this.bufferPos = bufferPos;
|
| 155 | this.bufferSize = bufferSize;
|
| 156 | this.sizeLimit = DefaultSizeLimit;
|
| 157 | this.recursionLimit = DefaultRecursionLimit;
|
| 158 | }
|
| 159 |
|
| 160 | /// <summary>
|
| 161 | /// Creates a new CodedInputStream reading data from the given
|
| 162 | /// stream and buffer, using the specified limits.
|
| 163 | /// </summary>
|
| 164 | /// <remarks>
|
| 165 | /// This chains to the version with the default limits instead of vice versa to avoid
|
| 166 | /// having to check that the default values are valid every time.
|
| 167 | /// </remarks>
|
| 168 | internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit)
|
| 169 | : this(input, buffer, bufferPos, bufferSize)
|
| 170 | {
|
| 171 | if (sizeLimit <= 0)
|
| 172 | {
|
| 173 | throw new ArgumentOutOfRangeException("sizeLimit", "Size limit must be positive");
|
| 174 | }
|
| 175 | if (recursionLimit <= 0)
|
| 176 | {
|
| 177 | throw new ArgumentOutOfRangeException("recursionLimit!", "Recursion limit must be positive");
|
| 178 | }
|
| 179 | this.sizeLimit = sizeLimit;
|
| 180 | this.recursionLimit = recursionLimit;
|
| 181 | }
|
| 182 | #endregion
|
| 183 |
|
| 184 | /// <summary>
|
| 185 | /// Creates a <see cref="CodedInputStream"/> with the specified size and recursion limits, reading
|
| 186 | /// from an input stream.
|
| 187 | /// </summary>
|
| 188 | /// <remarks>
|
| 189 | /// This method exists separately from the constructor to reduce the number of constructor overloads.
|
| 190 | /// It is likely to be used considerably less frequently than the constructors, as the default limits
|
| 191 | /// are suitable for most use cases.
|
| 192 | /// </remarks>
|
| 193 | /// <param name="input">The input stream to read from</param>
|
| 194 | /// <param name="sizeLimit">The total limit of data to read from the stream.</param>
|
| 195 | /// <param name="recursionLimit">The maximum recursion depth to allow while reading.</param>
|
| 196 | /// <returns>A <c>CodedInputStream</c> reading from <paramref name="input"/> with the specified size
|
| 197 | /// and recursion limits.</returns>
|
| 198 | public static CodedInputStream CreateWithLimits(Stream input, int sizeLimit, int recursionLimit)
|
| 199 | {
|
| 200 | return new CodedInputStream(input, new byte[BufferSize], 0, 0, sizeLimit, recursionLimit);
|
| 201 | }
|
| 202 |
|
| 203 | /// <summary>
|
| 204 | /// Returns the current position in the input stream, or the position in the input buffer
|
| 205 | /// </summary>
|
| 206 | public long Position
|
| 207 | {
|
| 208 | get
|
| 209 | {
|
| 210 | if (input != null)
|
| 211 | {
|
| 212 | return input.Position - ((bufferSize + bufferSizeAfterLimit) - bufferPos);
|
| 213 | }
|
| 214 | return bufferPos;
|
| 215 | }
|
| 216 | }
|
| 217 |
|
| 218 | /// <summary>
|
| 219 | /// Returns the last tag read, or 0 if no tags have been read or we've read beyond
|
| 220 | /// the end of the stream.
|
| 221 | /// </summary>
|
| 222 | internal uint LastTag { get { return lastTag; } }
|
| 223 |
|
| 224 | /// <summary>
|
| 225 | /// Returns the size limit for this stream.
|
| 226 | /// </summary>
|
| 227 | /// <remarks>
|
| 228 | /// This limit is applied when reading from the underlying stream, as a sanity check. It is
|
| 229 | /// not applied when reading from a byte array data source without an underlying stream.
|
| 230 | /// The default value is 64MB.
|
| 231 | /// </remarks>
|
| 232 | /// <value>
|
| 233 | /// The size limit.
|
| 234 | /// </value>
|
| 235 | public int SizeLimit { get { return sizeLimit; } }
|
| 236 |
|
| 237 | /// <summary>
|
| 238 | /// Returns the recursion limit for this stream. This limit is applied whilst reading messages,
|
| 239 | /// to avoid maliciously-recursive data.
|
| 240 | /// </summary>
|
| 241 | /// <remarks>
|
| 242 | /// The default limit is 64.
|
| 243 | /// </remarks>
|
| 244 | /// <value>
|
| 245 | /// The recursion limit for this stream.
|
| 246 | /// </value>
|
| 247 | public int RecursionLimit { get { return recursionLimit; } }
|
| 248 |
|
| 249 | #region Validation
|
| 250 | /// <summary>
|
| 251 | /// Verifies that the last call to ReadTag() returned tag 0 - in other words,
|
| 252 | /// we've reached the end of the stream when we expected to.
|
| 253 | /// </summary>
|
| 254 | /// <exception cref="InvalidProtocolBufferException">The
|
| 255 | /// tag read was not the one specified</exception>
|
| 256 | internal void CheckReadEndOfStreamTag()
|
| 257 | {
|
| 258 | if (lastTag != 0)
|
| 259 | {
|
| 260 | throw InvalidProtocolBufferException.MoreDataAvailable();
|
| 261 | }
|
| 262 | }
|
| 263 | #endregion
|
| 264 |
|
| 265 | #region Reading of tags etc
|
| 266 |
|
| 267 | /// <summary>
|
| 268 | /// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the
|
| 269 | /// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the
|
| 270 | /// same value.)
