Austin Schuh | 9a24b37 | 2018-01-28 16:12:29 -0800 | [diff] [blame^] | 1 | /************************************************************************************************** |
| 2 | * * |
| 3 | * This file is part of BLASFEO. * |
| 4 | * * |
| 5 | * BLASFEO -- BLAS For Embedded Optimization. * |
| 6 | * Copyright (C) 2016-2017 by Gianluca Frison. * |
| 7 | * Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. * |
| 8 | * All rights reserved. * |
| 9 | * * |
| 10 | * HPMPC is free software; you can redistribute it and/or * |
| 11 | * modify it under the terms of the GNU Lesser General Public * |
| 12 | * License as published by the Free Software Foundation; either * |
| 13 | * version 2.1 of the License, or (at your option) any later version. * |
| 14 | * * |
| 15 | * HPMPC is distributed in the hope that it will be useful, * |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| 18 | * See the GNU Lesser General Public License for more details. * |
| 19 | * * |
| 20 | * You should have received a copy of the GNU Lesser General Public * |
| 21 | * License along with HPMPC; if not, write to the Free Software * |
| 22 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| 23 | * * |
| 24 | * Author: Gianluca Frison, giaf (at) dtu.dk * |
| 25 | * gianluca.frison (at) imtek.uni-freiburg.de * |
| 26 | * * |
| 27 | **************************************************************************************************/ |
| 28 | |
| 29 | #include <math.h> |
| 30 | #include <stdio.h> |
| 31 | |
| 32 | #include <mmintrin.h> |
| 33 | #include <xmmintrin.h> // SSE |
| 34 | #include <emmintrin.h> // SSE2 |
| 35 | #include <pmmintrin.h> // SSE3 |
| 36 | #include <smmintrin.h> // SSE4 |
| 37 | #include <immintrin.h> // AVX |
| 38 | |
| 39 | #include "../../include/blasfeo_common.h" |
| 40 | #include "../../include/blasfeo_d_aux.h" |
| 41 | #include "../../include/blasfeo_d_kernel.h" |
| 42 | |
| 43 | |
| 44 | |
| 45 | void kernel_dgeqrf_4_lib4(int m, double *pD, int sdd, double *dD) |
| 46 | { |
| 47 | int ii, jj, ll; |
| 48 | double alpha, beta, tmp, w1, w2, w3; |
| 49 | const int ps = 4; |
| 50 | // first column |
| 51 | beta = 0.0; |
| 52 | ii = 1; |
| 53 | if(m>1) |
| 54 | { |
| 55 | tmp = pD[1+ps*0]; |
| 56 | beta += tmp*tmp; |
| 57 | if(m>2) |
| 58 | { |
| 59 | tmp = pD[2+ps*0]; |
| 60 | beta += tmp*tmp; |
| 61 | if(m>3) |
| 62 | { |
| 63 | tmp = pD[3+ps*0]; |
| 64 | beta += tmp*tmp; |
| 65 | } |
| 66 | } |
| 67 | } |
| 68 | for(ii=4; ii<m-3; ii+=4) |
| 69 | { |
| 70 | tmp = pD[0+ii*sdd+ps*0]; |
| 71 | beta += tmp*tmp; |
| 72 | tmp = pD[1+ii*sdd+ps*0]; |
| 73 | beta += tmp*tmp; |
| 74 | tmp = pD[2+ii*sdd+ps*0]; |
| 75 | beta += tmp*tmp; |
| 76 | tmp = pD[3+ii*sdd+ps*0]; |
| 77 | beta += tmp*tmp; |
| 78 | } |
| 79 | for(ll=0; ll<m-ii; ll++) |
| 80 | { |
| 81 | tmp = pD[ll+ii*sdd+ps*0]; |
| 82 | beta += tmp*tmp; |
| 83 | } |
| 84 | if(beta==0.0) |
| 85 | { |
| 86 | // tau |
| 87 | dD[0] = 0.0; |
| 88 | } |
| 89 | else |
| 90 | { |
| 91 | alpha = pD[0+ps*0]; |
| 92 | beta += alpha*alpha; |
| 93 | beta = sqrt(beta); |
| 94 | if(alpha>0) |
| 95 | beta = -beta; |
| 96 | // tau0 |
| 97 | dD[0] = (beta-alpha) / beta; |
| 98 | tmp = 1.0 / (alpha-beta); |
| 99 | // compute v0 |
| 100 | pD[0+ps*0] = beta; |
| 101 | ii = 1; |
| 102 | if(m>1) |
| 103 | { |
| 104 | pD[1+ps*0] *= tmp; |
| 105 | if(m>2) |
| 106 | { |
| 107 | pD[2+ps*0] *= tmp; |
| 108 | if(m>3) |
| 109 | { |
| 110 | pD[3+ps*0] *= tmp; |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | for(ii=4; ii<m-3; ii+=4) |
| 115 | { |
| 116 | pD[0+ii*sdd+ps*0] *= tmp; |
| 117 | pD[1+ii*sdd+ps*0] *= tmp; |
| 118 | pD[2+ii*sdd+ps*0] *= tmp; |
| 119 | pD[3+ii*sdd+ps*0] *= tmp; |
| 120 | } |
| 121 | for(ll=0; ll<m-ii; ll++) |
| 122 | { |
| 123 | pD[ll+ii*sdd+ps*0] *= tmp; |
| 124 | } |
| 125 | } |
| 126 | // gemv_t & ger |
| 127 | w1 = pD[0+ps*1]; |
| 128 | w2 = pD[0+ps*2]; |
| 129 | w3 = pD[0+ps*3]; |
| 130 | if(m>1) |
| 131 | { |
| 132 | w1 += pD[1+ps*1] * pD[1+ps*0]; |
| 133 | w2 += pD[1+ps*2] * pD[1+ps*0]; |
| 134 | w3 += pD[1+ps*3] * pD[1+ps*0]; |
| 135 | if(m>2) |
| 136 | { |
| 137 | w1 += pD[2+ps*1] * pD[2+ps*0]; |
| 138 | w2 += pD[2+ps*2] * pD[2+ps*0]; |
| 139 | w3 += pD[2+ps*3] * pD[2+ps*0]; |
| 140 | if(m>3) |
| 141 | { |
| 142 | w1 += pD[3+ps*1] * pD[3+ps*0]; |
| 143 | w2 += pD[3+ps*2] * pD[3+ps*0]; |
| 144 | w3 += pD[3+ps*3] * pD[3+ps*0]; |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | for(ii=4; ii<m-3; ii+=4) |
| 149 | { |
| 150 | w1 += pD[0+ii*sdd+ps*1] * pD[0+ii*sdd+ps*0]; |
| 151 | w2 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*0]; |
| 152 | w3 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*0]; |
| 153 | w1 += pD[1+ii*sdd+ps*1] * pD[1+ii*sdd+ps*0]; |
| 154 | w2 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*0]; |
| 155 | w3 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*0]; |
| 156 | w1 += pD[2+ii*sdd+ps*1] * pD[2+ii*sdd+ps*0]; |
| 157 | w2 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*0]; |
| 158 | w3 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*0]; |
| 159 | w1 += pD[3+ii*sdd+ps*1] * pD[3+ii*sdd+ps*0]; |
| 160 | w2 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*0]; |
| 161 | w3 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*0]; |
| 162 | } |
| 163 | for(ll=0; ll<m-ii; ll++) |
| 164 | { |
| 165 | w1 += pD[ll+ii*sdd+ps*1] * pD[ll+ii*sdd+ps*0]; |
| 166 | w2 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*0]; |
| 167 | w3 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*0]; |
| 168 | } |
| 169 | w1 = - dD[0] * w1; |
| 170 | w2 = - dD[0] * w2; |
| 171 | w3 = - dD[0] * w3; |
| 172 | pD[0+ps*1] += w1; |
| 173 | pD[0+ps*2] += w2; |
| 174 | pD[0+ps*3] += w3; |
| 175 | if(m>1) |
| 176 | { |
| 177 | pD[1+ps*1] += w1 * pD[1+ps*0]; |
| 178 | pD[1+ps*2] += w2 * pD[1+ps*0]; |
| 179 | pD[1+ps*3] += w3 * pD[1+ps*0]; |
| 180 | if(m>2) |
| 181 | { |
| 182 | pD[2+ps*1] += w1 * pD[2+ps*0]; |
| 183 | pD[2+ps*2] += w2 * pD[2+ps*0]; |