|
| 271 | /// </summary>
|
| 272 | public uint PeekTag()
|
| 273 | {
|
| 274 | if (hasNextTag)
|
| 275 | {
|
| 276 | return nextTag;
|
| 277 | }
|
| 278 |
|
| 279 | uint savedLast = lastTag;
|
| 280 | nextTag = ReadTag();
|
| 281 | hasNextTag = true;
|
| 282 | lastTag = savedLast; // Undo the side effect of ReadTag
|
| 283 | return nextTag;
|
| 284 | }
|
| 285 |
|
| 286 | /// <summary>
|
| 287 | /// Reads a field tag, returning the tag of 0 for "end of stream".
|
| 288 | /// </summary>
|
| 289 | /// <remarks>
|
| 290 | /// If this method returns 0, it doesn't necessarily mean the end of all
|
| 291 | /// the data in this CodedInputStream; it may be the end of the logical stream
|
| 292 | /// for an embedded message, for example.
|
| 293 | /// </remarks>
|
| 294 | /// <returns>The next field tag, or 0 for end of stream. (0 is never a valid tag.)</returns>
|
| 295 | public uint ReadTag()
|
| 296 | {
|
| 297 | if (hasNextTag)
|
| 298 | {
|
| 299 | lastTag = nextTag;
|
| 300 | hasNextTag = false;
|
| 301 | return lastTag;
|
| 302 | }
|
| 303 |
|
| 304 | // Optimize for the incredibly common case of having at least two bytes left in the buffer,
|
| 305 | // and those two bytes being enough to get the tag. This will be true for fields up to 4095.
|
| 306 | if (bufferPos + 2 <= bufferSize)
|
| 307 | {
|
| 308 | int tmp = buffer[bufferPos++];
|
| 309 | if (tmp < 128)
|
| 310 | {
|
| 311 | lastTag = (uint)tmp;
|
| 312 | }
|
| 313 | else
|
| 314 | {
|
| 315 | int result = tmp & 0x7f;
|
| 316 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 317 | {
|
| 318 | result |= tmp << 7;
|
| 319 | lastTag = (uint) result;
|
| 320 | }
|
| 321 | else
|
| 322 | {
|
| 323 | // Nope, rewind and go the potentially slow route.
|
| 324 | bufferPos -= 2;
|
| 325 | lastTag = ReadRawVarint32();
|
| 326 | }
|
| 327 | }
|
| 328 | }
|
| 329 | else
|
| 330 | {
|
| 331 | if (IsAtEnd)
|
| 332 | {
|
| 333 | lastTag = 0;
|
| 334 | return 0; // This is the only case in which we return 0.
|
| 335 | }
|
| 336 |
|
| 337 | lastTag = ReadRawVarint32();
|
| 338 | }
|
| 339 | if (lastTag == 0)
|
| 340 | {
|
| 341 | // If we actually read zero, that's not a valid tag.
|
| 342 | throw InvalidProtocolBufferException.InvalidTag();
|
| 343 | }
|
| 344 | return lastTag;
|
| 345 | }
|
| 346 |
|
| 347 | /// <summary>
|
| 348 | /// Skips the data for the field with the tag we've just read.
|
| 349 | /// This should be called directly after <see cref="ReadTag"/>, when
|
| 350 | /// the caller wishes to skip an unknown field.
|
| 351 | /// </summary>
|
| 352 | public void SkipLastField()
|
| 353 | {
|
| 354 | if (lastTag == 0)
|
| 355 | {
|
| 356 | throw new InvalidOperationException("SkipLastField cannot be called at the end of a stream");
|
| 357 | }
|
| 358 | switch (WireFormat.GetTagWireType(lastTag))
|
| 359 | {
|
| 360 | case WireFormat.WireType.StartGroup:
|
| 361 | SkipGroup();
|
| 362 | break;
|
| 363 | case WireFormat.WireType.EndGroup:
|
| 364 | // Just ignore; there's no data following the tag.
|
| 365 | break;
|
| 366 | case WireFormat.WireType.Fixed32:
|
| 367 | ReadFixed32();
|
| 368 | break;
|
| 369 | case WireFormat.WireType.Fixed64:
|
| 370 | ReadFixed64();
|
| 371 | break;
|
| 372 | case WireFormat.WireType.LengthDelimited:
|
| 373 | var length = ReadLength();
|
| 374 | SkipRawBytes(length);
|
| 375 | break;
|
| 376 | case WireFormat.WireType.Varint:
|
| 377 | ReadRawVarint32();
|
| 378 | break;
|
| 379 | }
|
| 380 | }
|
| 381 |
|
| 382 | private void SkipGroup()
|
| 383 | {
|
| 384 | // Note: Currently we expect this to be the way that groups are read. We could put the recursion
|
| 385 | // depth changes into the ReadTag method instead, potentially...
|
| 386 | recursionDepth++;
|
| 387 | if (recursionDepth >= recursionLimit)
|
| 388 | {
|
| 389 | throw InvalidProtocolBufferException.RecursionLimitExceeded();
|
| 390 | }
|
| 391 | uint tag;
|
| 392 | do
|
| 393 | {
|
| 394 | tag = ReadTag();
|
| 395 | if (tag == 0)
|
| 396 | {
|
| 397 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 398 | }
|
| 399 | // This recursion will allow us to handle nested groups.
|
| 400 | SkipLastField();
|
| 401 | } while (WireFormat.GetTagWireType(tag) != WireFormat.WireType.EndGroup);
|
| 402 | recursionDepth--;
|
| 403 | }
|
| 404 |
|
| 405 | /// <summary>
|
| 406 | /// Reads a double field from the stream.
|
| 407 | /// </summary>
|
| 408 | public double ReadDouble()
|
| 409 | {
|
| 410 | return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64());
|
| 411 | }
|
| 412 |
|
| 413 | /// <summary>
|
| 414 | /// Reads a float field from the stream.
|
| 415 | /// </summary>
|
| 416 | public float ReadFloat()
|
| 417 | {
|
| 418 | if (BitConverter.IsLittleEndian && 4 <= bufferSize - bufferPos)
|
| 419 | {
|
| 420 | float ret = BitConverter.ToSingle(buffer, bufferPos);
|
| 421 | bufferPos += 4;
|
| 422 | return ret;
|
| 423 | }
|
| 424 | else
|
| 425 | {
|
| 426 | byte[] rawBytes = ReadRawBytes(4);
|
| 427 | if (!BitConverter.IsLittleEndian)
|
| 428 | {
|
| 429 | ByteArray.Reverse(rawBytes);
|
| 430 | }
|
| 431 | return BitConverter.ToSingle(rawBytes, 0);
|
| 432 | }
|
| 433 | }
|
| 434 |
|
| 435 | /// <summary>
|
| 436 | /// Reads a uint64 field from the stream.
|
| 437 | /// </summary>
|
| 438 | public ulong ReadUInt64()
|
| 439 | {
|
| 440 | return ReadRawVarint64();
|
| 441 | }
|
| 442 |
|
| 443 | /// <summary>
|
| 444 | /// Reads an int64 field from the stream.
|
| 445 | /// </summary>
|
| 446 | public long ReadInt64()
|
| 447 | {
|
| 448 | return (long) ReadRawVarint64();
|
| 449 | }
|
| 450 |
|
| 451 | /// <summary>
|
| 452 | /// Reads an int32 field from the stream.
|
| 453 | /// </summary>
|
| 454 | public int ReadInt32()
|
| 455 | {
|
| 456 | return (int) ReadRawVarint32();
|
| 457 | }
|
| 458 |
|
| 459 | /// <summary>
|
| 460 | /// Reads a fixed64 field from the stream.
|
| 461 | /// </summary>
|
| 462 | public ulong ReadFixed64()
|
| 463 | {
|
| 464 | return ReadRawLittleEndian64();
|
| 465 | }
|
| 466 |
|
| 467 | /// <summary>
|
| 468 | /// Reads a fixed32 field from the stream.
|
| 469 | /// </summary>
|
| 470 | public uint ReadFixed32()
|
| 471 | {
|
| 472 | return ReadRawLittleEndian32();
|
| 473 | }
|
| 474 |
|
| 475 | /// <summary>
|
| 476 | /// Reads a bool field from the stream.
|
| 477 | /// </summary>
|
| 478 | public bool ReadBool()
|
| 479 | {
|
| 480 | return ReadRawVarint32() != 0;
|
| 481 | }
|
| 482 |
|
| 483 | /// <summary>
|
| 484 | /// Reads a string field from the stream.
|
| 485 | /// </summary>
|
| 486 | public string ReadString()
|
| 487 | {
|
| 488 | int length = ReadLength();
|
| 489 | // No need to read any data for an empty string.
|
| 490 | if (length == 0)
|
| 491 | {
|
| 492 | return "";
|
| 493 | }
|
| 494 | if (length <= bufferSize - bufferPos)
|
| 495 | {
|
| 496 | // Fast path: We already have the bytes in a contiguous buffer, so
|
| 497 | // just copy directly from it.
|
| 498 | String result = CodedOutputStream.Utf8Encoding.GetString(buffer, bufferPos, length);
|
| 499 | bufferPos += length;
|
| 500 | return result;
|
| 501 | }
|
| 502 | // Slow path: Build a byte array first then copy it.
|
| 503 | return CodedOutputStream.Utf8Encoding.GetString(ReadRawBytes(length), 0, length);
|
| 504 | }
|
| 505 |
|
| 506 | /// <summary>
|
| 507 | /// Reads an embedded message field value from the stream.
|
| 508 | /// </summary>
|
| 509 | public void ReadMessage(IMessage builder)
|
| 510 | {
|
| 511 | int length = ReadLength();
|
| 512 | if (recursionDepth >= recursionLimit)
|
| 513 | {
|
| 514 | throw InvalidProtocolBufferException.RecursionLimitExceeded();
|
| 515 | }
|
| 516 | int oldLimit = PushLimit(length);
|
| 517 | ++recursionDepth;
|
| 518 | builder.MergeFrom(this);
|
| 519 | CheckReadEndOfStreamTag();
|
| 520 | // Check that we've read exactly as much data as expected.
|
| 521 | if (!ReachedLimit)
|
| 522 | {
|
| 523 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 524 | }
|
| 525 | --recursionDepth;
|
| 526 | PopLimit(oldLimit);
|
| 527 | }
|
| 528 |
|
| 529 | /// <summary>
|
| 530 | /// Reads a bytes field value from the stream.
|
| 531 | /// </summary>
|
| 532 | public ByteString ReadBytes()
|
| 533 | {
|
| 534 | int length = ReadLength();
|
| 535 | if (length <= bufferSize - bufferPos && length > 0)
|
| 536 | {
|
| 537 | // Fast path: We already have the bytes in a contiguous buffer, so
|
| 538 | // just copy directly from it.
|
| 539 | ByteString result = ByteString.CopyFrom(buffer, bufferPos, length);
|
| 540 | bufferPos += length;
|
| 541 | return result;
|
| 542 | }
|
| 543 | else
|
| 544 | {
|
| 545 | // Slow path: Build a byte array and attach it to a new ByteString.