| 184 | pD[2+ps*3] += w3 * pD[2+ps*0]; |
| 185 | if(m>3) |
| 186 | { |
| 187 | pD[3+ps*1] += w1 * pD[3+ps*0]; |
| 188 | pD[3+ps*2] += w2 * pD[3+ps*0]; |
| 189 | pD[3+ps*3] += w3 * pD[3+ps*0]; |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | for(ii=4; ii<m-3; ii+=4) |
| 194 | { |
| 195 | pD[0+ii*sdd+ps*1] += w1 * pD[0+ii*sdd+ps*0]; |
| 196 | pD[0+ii*sdd+ps*2] += w2 * pD[0+ii*sdd+ps*0]; |
| 197 | pD[0+ii*sdd+ps*3] += w3 * pD[0+ii*sdd+ps*0]; |
| 198 | pD[1+ii*sdd+ps*1] += w1 * pD[1+ii*sdd+ps*0]; |
| 199 | pD[1+ii*sdd+ps*2] += w2 * pD[1+ii*sdd+ps*0]; |
| 200 | pD[1+ii*sdd+ps*3] += w3 * pD[1+ii*sdd+ps*0]; |
| 201 | pD[2+ii*sdd+ps*1] += w1 * pD[2+ii*sdd+ps*0]; |
| 202 | pD[2+ii*sdd+ps*2] += w2 * pD[2+ii*sdd+ps*0]; |
| 203 | pD[2+ii*sdd+ps*3] += w3 * pD[2+ii*sdd+ps*0]; |
| 204 | pD[3+ii*sdd+ps*1] += w1 * pD[3+ii*sdd+ps*0]; |
| 205 | pD[3+ii*sdd+ps*2] += w2 * pD[3+ii*sdd+ps*0]; |
| 206 | pD[3+ii*sdd+ps*3] += w3 * pD[3+ii*sdd+ps*0]; |
| 207 | } |
| 208 | for(ll=0; ll<m-ii; ll++) |
| 209 | { |
| 210 | pD[ll+ii*sdd+ps*1] += w1 * pD[ll+ii*sdd+ps*0]; |
| 211 | pD[ll+ii*sdd+ps*2] += w2 * pD[ll+ii*sdd+ps*0]; |
| 212 | pD[ll+ii*sdd+ps*3] += w3 * pD[ll+ii*sdd+ps*0]; |
| 213 | } |
| 214 | if(m==1) |
| 215 | return; |
| 216 | // second column |
| 217 | beta = 0.0; |
| 218 | if(m>2) |
| 219 | { |
| 220 | tmp = pD[2+ps*1]; |
| 221 | beta += tmp*tmp; |
| 222 | if(m>3) |
| 223 | { |
| 224 | tmp = pD[3+ps*1]; |
| 225 | beta += tmp*tmp; |
| 226 | } |
| 227 | } |
| 228 | for(ii=4; ii<m-3; ii+=4) |
| 229 | { |
| 230 | tmp = pD[0+ii*sdd+ps*1]; |
| 231 | beta += tmp*tmp; |
| 232 | tmp = pD[1+ii*sdd+ps*1]; |
| 233 | beta += tmp*tmp; |
| 234 | tmp = pD[2+ii*sdd+ps*1]; |
| 235 | beta += tmp*tmp; |
| 236 | tmp = pD[3+ii*sdd+ps*1]; |
| 237 | beta += tmp*tmp; |
| 238 | } |
| 239 | for(ll=0; ll<m-ii; ll++) |
| 240 | { |
| 241 | tmp = pD[ll+ii*sdd+ps*1]; |
| 242 | beta += tmp*tmp; |
| 243 | } |
| 244 | if(beta==0.0) |
| 245 | { |
| 246 | // tau |
| 247 | dD[1] = 0.0; |
| 248 | } |
| 249 | else |
| 250 | { |
| 251 | alpha = pD[1+ps*1]; |
| 252 | beta += alpha*alpha; |
| 253 | beta = sqrt(beta); |
| 254 | if(alpha>0) |
| 255 | beta = -beta; |
| 256 | // tau0 |
| 257 | dD[1] = (beta-alpha) / beta; |
| 258 | tmp = 1.0 / (alpha-beta); |
| 259 | // compute v0 |
| 260 | pD[1+ps*1] = beta; |
| 261 | if(m>2) |
| 262 | { |
| 263 | pD[2+ps*1] *= tmp; |
| 264 | if(m>3) |
| 265 | { |
| 266 | pD[3+ps*1] *= tmp; |
| 267 | } |
| 268 | } |
| 269 | for(ii=4; ii<m-3; ii+=4) |
| 270 | { |
| 271 | pD[0+ii*sdd+ps*1] *= tmp; |
| 272 | pD[1+ii*sdd+ps*1] *= tmp; |
| 273 | pD[2+ii*sdd+ps*1] *= tmp; |
| 274 | pD[3+ii*sdd+ps*1] *= tmp; |
| 275 | } |
| 276 | for(ll=0; ll<m-ii; ll++) |
| 277 | { |
| 278 | pD[ll+ii*sdd+ps*1] *= tmp; |
| 279 | } |
| 280 | } |
| 281 | // gemv_t & ger |
| 282 | w2 = pD[1+ps*2]; |
| 283 | w3 = pD[1+ps*3]; |
| 284 | if(m>2) |
| 285 | { |
| 286 | w2 += pD[2+ps*2] * pD[2+ps*1]; |
| 287 | w3 += pD[2+ps*3] * pD[2+ps*1]; |
| 288 | if(m>3) |
| 289 | { |
| 290 | w2 += pD[3+ps*2] * pD[3+ps*1]; |
| 291 | w3 += pD[3+ps*3] * pD[3+ps*1]; |
| 292 | } |
| 293 | } |
| 294 | for(ii=4; ii<m-3; ii+=4) |
| 295 | { |
| 296 | w2 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*1]; |
| 297 | w3 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*1]; |
| 298 | w2 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*1]; |
| 299 | w3 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*1]; |
| 300 | w2 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*1]; |
| 301 | w3 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*1]; |
| 302 | w2 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*1]; |
| 303 | w3 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*1]; |
| 304 | } |
| 305 | for(ll=0; ll<m-ii; ll++) |
| 306 | { |
| 307 | w2 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*1]; |
| 308 | w3 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*1]; |
| 309 | } |
| 310 | w2 = - dD[1] * w2; |
| 311 | w3 = - dD[1] * w3; |
| 312 | pD[1+ps*2] += w2; |
| 313 | pD[1+ps*3] += w3; |
| 314 | if(m>2) |
| 315 | { |
| 316 | pD[2+ps*2] += w2 * pD[2+ps*1]; |
| 317 | pD[2+ps*3] += w3 * pD[2+ps*1]; |
| 318 | if(m>3) |
| 319 | { |
| 320 | pD[3+ps*2] += w2 * pD[3+ps*1]; |
| 321 | pD[3+ps*3] += w3 * pD[3+ps*1]; |
| 322 | } |
| 323 | } |
| 324 | for(ii=4; ii<m-3; ii+=4) |
| 325 | { |
| 326 | pD[0+ii*sdd+ps*2] += w2 * pD[0+ii*sdd+ps*1]; |
| 327 | pD[0+ii*sdd+ps*3] += w3 * pD[0+ii*sdd+ps*1]; |
| 328 | pD[1+ii*sdd+ps*2] += w2 * pD[1+ii*sdd+ps*1]; |
| 329 | pD[1+ii*sdd+ps*3] += w3 * pD[1+ii*sdd+ps*1]; |
| 330 | pD[2+ii*sdd+ps*2] += w2 * pD[2+ii*sdd+ps*1]; |
| 331 | pD[2+ii*sdd+ps*3] += w3 * pD[2+ii*sdd+ps*1]; |
| 332 | pD[3+ii*sdd+ps*2] += w2 * pD[3+ii*sdd+ps*1]; |
| 333 | pD[3+ii*sdd+ps*3] += w3 * pD[3+ii*sdd+ps*1]; |
| 334 | } |
| 335 | for(ll=0; ll<m-ii; ll++) |
| 336 | { |
| 337 | pD[ll+ii*sdd+ps*2] += w2 * pD[ll+ii*sdd+ps*1]; |
| 338 | pD[ll+ii*sdd+ps*3] += w3 * pD[ll+ii*sdd+ps*1]; |
| 339 | } |
| 340 | if(m==2) |
| 341 | return; |
| 342 | // third column |
| 343 | beta = 0.0; |
| 344 | if(m>3) |
| 345 | { |
| 346 | tmp = pD[3+ps*2]; |
| 347 | beta += tmp*tmp; |
| 348 | } |
| 349 | for(ii=4; ii<m-3; ii+=4) |
| 350 | { |
| 351 | tmp = pD[0+ii*sdd+ps*2]; |
| 352 | beta += tmp*tmp; |
| 353 | tmp = pD[1+ii*sdd+ps*2]; |
| 354 | beta += tmp*tmp; |
| 355 | tmp = pD[2+ii*sdd+ps*2]; |
| 356 | beta += tmp*tmp; |
| 357 | tmp = pD[3+ii*sdd+ps*2]; |
| 358 | beta += tmp*tmp; |
| 359 | } |
| 360 | for(ll=0; ll<m-ii; ll++) |
| 361 | { |
| 362 | tmp = pD[ll+ii*sdd+ps*2]; |
| 363 | beta += tmp*tmp; |
| 364 | } |
| 365 | if(beta==0.0) |
| 366 | { |
| 367 | // tau |
| 368 | dD[2] = 0.0; |
| 369 | } |
| 370 | else |
| 371 | { |
| 372 | alpha = pD[2+ps*2]; |
| 373 | beta += alpha*alpha; |
| 374 | beta = sqrt(beta); |
| 375 | if(alpha>0) |
| 376 | beta = -beta; |
| 377 | // tau0 |
| 378 | dD[2] = (beta-alpha) / beta; |
| 379 | tmp = 1.0 / (alpha-beta); |
| 380 | // compute v0 |
| 381 | pD[2+ps*2] = beta; |