|
| 546 | return ByteString.AttachBytes(ReadRawBytes(length));
|
| 547 | }
|
| 548 | }
|
| 549 |
|
| 550 | /// <summary>
|
| 551 | /// Reads a uint32 field value from the stream.
|
| 552 | /// </summary>
|
| 553 | public uint ReadUInt32()
|
| 554 | {
|
| 555 | return ReadRawVarint32();
|
| 556 | }
|
| 557 |
|
| 558 | /// <summary>
|
| 559 | /// Reads an enum field value from the stream. If the enum is valid for type T,
|
| 560 | /// then the ref value is set and it returns true. Otherwise the unknown output
|
| 561 | /// value is set and this method returns false.
|
| 562 | /// </summary>
|
| 563 | public int ReadEnum()
|
| 564 | {
|
| 565 | // Currently just a pass-through, but it's nice to separate it logically from WriteInt32.
|
| 566 | return (int) ReadRawVarint32();
|
| 567 | }
|
| 568 |
|
| 569 | /// <summary>
|
| 570 | /// Reads an sfixed32 field value from the stream.
|
| 571 | /// </summary>
|
| 572 | public int ReadSFixed32()
|
| 573 | {
|
| 574 | return (int) ReadRawLittleEndian32();
|
| 575 | }
|
| 576 |
|
| 577 | /// <summary>
|
| 578 | /// Reads an sfixed64 field value from the stream.
|
| 579 | /// </summary>
|
| 580 | public long ReadSFixed64()
|
| 581 | {
|
| 582 | return (long) ReadRawLittleEndian64();
|
| 583 | }
|
| 584 |
|
| 585 | /// <summary>
|
| 586 | /// Reads an sint32 field value from the stream.
|
| 587 | /// </summary>
|
| 588 | public int ReadSInt32()
|
| 589 | {
|
| 590 | return DecodeZigZag32(ReadRawVarint32());
|
| 591 | }
|
| 592 |
|
| 593 | /// <summary>
|
| 594 | /// Reads an sint64 field value from the stream.
|
| 595 | /// </summary>
|
| 596 | public long ReadSInt64()
|
| 597 | {
|
| 598 | return DecodeZigZag64(ReadRawVarint64());
|
| 599 | }
|
| 600 |
|
| 601 | /// <summary>
|
| 602 | /// Reads a length for length-delimited data.
|
| 603 | /// </summary>
|
| 604 | /// <remarks>
|
| 605 | /// This is internally just reading a varint, but this method exists
|
| 606 | /// to make the calling code clearer.
|
| 607 | /// </remarks>
|
| 608 | public int ReadLength()
|
| 609 | {
|
| 610 | return (int) ReadRawVarint32();
|
| 611 | }
|
| 612 |
|
| 613 | /// <summary>
|
| 614 | /// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>,
|
| 615 | /// the tag is consumed and the method returns <c>true</c>; otherwise, the
|
| 616 | /// stream is left in the original position and the method returns <c>false</c>.
|
| 617 | /// </summary>
|
| 618 | public bool MaybeConsumeTag(uint tag)
|
| 619 | {
|
| 620 | if (PeekTag() == tag)
|
| 621 | {
|
| 622 | hasNextTag = false;
|
| 623 | return true;
|
| 624 | }
|
| 625 | return false;
|
| 626 | }
|
| 627 |
|
| 628 | #endregion
|
| 629 |
|
| 630 | #region Underlying reading primitives
|
| 631 |
|
| 632 | /// <summary>
|
| 633 | /// Same code as ReadRawVarint32, but read each byte individually, checking for
|
| 634 | /// buffer overflow.
|
| 635 | /// </summary>
|
| 636 | private uint SlowReadRawVarint32()
|
| 637 | {
|
| 638 | int tmp = ReadRawByte();
|
| 639 | if (tmp < 128)
|
| 640 | {
|
| 641 | return (uint) tmp;
|
| 642 | }
|
| 643 | int result = tmp & 0x7f;
|
| 644 | if ((tmp = ReadRawByte()) < 128)
|
| 645 | {
|
| 646 | result |= tmp << 7;
|
| 647 | }
|
| 648 | else
|
| 649 | {
|
| 650 | result |= (tmp & 0x7f) << 7;
|
| 651 | if ((tmp = ReadRawByte()) < 128)
|
| 652 | {
|
| 653 | result |= tmp << 14;
|
| 654 | }
|
| 655 | else
|
| 656 | {
|
| 657 | result |= (tmp & 0x7f) << 14;
|
| 658 | if ((tmp = ReadRawByte()) < 128)
|
| 659 | {
|
| 660 | result |= tmp << 21;
|
| 661 | }
|
| 662 | else
|
| 663 | {
|
| 664 | result |= (tmp & 0x7f) << 21;
|
| 665 | result |= (tmp = ReadRawByte()) << 28;
|
| 666 | if (tmp >= 128)
|
| 667 | {
|
| 668 | // Discard upper 32 bits.
|
| 669 | for (int i = 0; i < 5; i++)
|
| 670 | {
|
| 671 | if (ReadRawByte() < 128)
|
| 672 | {
|
| 673 | return (uint) result;
|
| 674 | }
|
| 675 | }
|
| 676 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 677 | }
|
| 678 | }
|
| 679 | }
|
| 680 | }
|
| 681 | return (uint) result;
|
| 682 | }
|
| 683 |
|
| 684 | /// <summary>
|
| 685 | /// Reads a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
|
| 686 | /// This method is optimised for the case where we've got lots of data in the buffer.
|
| 687 | /// That means we can check the size just once, then just read directly from the buffer
|
| 688 | /// without constant rechecking of the buffer length.
|
| 689 | /// </summary>
|
| 690 | internal uint ReadRawVarint32()
|
| 691 | {
|
| 692 | if (bufferPos + 5 > bufferSize)
|
| 693 | {
|
| 694 | return SlowReadRawVarint32();
|
| 695 | }
|
| 696 |
|
| 697 | int tmp = buffer[bufferPos++];
|
| 698 | if (tmp < 128)
|
| 699 | {
|
| 700 | return (uint) tmp;
|
| 701 | }
|
| 702 | int result = tmp & 0x7f;
|
| 703 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 704 | {
|
| 705 | result |= tmp << 7;
|
| 706 | }
|
| 707 | else
|
| 708 | {
|
| 709 | result |= (tmp & 0x7f) << 7;
|
| 710 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 711 | {
|
| 712 | result |= tmp << 14;
|
| 713 | }
|
| 714 | else
|
| 715 | {
|
| 716 | result |= (tmp & 0x7f) << 14;
|
| 717 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 718 | {
|
| 719 | result |= tmp << 21;
|
| 720 | }
|
| 721 | else
|
| 722 | {
|
| 723 | result |= (tmp & 0x7f) << 21;
|
| 724 | result |= (tmp = buffer[bufferPos++]) << 28;
|
| 725 | if (tmp >= 128)
|
| 726 | {
|
| 727 | // Discard upper 32 bits.
|
| 728 | // Note that this has to use ReadRawByte() as we only ensure we've
|
| 729 | // got at least 5 bytes at the start of the method. This lets us
|
| 730 | // use the fast path in more cases, and we rarely hit this section of code.
|
| 731 | for (int i = 0; i < 5; i++)
|
| 732 | {
|
| 733 | if (ReadRawByte() < 128)
|
| 734 | {
|
| 735 | return (uint) result;
|
| 736 | }
|
| 737 | }
|
| 738 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 739 | }
|
| 740 | }
|
| 741 | }
|
| 742 | }
|
| 743 | return (uint) result;
|
| 744 | }
|
| 745 |
|
| 746 | /// <summary>
|
| 747 | /// Reads a varint from the input one byte at a time, so that it does not
|
| 748 | /// read any bytes after the end of the varint. If you simply wrapped the
|
| 749 | /// stream in a CodedInputStream and used ReadRawVarint32(Stream)
|
| 750 | /// then you would probably end up reading past the end of the varint since
|
| 751 | /// CodedInputStream buffers its input.
|
| 752 | /// </summary>
|
| 753 | /// <param name="input"></param>
|
| 754 | /// <returns></returns>
|
| 755 | internal static uint ReadRawVarint32(Stream input)
|
| 756 | {
|
| 757 | int result = 0;
|
| 758 | int offset = 0;
|
| 759 | for (; offset < 32; offset += 7)
|
| 760 | {
|
| 761 | int b = input.ReadByte();
|
| 762 | if (b == -1)
|
| 763 | {
|
| 764 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 765 | }
|
| 766 | result |= (b & 0x7f) << offset;
|
| 767 | if ((b & 0x80) == 0)
|
| 768 | {
|
| 769 | return (uint) result;
|
| 770 | }
|
| 771 | }
|
| 772 | // Keep reading up to 64 bits.
|
| 773 | for (; offset < 64; offset += 7)
|
| 774 | {
|
| 775 | int b = input.ReadByte();
|
| 776 | if (b == -1)
|
| 777 | {
|
| 778 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 779 | }
|
| 780 | if ((b & 0x80) == 0)
|
| 781 | {
|
| 782 | return (uint) result;
|
| 783 | }
|
| 784 | }
|
| 785 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 786 | }
|
| 787 |
|
| 788 | /// <summary>
|
| 789 | /// Reads a raw varint from the stream.
|
| 790 | /// </summary>
|
| 791 | internal ulong ReadRawVarint64()
|
| 792 | {
|
| 793 | int shift = 0;
|
| 794 | ulong result = 0;
|
| 795 | while (shift < 64)
|
| 796 | {
|
| 797 | byte b = ReadRawByte();
|
| 798 | result |= (ulong) (b & 0x7F) << shift;
|
| 799 | if ((b & 0x80) == 0)
|
| 800 | {
|
| 801 | return result;
|
| 802 | }
|
| 803 | shift += 7;
|
| 804 | }
|
| 805 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 806 | }
|
| 807 |
|
| 808 | /// <summary>
|
| 809 | /// Reads a 32-bit little-endian integer from the stream.
|
| 810 | /// </summary>
|
| 811 | internal uint ReadRawLittleEndian32()
|
| 812 | {
|
| 813 | uint b1 = ReadRawByte();
|
| 814 | uint b2 = ReadRawByte();
|
| 815 | uint b3 = ReadRawByte();
|
| 816 | uint b4 = ReadRawByte();
|
| 817 | return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24);
|
| 818 | }
|
| 819 |
|
| 820 | /// <summary>
|
| 821 | /// Reads a 64-bit little-endian integer from the stream.
|
| 822 | /// </summary>
|
| 823 | internal ulong ReadRawLittleEndian64()
|
| 824 | {
|
| 825 | ulong b1 = ReadRawByte();
|
| 826 | ulong b2 = ReadRawByte();
|
| 827 | ulong b3 = ReadRawByte();
|
| 828 | ulong b4 = ReadRawByte();
|
| 829 | ulong b5 = ReadRawByte();
|
| 830 | ulong b6 = ReadRawByte();
|
| 831 | ulong b7 = ReadRawByte();
|
| 832 | ulong b8 = ReadRawByte();
|
| 833 | return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24)
|
| 834 | | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56);
|
| 835 | }
|
| 836 |
|
| 837 | /// <summary>
|
| 838 | /// Decode a 32-bit value with ZigZag encoding.