| 382 | if(m>3) |
| 383 | { |
| 384 | pD[3+ps*2] *= tmp; |
| 385 | } |
| 386 | for(ii=4; ii<m-3; ii+=4) |
| 387 | { |
| 388 | pD[0+ii*sdd+ps*2] *= tmp; |
| 389 | pD[1+ii*sdd+ps*2] *= tmp; |
| 390 | pD[2+ii*sdd+ps*2] *= tmp; |
| 391 | pD[3+ii*sdd+ps*2] *= tmp; |
| 392 | } |
| 393 | for(ll=0; ll<m-ii; ll++) |
| 394 | { |
| 395 | pD[ll+ii*sdd+ps*2] *= tmp; |
| 396 | } |
| 397 | } |
| 398 | // gemv_t & ger |
| 399 | w3 = pD[2+ps*3]; |
| 400 | if(m>3) |
| 401 | { |
| 402 | w3 += pD[3+ps*3] * pD[3+ps*2]; |
| 403 | } |
| 404 | for(ii=4; ii<m-3; ii+=4) |
| 405 | { |
| 406 | w3 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*2]; |
| 407 | w3 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*2]; |
| 408 | w3 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*2]; |
| 409 | w3 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*2]; |
| 410 | } |
| 411 | for(ll=0; ll<m-ii; ll++) |
| 412 | { |
| 413 | w3 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*2]; |
| 414 | } |
| 415 | w3 = - dD[2] * w3; |
| 416 | pD[2+ps*3] += w3; |
| 417 | if(m>3) |
| 418 | { |
| 419 | pD[3+ps*3] += w3 * pD[3+ps*2]; |
| 420 | } |
| 421 | for(ii=4; ii<m-3; ii+=4) |
| 422 | { |
| 423 | pD[0+ii*sdd+ps*3] += w3 * pD[0+ii*sdd+ps*2]; |
| 424 | pD[1+ii*sdd+ps*3] += w3 * pD[1+ii*sdd+ps*2]; |
| 425 | pD[2+ii*sdd+ps*3] += w3 * pD[2+ii*sdd+ps*2]; |
| 426 | pD[3+ii*sdd+ps*3] += w3 * pD[3+ii*sdd+ps*2]; |
| 427 | } |
| 428 | for(ll=0; ll<m-ii; ll++) |
| 429 | { |
| 430 | pD[ll+ii*sdd+ps*3] += w3 * pD[ll+ii*sdd+ps*2]; |
| 431 | } |
| 432 | if(m==3) |
| 433 | return; |
| 434 | // fourth column |
| 435 | beta = 0.0; |
| 436 | for(ii=4; ii<m-3; ii+=4) |
| 437 | { |
| 438 | tmp = pD[0+ii*sdd+ps*3]; |
| 439 | beta += tmp*tmp; |
| 440 | tmp = pD[1+ii*sdd+ps*3]; |
| 441 | beta += tmp*tmp; |
| 442 | tmp = pD[2+ii*sdd+ps*3]; |
| 443 | beta += tmp*tmp; |
| 444 | tmp = pD[3+ii*sdd+ps*3]; |
| 445 | beta += tmp*tmp; |
| 446 | } |
| 447 | for(ll=0; ll<m-ii; ll++) |
| 448 | { |
| 449 | tmp = pD[ll+ii*sdd+ps*3]; |
| 450 | beta += tmp*tmp; |
| 451 | } |
| 452 | if(beta==0.0) |
| 453 | { |
| 454 | // tau |
| 455 | dD[3] = 0.0; |
| 456 | } |
| 457 | else |
| 458 | { |
| 459 | alpha = pD[3+ps*3]; |
| 460 | beta += alpha*alpha; |
| 461 | beta = sqrt(beta); |
| 462 | if(alpha>0) |
| 463 | beta = -beta; |
| 464 | // tau0 |
| 465 | dD[3] = (beta-alpha) / beta; |
| 466 | tmp = 1.0 / (alpha-beta); |
| 467 | // compute v0 |
| 468 | pD[3+ps*3] = beta; |
| 469 | for(ii=4; ii<m-3; ii+=4) |
| 470 | { |
| 471 | pD[0+ii*sdd+ps*3] *= tmp; |
| 472 | pD[1+ii*sdd+ps*3] *= tmp; |
| 473 | pD[2+ii*sdd+ps*3] *= tmp; |
| 474 | pD[3+ii*sdd+ps*3] *= tmp; |
| 475 | } |
| 476 | for(ll=0; ll<m-ii; ll++) |
| 477 | { |
| 478 | pD[ll+ii*sdd+ps*3] *= tmp; |
| 479 | } |
| 480 | } |
| 481 | return; |
| 482 | } |
| 483 | |
| 484 | |
| 485 | // unblocked algorithm |
| 486 | void kernel_dgeqrf_vs_lib4(int m, int n, int k, int offD, double *pD, int sdd, double *dD) |
| 487 | { |
| 488 | if(m<=0 | n<=0) |
| 489 | return; |
| 490 | int ii, jj, kk, ll, imax, jmax, jmax0, kmax, kmax0; |
| 491 | const int ps = 4; |
| 492 | imax = k;//m<n ? m : n; |
| 493 | double alpha, beta, tmp, w0; |
| 494 | double *pC00, *pC10, *pC01, *pC11; |
| 495 | int offset; |
| 496 | double *pD0 = pD-offD; |
| 497 | for(ii=0; ii<imax; ii++) |
| 498 | { |
| 499 | pC00 = &pD0[((offD+ii)&(ps-1))+((offD+ii)-((offD+ii)&(ps-1)))*sdd+ii*ps]; |
| 500 | pC10 = &pD0[((offD+ii+1)&(ps-1))+((offD+ii+1)-((offD+ii+1)&(ps-1)))*sdd+ii*ps]; |
| 501 | beta = 0.0; |
| 502 | jmax = m-ii-1; |
| 503 | jmax0 = (ps-((ii+1+offD)&(ps-1)))&(ps-1); |
| 504 | jmax0 = jmax<jmax0 ? jmax : jmax0; |
| 505 | offset = 0; |
| 506 | jj = 0; |
| 507 | if(jmax0>0) |
| 508 | { |
| 509 | for( ; jj<jmax0; jj++) |
| 510 | { |
| 511 | tmp = pC10[0+offset]; |
| 512 | beta += tmp*tmp; |
| 513 | offset += 1; |
| 514 | } |
| 515 | offset += -ps+ps*sdd; |
| 516 | } |
| 517 | for( ; jj<jmax-3; jj+=4) |
| 518 | { |
| 519 | tmp = pC10[0+offset]; |
| 520 | beta += tmp*tmp; |
| 521 | tmp = pC10[1+offset]; |
| 522 | beta += tmp*tmp; |
| 523 | tmp = pC10[2+offset]; |
| 524 | beta += tmp*tmp; |
| 525 | tmp = pC10[3+offset]; |
| 526 | beta += tmp*tmp; |
| 527 | offset += ps*sdd; |
| 528 | } |
| 529 | for(ll=0; ll<jmax-jj; ll++) |
| 530 | { |
| 531 | tmp = pC10[0+offset]; |
| 532 | beta += tmp*tmp; |
| 533 | offset += 1; |
| 534 | } |
| 535 | if(beta==0.0) |
| 536 | { |
| 537 | dD[ii] = 0.0; |
| 538 | } |
| 539 | else |
| 540 | { |
| 541 | alpha = pC00[0]; |
| 542 | beta += alpha*alpha; |
| 543 | beta = sqrt(beta); |
| 544 | if(alpha>0) |
| 545 | beta = -beta; |
| 546 | dD[ii] = (beta-alpha) / beta; |
| 547 | tmp = 1.0 / (alpha-beta); |
| 548 | offset = 0; |
| 549 | jj = 0; |
| 550 | if(jmax0>0) |
| 551 | { |
| 552 | for( ; jj<jmax0; jj++) |
| 553 | { |
| 554 | pC10[0+offset] *= tmp; |
| 555 | offset += 1; |
| 556 | } |
| 557 | offset += -ps+ps*sdd; |
| 558 | } |
| 559 | for( ; jj<jmax-3; jj+=4) |
| 560 | { |
| 561 | pC10[0+offset] *= tmp; |
| 562 | pC10[1+offset] *= tmp; |
| 563 | pC10[2+offset] *= tmp; |
| 564 | pC10[3+offset] *= tmp; |
| 565 | offset += ps*sdd; |
| 566 | } |
| 567 | for(ll=0; ll<jmax-jj; ll++) |
| 568 | { |
| 569 | pC10[0+offset] *= tmp; |
| 570 | offset += 1; |
| 571 | } |
| 572 | pC00[0] = beta; |
| 573 | } |
| 574 | if(ii<n) |
| 575 | { |
| 576 | pC01 = pC00 + ps; |
| 577 | pC11 = pC10 + ps; |
| 578 | kmax = jmax; |
| 579 | kmax0 = jmax0; |
| 580 | jmax = n-ii-1; |
| 581 | jj = 0; |
| 582 | for( ; jj<jmax; jj++) |
| 583 | { |
| 584 | w0 = pC01[0+ps*jj] * 1.0; |
| 585 | offset = 0; |
| 586 | kk = 0; |
| 587 | if(kmax0>0) |
| 588 | { |
| 589 | for( ; kk<kmax0; kk++) |
| 590 | { |
| 591 | w0 += pC11[0+offset+ps*jj] * pC10[0+offset]; |
| 592 | offset += 1; |
| 593 | } |
| 594 | offset += -ps+ps*sdd; |
| 595 | } |
| 596 | for( ; kk<kmax-3; kk+=4) |
| 597 | { |
| 598 | w0 += pC11[0+offset+ps*jj] * pC10[0+offset]; |
| 599 | w0 += pC11[1+offset+ps*jj] * pC10[1+offset]; |