|
| 839 | /// </summary>
|
| 840 | /// <remarks>
|
| 841 | /// ZigZag encodes signed integers into values that can be efficiently
|
| 842 | /// encoded with varint. (Otherwise, negative values must be
|
| 843 | /// sign-extended to 64 bits to be varint encoded, thus always taking
|
| 844 | /// 10 bytes on the wire.)
|
| 845 | /// </remarks>
|
| 846 | internal static int DecodeZigZag32(uint n)
|
| 847 | {
|
| 848 | return (int)(n >> 1) ^ -(int)(n & 1);
|
| 849 | }
|
| 850 |
|
| 851 | /// <summary>
|
| 852 | /// Decode a 32-bit value with ZigZag encoding.
|
| 853 | /// </summary>
|
| 854 | /// <remarks>
|
| 855 | /// ZigZag encodes signed integers into values that can be efficiently
|
| 856 | /// encoded with varint. (Otherwise, negative values must be
|
| 857 | /// sign-extended to 64 bits to be varint encoded, thus always taking
|
| 858 | /// 10 bytes on the wire.)
|
| 859 | /// </remarks>
|
| 860 | internal static long DecodeZigZag64(ulong n)
|
| 861 | {
|
| 862 | return (long)(n >> 1) ^ -(long)(n & 1);
|
| 863 | }
|
| 864 | #endregion
|
| 865 |
|
| 866 | #region Internal reading and buffer management
|
| 867 |
|
| 868 | /// <summary>
|
| 869 | /// Sets currentLimit to (current position) + byteLimit. This is called
|
| 870 | /// when descending into a length-delimited embedded message. The previous
|
| 871 | /// limit is returned.
|
| 872 | /// </summary>
|
| 873 | /// <returns>The old limit.</returns>
|
| 874 | internal int PushLimit(int byteLimit)
|
| 875 | {
|
| 876 | if (byteLimit < 0)
|
| 877 | {
|
| 878 | throw InvalidProtocolBufferException.NegativeSize();
|
| 879 | }
|
| 880 | byteLimit += totalBytesRetired + bufferPos;
|
| 881 | int oldLimit = currentLimit;
|
| 882 | if (byteLimit > oldLimit)
|
| 883 | {
|
| 884 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 885 | }
|
| 886 | currentLimit = byteLimit;
|
| 887 |
|
| 888 | RecomputeBufferSizeAfterLimit();
|
| 889 |
|
| 890 | return oldLimit;
|
| 891 | }
|
| 892 |
|
| 893 | private void RecomputeBufferSizeAfterLimit()
|
| 894 | {
|
| 895 | bufferSize += bufferSizeAfterLimit;
|
| 896 | int bufferEnd = totalBytesRetired + bufferSize;
|
| 897 | if (bufferEnd > currentLimit)
|
| 898 | {
|
| 899 | // Limit is in current buffer.
|
| 900 | bufferSizeAfterLimit = bufferEnd - currentLimit;
|
| 901 | bufferSize -= bufferSizeAfterLimit;
|
| 902 | }
|
| 903 | else
|
| 904 | {
|
| 905 | bufferSizeAfterLimit = 0;
|
| 906 | }
|
| 907 | }
|
| 908 |
|
| 909 | /// <summary>
|
| 910 | /// Discards the current limit, returning the previous limit.
|
| 911 | /// </summary>
|
| 912 | internal void PopLimit(int oldLimit)
|
| 913 | {
|
| 914 | currentLimit = oldLimit;
|
| 915 | RecomputeBufferSizeAfterLimit();
|
| 916 | }
|
| 917 |
|
| 918 | /// <summary>
|
| 919 | /// Returns whether or not all the data before the limit has been read.
|
| 920 | /// </summary>
|
| 921 | /// <returns></returns>
|
| 922 | internal bool ReachedLimit
|
| 923 | {
|
| 924 | get
|
| 925 | {
|
| 926 | if (currentLimit == int.MaxValue)
|
| 927 | {
|
| 928 | return false;
|
| 929 | }
|
| 930 | int currentAbsolutePosition = totalBytesRetired + bufferPos;
|
| 931 | return currentAbsolutePosition >= currentLimit;
|
| 932 | }
|
| 933 | }
|
| 934 |
|
| 935 | /// <summary>
|
| 936 | /// Returns true if the stream has reached the end of the input. This is the
|
| 937 | /// case if either the end of the underlying input source has been reached or
|
| 938 | /// the stream has reached a limit created using PushLimit.
|
| 939 | /// </summary>
|
| 940 | public bool IsAtEnd
|
| 941 | {
|
| 942 | get { return bufferPos == bufferSize && !RefillBuffer(false); }
|
| 943 | }
|
| 944 |
|
| 945 | /// <summary>
|
| 946 | /// Called when buffer is empty to read more bytes from the
|
| 947 | /// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that
|
| 948 | /// either there will be at least one byte in the buffer when it returns
|
| 949 | /// or it will throw an exception. If <paramref name="mustSucceed"/> is false,
|
| 950 | /// RefillBuffer() returns false if no more bytes were available.
|
| 951 | /// </summary>
|
| 952 | /// <param name="mustSucceed"></param>
|
| 953 | /// <returns></returns>
|
| 954 | private bool RefillBuffer(bool mustSucceed)
|
| 955 | {
|
| 956 | if (bufferPos < bufferSize)
|
| 957 | {
|
| 958 | throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty.");
|
| 959 | }
|
| 960 |
|
| 961 | if (totalBytesRetired + bufferSize == currentLimit)
|
| 962 | {
|
| 963 | // Oops, we hit a limit.
|
| 964 | if (mustSucceed)
|
| 965 | {
|
| 966 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 967 | }
|
| 968 | else
|
| 969 | {
|
| 970 | return false;
|
| 971 | }
|
| 972 | }
|
| 973 |
|
| 974 | totalBytesRetired += bufferSize;
|
| 975 |
|
| 976 | bufferPos = 0;
|
| 977 | bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length);
|
| 978 | if (bufferSize < 0)
|
| 979 | {
|
| 980 | throw new InvalidOperationException("Stream.Read returned a negative count");
|
| 981 | }
|
| 982 | if (bufferSize == 0)
|
| 983 | {
|
| 984 | if (mustSucceed)
|
| 985 | {
|
| 986 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 987 | }
|
| 988 | else
|
| 989 | {
|
| 990 | return false;
|
| 991 | }
|
| 992 | }
|
| 993 | else
|
| 994 | {
|
| 995 | RecomputeBufferSizeAfterLimit();
|
| 996 | int totalBytesRead =
|
| 997 | totalBytesRetired + bufferSize + bufferSizeAfterLimit;
|
| 998 | if (totalBytesRead > sizeLimit || totalBytesRead < 0)
|
| 999 | {
|
| 1000 | throw InvalidProtocolBufferException.SizeLimitExceeded();
|
| 1001 | }
|
| 1002 | return true;
|
| 1003 | }
|
| 1004 | }
|
| 1005 |
|
| 1006 | /// <summary>
|
| 1007 | /// Read one byte from the input.
|
| 1008 | /// </summary>
|
| 1009 | /// <exception cref="InvalidProtocolBufferException">
|
| 1010 | /// the end of the stream or the current limit was reached
|
| 1011 | /// </exception>
|
| 1012 | internal byte ReadRawByte()
|
| 1013 | {
|
| 1014 | if (bufferPos == bufferSize)
|
| 1015 | {
|
| 1016 | RefillBuffer(true);
|
| 1017 | }
|
| 1018 | return buffer[bufferPos++];
|
| 1019 | }
|
| 1020 |
|
| 1021 | /// <summary>
|
| 1022 | /// Reads a fixed size of bytes from the input.
|
| 1023 | /// </summary>
|
| 1024 | /// <exception cref="InvalidProtocolBufferException">
|
| 1025 | /// the end of the stream or the current limit was reached
|
| 1026 | /// </exception>
|
| 1027 | internal byte[] ReadRawBytes(int size)
|
| 1028 | {
|
| 1029 | if (size < 0)
|
| 1030 | {
|
| 1031 | throw InvalidProtocolBufferException.NegativeSize();
|
| 1032 | }
|
| 1033 |
|
| 1034 | if (totalBytesRetired + bufferPos + size > currentLimit)
|
| 1035 | {
|
| 1036 | // Read to the end of the stream (up to the current limit) anyway.
|
| 1037 | SkipRawBytes(currentLimit - totalBytesRetired - bufferPos);
|
| 1038 | // Then fail.
|
| 1039 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1040 | }
|
| 1041 |
|
| 1042 | if (size <= bufferSize - bufferPos)
|
| 1043 | {
|
| 1044 | // We have all the bytes we need already.
|
| 1045 | byte[] bytes = new byte[size];
|
| 1046 | ByteArray.Copy(buffer, bufferPos, bytes, 0, size);
|
| 1047 | bufferPos += size;
|
| 1048 | return bytes;
|
| 1049 | }
|
| 1050 | else if (size < buffer.Length)
|
| 1051 | {
|
| 1052 | // Reading more bytes than are in the buffer, but not an excessive number
|
| 1053 | // of bytes. We can safely allocate the resulting array ahead of time.
|
| 1054 |
|
| 1055 | // First copy what we have.
|
| 1056 | byte[] bytes = new byte[size];
|
| 1057 | int pos = bufferSize - bufferPos;
|
| 1058 | ByteArray.Copy(buffer, bufferPos, bytes, 0, pos);
|
| 1059 | bufferPos = bufferSize;
|
| 1060 |
|
| 1061 | // We want to use RefillBuffer() and then copy from the buffer into our
|
| 1062 | // byte array rather than reading directly into our byte array because
|
| 1063 | // the input may be unbuffered.
|
| 1064 | RefillBuffer(true);
|
| 1065 |
|
| 1066 | while (size - pos > bufferSize)
|
| 1067 | {
|
| 1068 | Buffer.BlockCopy(buffer, 0, bytes, pos, bufferSize);
|
| 1069 | pos += bufferSize;
|
| 1070 | bufferPos = bufferSize;
|
| 1071 | RefillBuffer(true);
|
| 1072 | }
|
| 1073 |
|
| 1074 | ByteArray.Copy(buffer, 0, bytes, pos, size - pos);
|
| 1075 | bufferPos = size - pos;
|
| 1076 |
|
| 1077 | return bytes;
|
| 1078 | }
|
| 1079 | else
|
| 1080 | {
|
| 1081 | // The size is very large. For security reasons, we can't allocate the
|
| 1082 | // entire byte array yet. The size comes directly from the input, so a
|
| 1083 | // maliciously-crafted message could provide a bogus very large size in
|
| 1084 | // order to trick the app into allocating a lot of memory. We avoid this
|
| 1085 | // by allocating and reading only a small chunk at a time, so that the
|
| 1086 | // malicious message must actually *be* extremely large to cause
|
| 1087 | // problems. Meanwhile, we limit the allowed size of a message elsewhere.
|
| 1088 |
|
| 1089 | // Remember the buffer markers since we'll have to copy the bytes out of
|
| 1090 | // it later.