| 600 | w0 += pC11[2+offset+ps*jj] * pC10[2+offset]; |
| 601 | w0 += pC11[3+offset+ps*jj] * pC10[3+offset]; |
| 602 | offset += ps*sdd; |
| 603 | } |
| 604 | for(ll=0; ll<kmax-kk; ll++) |
| 605 | { |
| 606 | w0 += pC11[0+offset+ps*jj] * pC10[0+offset]; |
| 607 | offset += 1; |
| 608 | } |
| 609 | w0 = - dD[ii] * w0; |
| 610 | pC01[0+ps*jj] += w0; |
| 611 | offset = 0; |
| 612 | kk = 0; |
| 613 | if(kmax0>0) |
| 614 | { |
| 615 | for( ; kk<kmax0; kk++) |
| 616 | { |
| 617 | pC11[0+offset+ps*jj] += w0 * pC10[0+offset]; |
| 618 | offset += 1; |
| 619 | } |
| 620 | offset = offset-ps+ps*sdd; |
| 621 | } |
| 622 | for( ; kk<kmax-3; kk+=4) |
| 623 | { |
| 624 | pC11[0+offset+ps*jj] += w0 * pC10[0+offset]; |
| 625 | pC11[1+offset+ps*jj] += w0 * pC10[1+offset]; |
| 626 | pC11[2+offset+ps*jj] += w0 * pC10[2+offset]; |
| 627 | pC11[3+offset+ps*jj] += w0 * pC10[3+offset]; |
| 628 | offset += ps*sdd; |
| 629 | } |
| 630 | for(ll=0; ll<kmax-kk; ll++) |
| 631 | { |
| 632 | pC11[0+offset+ps*jj] += w0 * pC10[0+offset]; |
| 633 | offset += 1; |
| 634 | } |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | return; |
| 639 | } |
| 640 | |
| 641 | |
| 642 | |
| 643 | void kernel_dlarf_4_lib4(int m, int n, double *pD, int sdd, double *dD, double *pC0, int sdc) |
| 644 | { |
| 645 | if(m<=0 | n<=0) |
| 646 | return; |
| 647 | int ii, jj, ll; |
| 648 | const int ps = 4; |
| 649 | double v10, |
| 650 | v20, v21, |
| 651 | v30, v31, v32; |
| 652 | double tmp, d0, d1, d2, d3; |
| 653 | double *pC; |
| 654 | double pT[16];// = {}; |
| 655 | int ldt = 4; |
| 656 | double pW[8];// = {}; |
| 657 | int ldw = 2; |
| 658 | // dot product of v |
| 659 | v10 = 0.0; |
| 660 | v20 = 0.0; |
| 661 | v30 = 0.0; |
| 662 | v21 = 0.0; |
| 663 | v31 = 0.0; |
| 664 | v32 = 0.0; |
| 665 | if(m>1) |
| 666 | { |
| 667 | v10 = 1.0 * pD[1+ps*0]; |
| 668 | if(m>2) |
| 669 | { |
| 670 | v10 += pD[2+ps*1] * pD[2+ps*0]; |
| 671 | v20 = 1.0 * pD[2+ps*0]; |
| 672 | v21 = 1.0 * pD[2+ps*1]; |
| 673 | if(m>3) |
| 674 | { |
| 675 | v10 += pD[3+ps*1] * pD[3+ps*0]; |
| 676 | v20 += pD[3+ps*2] * pD[3+ps*0]; |
| 677 | v21 += pD[3+ps*2] * pD[3+ps*1]; |
| 678 | v30 = 1.0 * pD[3+ps*0]; |
| 679 | v31 = 1.0 * pD[3+ps*1]; |
| 680 | v32 = 1.0 * pD[3+ps*2]; |
| 681 | } |
| 682 | } |
| 683 | } |
| 684 | for(ii=4; ii<m-3; ii+=4) |
| 685 | { |
| 686 | v10 += pD[0+ii*sdd+ps*1] * pD[0+ii*sdd+ps*0]; |
| 687 | v20 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*0]; |
| 688 | v21 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*1]; |
| 689 | v30 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*0]; |
| 690 | v31 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*1]; |
| 691 | v32 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*2]; |
| 692 | v10 += pD[1+ii*sdd+ps*1] * pD[1+ii*sdd+ps*0]; |
| 693 | v20 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*0]; |
| 694 | v21 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*1]; |
| 695 | v30 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*0]; |
| 696 | v31 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*1]; |
| 697 | v32 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*2]; |
| 698 | v10 += pD[2+ii*sdd+ps*1] * pD[2+ii*sdd+ps*0]; |
| 699 | v20 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*0]; |
| 700 | v21 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*1]; |
| 701 | v30 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*0]; |
| 702 | v31 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*1]; |
| 703 | v32 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*2]; |
| 704 | v10 += pD[3+ii*sdd+ps*1] * pD[3+ii*sdd+ps*0]; |
| 705 | v20 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*0]; |
| 706 | v21 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*1]; |
| 707 | v30 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*0]; |
| 708 | v31 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*1]; |
| 709 | v32 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*2]; |
| 710 | } |
| 711 | for(ll=0; ll<m-ii; ll++) |
| 712 | { |
| 713 | v10 += pD[ll+ii*sdd+ps*1] * pD[ll+ii*sdd+ps*0]; |
| 714 | v20 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*0]; |
| 715 | v21 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*1]; |
| 716 | v30 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*0]; |
| 717 | v31 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*1]; |
| 718 | v32 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*2]; |
| 719 | } |
| 720 | // compute lower triangular T containing tau for matrix update |
| 721 | pT[0+ldt*0] = dD[0]; |
| 722 | pT[1+ldt*1] = dD[1]; |
| 723 | pT[2+ldt*2] = dD[2]; |
| 724 | pT[3+ldt*3] = dD[3]; |
| 725 | pT[1+ldt*0] = - dD[1] * (v10*pT[0+ldt*0]); |
| 726 | pT[2+ldt*1] = - dD[2] * (v21*pT[1+ldt*1]); |
| 727 | pT[3+ldt*2] = - dD[3] * (v32*pT[2+ldt*2]); |
| 728 | pT[2+ldt*0] = - dD[2] * (v20*pT[0+ldt*0] + v21*pT[1+ldt*0]); |
| 729 | pT[3+ldt*1] = - dD[3] * (v31*pT[1+ldt*1] + v32*pT[2+ldt*1]); |
| 730 | pT[3+ldt*0] = - dD[3] * (v30*pT[0+ldt*0] + v31*pT[1+ldt*0] + v32*pT[2+ldt*0]); |
| 731 | // downgrade matrix |
| 732 | pW[0] = 0.0; |
| 733 | pW[1] = 0.0; |
| 734 | pW[2] = 0.0; |
| 735 | pW[3] = 0.0; |
| 736 | pW[4] = 0.0; |
| 737 | pW[5] = 0.0; |
| 738 | pW[6] = 0.0; |
| 739 | pW[7] = 0.0; |
| 740 | ii = 0; |
| 741 | for( ; ii<n-1; ii+=2) |
| 742 | { |
| 743 | pC = pC0+ii*ps; |
| 744 | // compute W^T = C^T * V |
| 745 | tmp = pC[0+ps*0]; |
| 746 | pW[0+ldw*0] = tmp; |
| 747 | tmp = pC[0+ps*1]; |
| 748 | pW[1+ldw*0] = tmp; |
| 749 | if(m>1) |
| 750 | { |
| 751 | d0 = pD[1+ps*0]; |
| 752 | tmp = pC[1+ps*0]; |
| 753 | pW[0+ldw*0] += tmp * d0; |
| 754 | pW[0+ldw*1] = tmp; |
| 755 | tmp = pC[1+ps*1]; |
| 756 | pW[1+ldw*0] += tmp * d0; |
| 757 | pW[1+ldw*1] = tmp; |
| 758 | if(m>2) |
| 759 | { |
| 760 | d0 = pD[2+ps*0]; |
| 761 | d1 = pD[2+ps*1]; |
| 762 | tmp = pC[2+ps*0]; |
| 763 | pW[0+ldw*0] += tmp * d0; |
| 764 | pW[0+ldw*1] += tmp * d1; |
| 765 | pW[0+ldw*2] = tmp; |
| 766 | tmp = pC[2+ps*1]; |
| 767 | pW[1+ldw*0] += tmp * d0; |
| 768 | pW[1+ldw*1] += tmp * d1; |
| 769 | pW[1+ldw*2] = tmp; |
| 770 | if(m>3) |
| 771 | { |
| 772 | d0 = pD[3+ps*0]; |
| 773 | d1 = pD[3+ps*1]; |
| 774 | d2 = pD[3+ps*2]; |
| 775 | tmp = pC[3+ps*0]; |
| 776 | pW[0+ldw*0] += tmp * d0; |
| 777 | pW[0+ldw*1] += tmp * d1; |
| 778 | pW[0+ldw*2] += tmp * d2; |
| 779 | pW[0+ldw*3] = tmp; |
| 780 | tmp = pC[3+ps*1]; |
| 781 | pW[1+ldw*0] += tmp * d0; |
| 782 | pW[1+ldw*1] += tmp * d1; |
| 783 | pW[1+ldw*2] += tmp * d2; |
| 784 | pW[1+ldw*3] = tmp; |
| 785 | } |
| 786 | } |
| 787 | } |
| 788 | for(jj=4; jj<m-3; jj+=4) |
| 789 | { |
| 790 | // |
| 791 | d0 = pD[0+jj*sdd+ps*0]; |
| 792 | d1 = pD[0+jj*sdd+ps*1]; |
| 793 | d2 = pD[0+jj*sdd+ps*2]; |
| 794 | d3 = pD[0+jj*sdd+ps*3]; |
| 795 | tmp = pC[0+jj*sdc+ps*0]; |
| 796 | pW[0+ldw*0] += tmp * d0; |
| 797 | pW[0+ldw*1] += tmp * d1; |
| 798 | pW[0+ldw*2] += tmp * d2; |
| 799 | pW[0+ldw*3] += tmp * d3; |
| 800 | tmp = pC[0+jj*sdc+ps*1]; |
| 801 | pW[1+ldw*0] += tmp * d0; |
| 802 | pW[1+ldw*1] += tmp * d1; |
| 803 | pW[1+ldw*2] += tmp * d2; |
| 804 | pW[1+ldw*3] += tmp * d3; |
| 805 | // |
| 806 | d0 = pD[1+jj*sdd+ps*0]; |
| 807 | d1 = pD[1+jj*sdd+ps*1]; |
| 808 | d2 = pD[1+jj*sdd+ps*2]; |
| 809 | d3 = pD[1+jj*sdd+ps*3]; |
| 810 | tmp = pC[1+jj*sdc+ps*0]; |
| 811 | pW[0+ldw*0] += tmp * d0; |
| 812 | pW[0+ldw*1] += tmp * d1; |
| 813 | pW[0+ldw*2] += tmp * d2; |
| 814 | pW[0+ldw*3] += tmp * d3; |
| 815 | tmp = pC[1+jj*sdc+ps*1]; |
| 816 | pW[1+ldw*0] += tmp * d0; |
| 817 | pW[1+ldw*1] += tmp * d1; |
| 818 | pW[1+ldw*2] += tmp * d2; |
| 819 | pW[1+ldw*3] += tmp * d3; |
| 820 | // |
| 821 | d0 = pD[2+jj*sdd+ps*0]; |
| 822 | d1 = pD[2+jj*sdd+ps*1]; |
| 823 | d2 = pD[2+jj*sdd+ps*2]; |
| 824 | d3 = pD[2+jj*sdd+ps*3]; |
| 825 | tmp = pC[2+jj*sdc+ps*0]; |
| 826 | pW[0+ldw*0] += tmp * d0; |
| 827 | pW[0+ldw*1] += tmp * d1; |
| 828 | pW[0+ldw*2] += tmp * d2; |
| 829 | pW[0+ldw*3] += tmp * d3; |
| 830 | tmp = pC[2+jj*sdc+ps*1]; |
| 831 | pW[1+ldw*0] += tmp * d0; |
| 832 | pW[1+ldw*1] += tmp * d1; |
| 833 | pW[1+ldw*2] += tmp * d2; |
| 834 | pW[1+ldw*3] += tmp * d3; |
| 835 | // |
| 836 | d0 = pD[3+jj*sdd+ps*0]; |
| 837 | d1 = pD[3+jj*sdd+ps*1]; |
| 838 | d2 = pD[3+jj*sdd+ps*2]; |
| 839 | d3 = pD[3+jj*sdd+ps*3]; |
| 840 | tmp = pC[3+jj*sdc+ps*0]; |
| 841 | pW[0+ldw*0] += tmp * d0; |
| 842 | pW[0+ldw*1] += tmp * d1; |
| 843 | pW[0+ldw*2] += tmp * d2; |
| 844 | pW[0+ldw*3] += tmp * d3; |
| 845 | tmp = pC[3+jj*sdc+ps*1]; |
| 846 | pW[1+ldw*0] += tmp * d0; |
| 847 | pW[1+ldw*1] += tmp * d1; |
| 848 | pW[1+ldw*2] += tmp * d2; |
| 849 | pW[1+ldw*3] += tmp * d3; |
| 850 | } |
| 851 | for(ll=0; ll<m-jj; ll++) |
| 852 | { |
| 853 | d0 = pD[ll+jj*sdd+ps*0]; |
| 854 | d1 = pD[ll+jj*sdd+ps*1]; |
| 855 | d2 = pD[ll+jj*sdd+ps*2]; |
| 856 | d3 = pD[ll+jj*sdd+ps*3]; |
| 857 | tmp = pC[ll+jj*sdc+ps*0]; |
| 858 | pW[0+ldw*0] += tmp * d0; |
| 859 | pW[0+ldw*1] += tmp * d1; |
| 860 | pW[0+ldw*2] += tmp * d2; |
| 861 | pW[0+ldw*3] += tmp * d3; |
| 862 | tmp = pC[ll+jj*sdc+ps*1]; |
| 863 | pW[1+ldw*0] += tmp * d0; |
| 864 | pW[1+ldw*1] += tmp * d1; |
| 865 | pW[1+ldw*2] += tmp * d2; |
| 866 | pW[1+ldw*3] += tmp * d3; |
| 867 | } |
| 868 | // compute W^T *= T |
| 869 | pW[0+ldw*3] = pT[3+ldt*0]*pW[0+ldw*0] + pT[3+ldt*1]*pW[0+ldw*1] + pT[3+ldt*2]*pW[0+ldw*2] + pT[3+ldt*3]*pW[0+ldw*3]; |
| 870 | pW[1+ldw*3] = pT[3+ldt*0]*pW[1+ldw*0] + pT[3+ldt*1]*pW[1+ldw*1] + pT[3+ldt*2]*pW[1+ldw*2] + pT[3+ldt*3]*pW[1+ldw*3]; |
| 871 | pW[0+ldw*2] = pT[2+ldt*0]*pW[0+ldw*0] + pT[2+ldt*1]*pW[0+ldw*1] + pT[2+ldt*2]*pW[0+ldw*2]; |
| 872 | pW[1+ldw*2] = pT[2+ldt*0]*pW[1+ldw*0] + pT[2+ldt*1]*pW[1+ldw*1] + pT[2+ldt*2]*pW[1+ldw*2]; |
| 873 | pW[0+ldw*1] = pT[1+ldt*0]*pW[0+ldw*0] + pT[1+ldt*1]*pW[0+ldw*1]; |
| 874 | pW[1+ldw*1] = pT[1+ldt*0]*pW[1+ldw*0] + pT[1+ldt*1]*pW[1+ldw*1]; |
| 875 | pW[0+ldw*0] = pT[0+ldt*0]*pW[0+ldw*0]; |
| 876 | pW[1+ldw*0] = pT[0+ldt*0]*pW[1+ldw*0]; |
| 877 | // compute C -= V * W^T |
| 878 | pC[0+ps*0] -= pW[0+ldw*0]; |
| 879 | pC[0+ps*1] -= pW[1+ldw*0]; |
| 880 | if(m>1) |
| 881 | { |
| 882 | pC[1+ps*0] -= pD[1+ps*0]*pW[0+ldw*0] + pW[0+ldw*1]; |
| 883 | pC[1+ps*1] -= pD[1+ps*0]*pW[1+ldw*0] + pW[1+ldw*1]; |
| 884 | if(m>2) |
| 885 | { |
| 886 | pC[2+ps*0] -= pD[2+ps*0]*pW[0+ldw*0] + pD[2+ps*1]*pW[0+ldw*1] + pW[0+ldw*2]; |
| 887 | pC[2+ps*1] -= pD[2+ps*0]*pW[1+ldw*0] + pD[2+ps*1]*pW[1+ldw*1] + pW[1+ldw*2]; |
| 888 | if(m>3) |
| 889 | { |
| 890 | pC[3+ps*0] -= pD[3+ps*0]*pW[0+ldw*0] + pD[3+ps*1]*pW[0+ldw*1] + pD[3+ps*2]*pW[0+ldw*2] + pW[0+ldw*3]; |
| 891 | pC[3+ps*1] -= pD[3+ps*0]*pW[1+ldw*0] + pD[3+ps*1]*pW[1+ldw*1] + pD[3+ps*2]*pW[1+ldw*2] + pW[1+ldw*3]; |
| 892 | } |
| 893 | } |
| 894 | } |
| 895 | for(jj=4; jj<m-3; jj+=4) |
| 896 | { |
| 897 | // |
| 898 | d0 = pD[0+jj*sdd+ps*0]; |
| 899 | d1 = pD[0+jj*sdd+ps*1]; |
| 900 | d2 = pD[0+jj*sdd+ps*2]; |
| 901 | d3 = pD[0+jj*sdd+ps*3]; |
| 902 | pC[0+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 903 | pC[0+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 904 | // |
| 905 | d0 = pD[1+jj*sdd+ps*0]; |
| 906 | d1 = pD[1+jj*sdd+ps*1]; |
| 907 | d2 = pD[1+jj*sdd+ps*2]; |
| 908 | d3 = pD[1+jj*sdd+ps*3]; |
| 909 | pC[1+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 910 | pC[1+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 911 | // |
| 912 | d0 = pD[2+jj*sdd+ps*0]; |
| 913 | d1 = pD[2+jj*sdd+ps*1]; |
| 914 | d2 = pD[2+jj*sdd+ps*2]; |
| 915 | d3 = pD[2+jj*sdd+ps*3]; |
| 916 | pC[2+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 917 | pC[2+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 918 | // |
| 919 | d0 = pD[3+jj*sdd+ps*0]; |
| 920 | d1 = pD[3+jj*sdd+ps*1]; |
| 921 | d2 = pD[3+jj*sdd+ps*2]; |
| 922 | d3 = pD[3+jj*sdd+ps*3]; |
| 923 | pC[3+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 924 | pC[3+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 925 | } |
| 926 | for(ll=0; ll<m-jj; ll++) |
| 927 | { |
| 928 | d0 = pD[ll+jj*sdd+ps*0]; |