|
| 1091 | int originalBufferPos = bufferPos;
|
| 1092 | int originalBufferSize = bufferSize;
|
| 1093 |
|
| 1094 | // Mark the current buffer consumed.
|
| 1095 | totalBytesRetired += bufferSize;
|
| 1096 | bufferPos = 0;
|
| 1097 | bufferSize = 0;
|
| 1098 |
|
| 1099 | // Read all the rest of the bytes we need.
|
| 1100 | int sizeLeft = size - (originalBufferSize - originalBufferPos);
|
| 1101 | List<byte[]> chunks = new List<byte[]>();
|
| 1102 |
|
| 1103 | while (sizeLeft > 0)
|
| 1104 | {
|
| 1105 | byte[] chunk = new byte[Math.Min(sizeLeft, buffer.Length)];
|
| 1106 | int pos = 0;
|
| 1107 | while (pos < chunk.Length)
|
| 1108 | {
|
| 1109 | int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos);
|
| 1110 | if (n <= 0)
|
| 1111 | {
|
| 1112 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1113 | }
|
| 1114 | totalBytesRetired += n;
|
| 1115 | pos += n;
|
| 1116 | }
|
| 1117 | sizeLeft -= chunk.Length;
|
| 1118 | chunks.Add(chunk);
|
| 1119 | }
|
| 1120 |
|
| 1121 | // OK, got everything. Now concatenate it all into one buffer.
|
| 1122 | byte[] bytes = new byte[size];
|
| 1123 |
|
| 1124 | // Start by copying the leftover bytes from this.buffer.
|
| 1125 | int newPos = originalBufferSize - originalBufferPos;
|
| 1126 | ByteArray.Copy(buffer, originalBufferPos, bytes, 0, newPos);
|
| 1127 |
|
| 1128 | // And now all the chunks.
|
| 1129 | foreach (byte[] chunk in chunks)
|
| 1130 | {
|
| 1131 | Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length);
|
| 1132 | newPos += chunk.Length;
|
| 1133 | }
|
| 1134 |
|
| 1135 | // Done.
|
| 1136 | return bytes;
|
| 1137 | }
|
| 1138 | }
|
| 1139 |
|
| 1140 | /// <summary>
|
| 1141 | /// Reads and discards <paramref name="size"/> bytes.
|
| 1142 | /// </summary>
|
| 1143 | /// <exception cref="InvalidProtocolBufferException">the end of the stream
|
| 1144 | /// or the current limit was reached</exception>
|
| 1145 | private void SkipRawBytes(int size)
|
| 1146 | {
|
| 1147 | if (size < 0)
|
| 1148 | {
|
| 1149 | throw InvalidProtocolBufferException.NegativeSize();
|
| 1150 | }
|
| 1151 |
|
| 1152 | if (totalBytesRetired + bufferPos + size > currentLimit)
|
| 1153 | {
|
| 1154 | // Read to the end of the stream anyway.
|
| 1155 | SkipRawBytes(currentLimit - totalBytesRetired - bufferPos);
|
| 1156 | // Then fail.
|
| 1157 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1158 | }
|
| 1159 |
|
| 1160 | if (size <= bufferSize - bufferPos)
|
| 1161 | {
|
| 1162 | // We have all the bytes we need already.
|
| 1163 | bufferPos += size;
|
| 1164 | }
|
| 1165 | else
|
| 1166 | {
|
| 1167 | // Skipping more bytes than are in the buffer. First skip what we have.
|
| 1168 | int pos = bufferSize - bufferPos;
|
| 1169 |
|
| 1170 | // ROK 5/7/2013 Issue #54: should retire all bytes in buffer (bufferSize)
|
| 1171 | // totalBytesRetired += pos;
|
| 1172 | totalBytesRetired += bufferSize;
|
| 1173 |
|
| 1174 | bufferPos = 0;
|
| 1175 | bufferSize = 0;
|
| 1176 |
|
| 1177 | // Then skip directly from the InputStream for the rest.
|
| 1178 | if (pos < size)
|
| 1179 | {
|
| 1180 | if (input == null)
|
| 1181 | {
|
| 1182 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1183 | }
|
| 1184 | SkipImpl(size - pos);
|
| 1185 | totalBytesRetired += size - pos;
|
| 1186 | }
|
| 1187 | }
|
| 1188 | }
|
| 1189 |
|
| 1190 | /// <summary>
|
| 1191 | /// Abstraction of skipping to cope with streams which can't really skip.
|
| 1192 | /// </summary>
|
| 1193 | private void SkipImpl(int amountToSkip)
|
| 1194 | {
|
| 1195 | if (input.CanSeek)
|
| 1196 | {
|
| 1197 | long previousPosition = input.Position;
|
| 1198 | input.Position += amountToSkip;
|
| 1199 | if (input.Position != previousPosition + amountToSkip)
|
| 1200 | {
|
| 1201 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1202 | }
|
| 1203 | }
|
| 1204 | else
|
| 1205 | {
|
| 1206 | byte[] skipBuffer = new byte[Math.Min(1024, amountToSkip)];
|
| 1207 | while (amountToSkip > 0)
|
| 1208 | {
|
| 1209 | int bytesRead = input.Read(skipBuffer, 0, Math.Min(skipBuffer.Length, amountToSkip));
|
| 1210 | if (bytesRead <= 0)
|
| 1211 | {
|
| 1212 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1213 | }
|
| 1214 | amountToSkip -= bytesRead;
|
| 1215 | }
|
| 1216 | }
|
| 1217 | }
|
| 1218 |
|
| 1219 | #endregion
|
| 1220 | }
|
| 1221 | } |