| 929 | d1 = pD[ll+jj*sdd+ps*1]; |
| 930 | d2 = pD[ll+jj*sdd+ps*2]; |
| 931 | d3 = pD[ll+jj*sdd+ps*3]; |
| 932 | pC[ll+jj*sdc+ps*0] -= d0*pW[0+ldw*0] + d1*pW[0+ldw*1] + d2*pW[0+ldw*2] + d3*pW[0+ldw*3]; |
| 933 | pC[ll+jj*sdc+ps*1] -= d0*pW[1+ldw*0] + d1*pW[1+ldw*1] + d2*pW[1+ldw*2] + d3*pW[1+ldw*3]; |
| 934 | } |
| 935 | } |
| 936 | for( ; ii<n; ii++) |
| 937 | { |
| 938 | pC = pC0+ii*ps; |
| 939 | // compute W^T = C^T * V |
| 940 | tmp = pC[0+ps*0]; |
| 941 | pW[0+ldw*0] = tmp; |
| 942 | if(m>1) |
| 943 | { |
| 944 | tmp = pC[1+ps*0]; |
| 945 | pW[0+ldw*0] += tmp * pD[1+ps*0]; |
| 946 | pW[0+ldw*1] = tmp; |
| 947 | if(m>2) |
| 948 | { |
| 949 | tmp = pC[2+ps*0]; |
| 950 | pW[0+ldw*0] += tmp * pD[2+ps*0]; |
| 951 | pW[0+ldw*1] += tmp * pD[2+ps*1]; |
| 952 | pW[0+ldw*2] = tmp; |
| 953 | if(m>3) |
| 954 | { |
| 955 | tmp = pC[3+ps*0]; |
| 956 | pW[0+ldw*0] += tmp * pD[3+ps*0]; |
| 957 | pW[0+ldw*1] += tmp * pD[3+ps*1]; |
| 958 | pW[0+ldw*2] += tmp * pD[3+ps*2]; |
| 959 | pW[0+ldw*3] = tmp; |
| 960 | } |
| 961 | } |
| 962 | } |
| 963 | for(jj=4; jj<m-3; jj+=4) |
| 964 | { |
| 965 | tmp = pC[0+jj*sdc+ps*0]; |
| 966 | pW[0+ldw*0] += tmp * pD[0+jj*sdd+ps*0]; |
| 967 | pW[0+ldw*1] += tmp * pD[0+jj*sdd+ps*1]; |
| 968 | pW[0+ldw*2] += tmp * pD[0+jj*sdd+ps*2]; |
| 969 | pW[0+ldw*3] += tmp * pD[0+jj*sdd+ps*3]; |
| 970 | tmp = pC[1+jj*sdc+ps*0]; |
| 971 | pW[0+ldw*0] += tmp * pD[1+jj*sdd+ps*0]; |
| 972 | pW[0+ldw*1] += tmp * pD[1+jj*sdd+ps*1]; |
| 973 | pW[0+ldw*2] += tmp * pD[1+jj*sdd+ps*2]; |
| 974 | pW[0+ldw*3] += tmp * pD[1+jj*sdd+ps*3]; |
| 975 | tmp = pC[2+jj*sdc+ps*0]; |
| 976 | pW[0+ldw*0] += tmp * pD[2+jj*sdd+ps*0]; |
| 977 | pW[0+ldw*1] += tmp * pD[2+jj*sdd+ps*1]; |
| 978 | pW[0+ldw*2] += tmp * pD[2+jj*sdd+ps*2]; |
| 979 | pW[0+ldw*3] += tmp * pD[2+jj*sdd+ps*3]; |
| 980 | tmp = pC[3+jj*sdc+ps*0]; |
| 981 | pW[0+ldw*0] += tmp * pD[3+jj*sdd+ps*0]; |
| 982 | pW[0+ldw*1] += tmp * pD[3+jj*sdd+ps*1]; |
| 983 | pW[0+ldw*2] += tmp * pD[3+jj*sdd+ps*2]; |
| 984 | pW[0+ldw*3] += tmp * pD[3+jj*sdd+ps*3]; |
| 985 | } |
| 986 | for(ll=0; ll<m-jj; ll++) |
| 987 | { |
| 988 | tmp = pC[ll+jj*sdc+ps*0]; |
| 989 | pW[0+ldw*0] += tmp * pD[ll+jj*sdd+ps*0]; |
| 990 | pW[0+ldw*1] += tmp * pD[ll+jj*sdd+ps*1]; |
| 991 | pW[0+ldw*2] += tmp * pD[ll+jj*sdd+ps*2]; |
| 992 | pW[0+ldw*3] += tmp * pD[ll+jj*sdd+ps*3]; |
| 993 | } |
| 994 | // compute W^T *= T |
| 995 | pW[0+ldw*3] = pT[3+ldt*0]*pW[0+ldw*0] + pT[3+ldt*1]*pW[0+ldw*1] + pT[3+ldt*2]*pW[0+ldw*2] + pT[3+ldt*3]*pW[0+ldw*3]; |
| 996 | pW[0+ldw*2] = pT[2+ldt*0]*pW[0+ldw*0] + pT[2+ldt*1]*pW[0+ldw*1] + pT[2+ldt*2]*pW[0+ldw*2]; |
| 997 | pW[0+ldw*1] = pT[1+ldt*0]*pW[0+ldw*0] + pT[1+ldt*1]*pW[0+ldw*1]; |
| 998 | pW[0+ldw*0] = pT[0+ldt*0]*pW[0+ldw*0]; |
| 999 | // compute C -= V * W^T |
| 1000 | pC[0+ps*0] -= pW[0+ldw*0]; |
| 1001 | if(m>1) |
| 1002 | { |
| 1003 | pC[1+ps*0] -= pD[1+ps*0]*pW[0+ldw*0] + pW[0+ldw*1]; |
| 1004 | if(m>2) |
| 1005 | { |
| 1006 | pC[2+ps*0] -= pD[2+ps*0]*pW[0+ldw*0] + pD[2+ps*1]*pW[0+ldw*1] + pW[0+ldw*2]; |
| 1007 | if(m>3) |
| 1008 | { |
| 1009 | pC[3+ps*0] -= pD[3+ps*0]*pW[0+ldw*0] + pD[3+ps*1]*pW[0+ldw*1] + pD[3+ps*2]*pW[0+ldw*2] + pW[0+ldw*3]; |
| 1010 | } |
| 1011 | } |
| 1012 | } |
| 1013 | for(jj=4; jj<m-3; jj+=4) |
| 1014 | { |
| 1015 | pC[0+jj*sdc+ps*0] -= pD[0+jj*sdd+ps*0]*pW[0+ldw*0] + pD[0+jj*sdd+ps*1]*pW[0+ldw*1] + pD[0+jj*sdd+ps*2]*pW[0+ldw*2] + pD[0+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1016 | pC[1+jj*sdc+ps*0] -= pD[1+jj*sdd+ps*0]*pW[0+ldw*0] + pD[1+jj*sdd+ps*1]*pW[0+ldw*1] + pD[1+jj*sdd+ps*2]*pW[0+ldw*2] + pD[1+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1017 | pC[2+jj*sdc+ps*0] -= pD[2+jj*sdd+ps*0]*pW[0+ldw*0] + pD[2+jj*sdd+ps*1]*pW[0+ldw*1] + pD[2+jj*sdd+ps*2]*pW[0+ldw*2] + pD[2+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1018 | pC[3+jj*sdc+ps*0] -= pD[3+jj*sdd+ps*0]*pW[0+ldw*0] + pD[3+jj*sdd+ps*1]*pW[0+ldw*1] + pD[3+jj*sdd+ps*2]*pW[0+ldw*2] + pD[3+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1019 | } |
| 1020 | for(ll=0; ll<m-jj; ll++) |
| 1021 | { |
| 1022 | pC[ll+jj*sdc+ps*0] -= pD[ll+jj*sdd+ps*0]*pW[0+ldw*0] + pD[ll+jj*sdd+ps*1]*pW[0+ldw*1] + pD[ll+jj*sdd+ps*2]*pW[0+ldw*2] + pD[ll+jj*sdd+ps*3]*pW[0+ldw*3]; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | return; |
| 1027 | } |
| 1028 | |
| 1029 | |
| 1030 | |
| 1031 | void kernel_dlarf_t_4_lib4(int m, int n, double *pD, int sdd, double *pVt, double *dD, double *pC0, int sdc, double *pW0) |
| 1032 | { |
| 1033 | if(m<=0 | n<=0) |
| 1034 | return; |
| 1035 | int ii, jj, ll; |
| 1036 | const int ps = 4; |
| 1037 | double v10, |
| 1038 | v20, v21, |
| 1039 | v30, v31, v32; |
| 1040 | double c00, c01, |
| 1041 | c10, c11, |
| 1042 | c20, c21, |
| 1043 | c30, c31; |
| 1044 | double a0, a1, a2, a3, b0, b1; |
| 1045 | double tmp, d0, d1, d2, d3; |
| 1046 | double *pC, *pW; |
| 1047 | double pT[16];// = {}; |
| 1048 | int ldt = 4; |
| 1049 | // dot product of v |
| 1050 | v10 = 0.0; |
| 1051 | v20 = 0.0; |
| 1052 | v30 = 0.0; |
| 1053 | v21 = 0.0; |
| 1054 | v31 = 0.0; |
| 1055 | v32 = 0.0; |
| 1056 | if(m>1) |
| 1057 | { |
| 1058 | v10 = 1.0 * pD[1+ps*0]; |
| 1059 | if(m>2) |
| 1060 | { |
| 1061 | v10 += pD[2+ps*1] * pD[2+ps*0]; |
| 1062 | v20 = 1.0 * pD[2+ps*0]; |
| 1063 | v21 = 1.0 * pD[2+ps*1]; |
| 1064 | if(m>3) |
| 1065 | { |
| 1066 | v10 += pD[3+ps*1] * pD[3+ps*0]; |
| 1067 | v20 += pD[3+ps*2] * pD[3+ps*0]; |
| 1068 | v21 += pD[3+ps*2] * pD[3+ps*1]; |
| 1069 | v30 = 1.0 * pD[3+ps*0]; |
| 1070 | v31 = 1.0 * pD[3+ps*1]; |
| 1071 | v32 = 1.0 * pD[3+ps*2]; |
| 1072 | } |
| 1073 | } |
| 1074 | } |
| 1075 | for(ii=4; ii<m-3; ii+=4) |
| 1076 | { |
| 1077 | v10 += pD[0+ii*sdd+ps*1] * pD[0+ii*sdd+ps*0]; |
| 1078 | v20 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*0]; |
| 1079 | v21 += pD[0+ii*sdd+ps*2] * pD[0+ii*sdd+ps*1]; |
| 1080 | v30 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*0]; |
| 1081 | v31 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*1]; |
| 1082 | v32 += pD[0+ii*sdd+ps*3] * pD[0+ii*sdd+ps*2]; |
| 1083 | v10 += pD[1+ii*sdd+ps*1] * pD[1+ii*sdd+ps*0]; |
| 1084 | v20 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*0]; |
| 1085 | v21 += pD[1+ii*sdd+ps*2] * pD[1+ii*sdd+ps*1]; |
| 1086 | v30 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*0]; |
| 1087 | v31 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*1]; |
| 1088 | v32 += pD[1+ii*sdd+ps*3] * pD[1+ii*sdd+ps*2]; |
| 1089 | v10 += pD[2+ii*sdd+ps*1] * pD[2+ii*sdd+ps*0]; |
| 1090 | v20 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*0]; |
| 1091 | v21 += pD[2+ii*sdd+ps*2] * pD[2+ii*sdd+ps*1]; |
| 1092 | v30 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*0]; |
| 1093 | v31 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*1]; |
| 1094 | v32 += pD[2+ii*sdd+ps*3] * pD[2+ii*sdd+ps*2]; |
| 1095 | v10 += pD[3+ii*sdd+ps*1] * pD[3+ii*sdd+ps*0]; |
| 1096 | v20 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*0]; |
| 1097 | v21 += pD[3+ii*sdd+ps*2] * pD[3+ii*sdd+ps*1]; |
| 1098 | v30 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*0]; |
| 1099 | v31 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*1]; |
| 1100 | v32 += pD[3+ii*sdd+ps*3] * pD[3+ii*sdd+ps*2]; |
| 1101 | } |
| 1102 | for(ll=0; ll<m-ii; ll++) |
| 1103 | { |
| 1104 | v10 += pD[ll+ii*sdd+ps*1] * pD[ll+ii*sdd+ps*0]; |
| 1105 | v20 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*0]; |
| 1106 | v21 += pD[ll+ii*sdd+ps*2] * pD[ll+ii*sdd+ps*1]; |
| 1107 | v30 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*0]; |
| 1108 | v31 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*1]; |
| 1109 | v32 += pD[ll+ii*sdd+ps*3] * pD[ll+ii*sdd+ps*2]; |
| 1110 | } |
| 1111 | // compute lower triangular T containing tau for matrix update |
| 1112 | pT[0+ldt*0] = dD[0]; |
| 1113 | pT[1+ldt*1] = dD[1]; |
| 1114 | pT[2+ldt*2] = dD[2]; |
| 1115 | pT[3+ldt*3] = dD[3]; |
| 1116 | pT[1+ldt*0] = - dD[1] * (v10*pT[0+ldt*0]); |
| 1117 | pT[2+ldt*1] = - dD[2] * (v21*pT[1+ldt*1]); |
| 1118 | pT[3+ldt*2] = - dD[3] * (v32*pT[2+ldt*2]); |
| 1119 | pT[2+ldt*0] = - dD[2] * (v20*pT[0+ldt*0] + v21*pT[1+ldt*0]); |
| 1120 | pT[3+ldt*1] = - dD[3] * (v31*pT[1+ldt*1] + v32*pT[2+ldt*1]); |
| 1121 | pT[3+ldt*0] = - dD[3] * (v30*pT[0+ldt*0] + v31*pT[1+ldt*0] + v32*pT[2+ldt*0]); |
| 1122 | // downgrade matrix |
| 1123 | __m256d |
| 1124 | _w0, _w1, _w2, _w3, _d0, _t0, _tp, _c0, _c1, _c2, _c3, _a0, _b0, _tz; |
| 1125 | |
| 1126 | ii = 0; |
| 1127 | #if 1 |
| 1128 | double alpha = 1.0; |
| 1129 | double beta = 0.0; |
| 1130 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 1131 | for( ; ii<n-11; ii+=12) |
| 1132 | { |
| 1133 | kernel_dgemm_nn_4x12_lib4(m, &alpha, &pVt[0+ps*0], 0, &pC0[0+ps*ii], sdc, &beta, &pW0[0+ps*ii], &pW0[0+ps*ii]); |
| 1134 | } |
| 1135 | #endif |
| 1136 | for( ; ii<n-7; ii+=8) |
| 1137 | { |
| 1138 | kernel_dgemm_nn_4x8_lib4(m, &alpha, &pVt[0+ps*0], 0, &pC0[0+ps*ii], sdc, &beta, &pW0[0+ps*ii], &pW0[0+ps*ii]); |
| 1139 | } |
| 1140 | for( ; ii<n-3; ii+=4) |
| 1141 | { |
| 1142 | kernel_dgemm_nn_4x4_lib4(m, &alpha, &pVt[0+ps*0], 0, &pC0[0+ps*ii], sdc, &beta, &pW0[0+ps*ii], &pW0[0+ps*ii]); |
| 1143 | } |
| 1144 | if(ii<n) |
| 1145 | { |
| 1146 | // kernel_dgemm_nn_4x4_vs_lib4(m, &alpha, &pVt[0+ps*0], 0, &pC0[0+ps*ii], sdc, &beta, &pW0[0+ps*ii], &pW0[0+ps*ii], 4, n-ii); |
| 1147 | kernel_dgemm_nn_4x4_gen_lib4(m, &alpha, &pVt[0+ps*0], 0, &pC0[0+ps*ii], sdc, &beta, 0, &pW0[0+ps*ii], 0, 0, &pW0[0+ps*ii], 0, 0, 4, 0, n-ii); |
| 1148 | } |
| 1149 | #else |
| 1150 | for( ; ii<n-3; ii+=4) |
| 1151 | { |
| 1152 | pW = pW0+ii*ps; |
| 1153 | pC = pC0+ii*ps; |
| 1154 | // compute W^T = C^T * V |
| 1155 | _w0 = _mm256_setzero_pd(); |
| 1156 | _w1 = _mm256_setzero_pd(); |
| 1157 | _w2 = _mm256_setzero_pd(); |
| 1158 | _w3 = _mm256_setzero_pd(); |
| 1159 | for(jj=0; jj<m-3; jj+=4) |
| 1160 | { |
| 1161 | // |
| 1162 | _d0 = _mm256_load_pd( &pVt[0+ps*(0+jj)] ); |
| 1163 | _t0 = _mm256_broadcast_sd( &pC[0+jj*sdc+ps*0] ); |
| 1164 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1165 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1166 | _t0 = _mm256_broadcast_sd( &pC[0+jj*sdc+ps*1] ); |
| 1167 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1168 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1169 | _t0 = _mm256_broadcast_sd( &pC[0+jj*sdc+ps*2] ); |
| 1170 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1171 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1172 | _t0 = _mm256_broadcast_sd( &pC[0+jj*sdc+ps*3] ); |
| 1173 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1174 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1175 | // |
| 1176 | _d0 = _mm256_load_pd( &pVt[0+ps*(1+jj)] ); |
| 1177 | _t0 = _mm256_broadcast_sd( &pC[1+jj*sdc+ps*0] ); |
| 1178 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1179 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1180 | _t0 = _mm256_broadcast_sd( &pC[1+jj*sdc+ps*1] ); |
| 1181 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1182 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1183 | _t0 = _mm256_broadcast_sd( &pC[1+jj*sdc+ps*2] ); |
| 1184 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1185 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1186 | _t0 = _mm256_broadcast_sd( &pC[1+jj*sdc+ps*3] ); |
| 1187 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1188 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1189 | // |
| 1190 | _d0 = _mm256_load_pd( &pVt[0+ps*(2+jj)] ); |
| 1191 | _t0 = _mm256_broadcast_sd( &pC[2+jj*sdc+ps*0] ); |
| 1192 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1193 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1194 | _t0 = _mm256_broadcast_sd( &pC[2+jj*sdc+ps*1] ); |
| 1195 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1196 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1197 | _t0 = _mm256_broadcast_sd( &pC[2+jj*sdc+ps*2] ); |
| 1198 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1199 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1200 | _t0 = _mm256_broadcast_sd( &pC[2+jj*sdc+ps*3] ); |
| 1201 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1202 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1203 | // |
| 1204 | _d0 = _mm256_load_pd( &pVt[0+ps*(3+jj)] ); |
| 1205 | _t0 = _mm256_broadcast_sd( &pC[3+jj*sdc+ps*0] ); |
| 1206 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1207 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1208 | _t0 = _mm256_broadcast_sd( &pC[3+jj*sdc+ps*1] ); |
| 1209 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1210 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1211 | _t0 = _mm256_broadcast_sd( &pC[3+jj*sdc+ps*2] ); |
| 1212 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1213 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1214 | _t0 = _mm256_broadcast_sd( &pC[3+jj*sdc+ps*3] ); |
| 1215 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1216 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1217 | } |
| 1218 | for(ll=0; ll<m-jj; ll++) |
| 1219 | { |
| 1220 | _d0 = _mm256_load_pd( &pVt[0+ps*(ll+jj)] ); |
| 1221 | _t0 = _mm256_broadcast_sd( &pC[ll+jj*sdc+ps*0] ); |
| 1222 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1223 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1224 | _t0 = _mm256_broadcast_sd( &pC[ll+jj*sdc+ps*1] ); |
| 1225 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1226 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1227 | _t0 = _mm256_broadcast_sd( &pC[ll+jj*sdc+ps*2] ); |
| 1228 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1229 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1230 | _t0 = _mm256_broadcast_sd( &pC[ll+jj*sdc+ps*3] ); |
| 1231 | _tp = _mm256_mul_pd( _d0, _t0 ); |
| 1232 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1233 | } |
| 1234 | // TODO mask store |
| 1235 | _mm256_storeu_pd( &pW[0+ps*0], _w0 ); |
| 1236 | _mm256_storeu_pd( &pW[0+ps*1], _w1 ); |
| 1237 | _mm256_storeu_pd( &pW[0+ps*2], _w2 ); |
| 1238 | _mm256_storeu_pd( &pW[0+ps*3], _w3 ); |
| 1239 | } |
| 1240 | for( ; ii<n; ii++) |
| 1241 | { |
| 1242 | pW = pW0+ii*ps; |
| 1243 | pC = pC0+ii*ps; |
| 1244 | // compute W^T = C^T * V |
| 1245 | tmp = pC[0+ps*0]; |
| 1246 | pW[0+ps*0] = tmp; |
| 1247 | if(m>1) |
| 1248 | { |
| 1249 | d0 = pVt[0+ps*1]; |
| 1250 | tmp = pC[1+ps*0]; |
| 1251 | pW[0+ps*0] += d0 * tmp; |
| 1252 | pW[1+ps*0] = tmp; |
| 1253 | if(m>2) |
| 1254 | { |
| 1255 | d0 = pVt[0+ps*2]; |
| 1256 | d1 = pVt[1+ps*2]; |
| 1257 | tmp = pC[2+ps*0]; |
| 1258 | pW[0+ps*0] += d0 * tmp; |
| 1259 | pW[1+ps*0] += d1 * tmp; |
| 1260 | pW[2+ps*0] = tmp; |
| 1261 | if(m>3) |
| 1262 | { |
| 1263 | d0 = pVt[0+ps*3]; |
| 1264 | d1 = pVt[1+ps*3]; |
| 1265 | d2 = pVt[2+ps*3]; |
| 1266 | tmp = pC[3+ps*0]; |
| 1267 | pW[0+ps*0] += d0 * tmp; |
| 1268 | pW[1+ps*0] += d1 * tmp; |
| 1269 | pW[2+ps*0] += d2 * tmp; |
| 1270 | pW[3+ps*0] = tmp; |
| 1271 | } |
| 1272 | } |
| 1273 | } |
| 1274 | for(jj=4; jj<m-3; jj+=4) |
| 1275 | { |
| 1276 | // |
| 1277 | d0 = pVt[0+ps*(0+jj)]; |
| 1278 | d1 = pVt[1+ps*(0+jj)]; |
| 1279 | d2 = pVt[2+ps*(0+jj)]; |
| 1280 | d3 = pVt[3+ps*(0+jj)]; |
| 1281 | tmp = pC[0+jj*sdc+ps*0]; |
| 1282 | pW[0+ps*0] += d0 * tmp; |
| 1283 | pW[1+ps*0] += d1 * tmp; |
| 1284 | pW[2+ps*0] += d2 * tmp; |
| 1285 | pW[3+ps*0] += d3 * tmp; |
| 1286 | // |
| 1287 | d0 = pVt[0+ps*(1+jj)]; |
| 1288 | d1 = pVt[1+ps*(1+jj)]; |
| 1289 | d2 = pVt[2+ps*(1+jj)]; |
| 1290 | d3 = pVt[3+ps*(1+jj)]; |
| 1291 | tmp = pC[1+jj*sdc+ps*0]; |
| 1292 | pW[0+ps*0] += d0 * tmp; |
| 1293 | pW[1+ps*0] += d1 * tmp; |
| 1294 | pW[2+ps*0] += d2 * tmp; |
| 1295 | pW[3+ps*0] += d3 * tmp; |
| 1296 | // |
| 1297 | d0 = pVt[0+ps*(2+jj)]; |
| 1298 | d1 = pVt[1+ps*(2+jj)]; |
| 1299 | d2 = pVt[2+ps*(2+jj)]; |
| 1300 | d3 = pVt[3+ps*(2+jj)]; |
| 1301 | tmp = pC[2+jj*sdc+ps*0]; |
| 1302 | pW[0+ps*0] += d0 * tmp; |
| 1303 | pW[1+ps*0] += d1 * tmp; |
| 1304 | pW[2+ps*0] += d2 * tmp; |
| 1305 | pW[3+ps*0] += d3 * tmp; |
| 1306 | // |
| 1307 | d0 = pVt[0+ps*(3+jj)]; |
| 1308 | d1 = pVt[1+ps*(3+jj)]; |
| 1309 | d2 = pVt[2+ps*(3+jj)]; |
| 1310 | d3 = pVt[3+ps*(3+jj)]; |
| 1311 | tmp = pC[3+jj*sdc+ps*0]; |
| 1312 | pW[0+ps*0] += d0 * tmp; |
| 1313 | pW[1+ps*0] += d1 * tmp; |
| 1314 | pW[2+ps*0] += d2 * tmp; |
| 1315 | pW[3+ps*0] += d3 * tmp; |
| 1316 | } |
| 1317 | for(ll=0; ll<m-jj; ll++) |
| 1318 | { |
| 1319 | d0 = pVt[0+ps*(ll+jj)]; |
| 1320 | d1 = pVt[1+ps*(ll+jj)]; |
| 1321 | d2 = pVt[2+ps*(ll+jj)]; |
| 1322 | d3 = pVt[3+ps*(ll+jj)]; |
| 1323 | tmp = pC[ll+jj*sdc+ps*0]; |
| 1324 | pW[0+ps*0] += d0 * tmp; |
| 1325 | pW[1+ps*0] += d1 * tmp; |
| 1326 | pW[2+ps*0] += d2 * tmp; |
| 1327 | pW[3+ps*0] += d3 * tmp; |
| 1328 | } |
| 1329 | } |
| 1330 | #endif |
| 1331 | |
| 1332 | ii = 0; |
| 1333 | for( ; ii<n-3; ii+=4) |
| 1334 | { |
| 1335 | pW = pW0+ii*ps; |
| 1336 | pC = pC0+ii*ps; |
| 1337 | |
| 1338 | // compute W^T *= T |
| 1339 | _tz = _mm256_setzero_pd(); |
| 1340 | |
| 1341 | _t0 = _mm256_load_pd( &pT[0+ldt*0] ); |
| 1342 | _tp = _mm256_broadcast_sd( &pW[0+ps*0] ); |
| 1343 | _w0 = _mm256_mul_pd( _t0, _tp ); |
| 1344 | _tp = _mm256_broadcast_sd( &pW[0+ps*1] ); |
| 1345 | _w1 = _mm256_mul_pd( _t0, _tp ); |
| 1346 | _tp = _mm256_broadcast_sd( &pW[0+ps*2] ); |
| 1347 | _w2 = _mm256_mul_pd( _t0, _tp ); |
| 1348 | _tp = _mm256_broadcast_sd( &pW[0+ps*3] ); |
| 1349 | _w3 = _mm256_mul_pd( _t0, _tp ); |
| 1350 | |
| 1351 | #if defined(TARGET_X64_INTEL_GASWELL) |
| 1352 | _t0 = _mm256_load_pd( &pT[0+ldt*1] ); |
| 1353 | _t0 = _mm256_blend_pd( _t0, _tz, 0x1 ); |
| 1354 | _tp = _mm256_broadcast_sd( &pW[1+ps*0] ); |
| 1355 | _w0 = _mm256_fmadd_pd( _t0, _tp, _w0 ); |
| 1356 | _tp = _mm256_broadcast_sd( &pW[1+ps*1] ); |
| 1357 | _w1 = _mm256_fmadd_pd( _t0, _tp, _w1 ); |
| 1358 | _tp = _mm256_broadcast_sd( &pW[1+ps*2] ); |
| 1359 | _w2 = _mm256_fmadd_pd( _t0, _tp, _w2 ); |
| 1360 | _tp = _mm256_broadcast_sd( &pW[1+ps*3] ); |
| 1361 | _w3 = _mm256_fmadd_pd( _t0, _tp, _w3 ); |
| 1362 | |
| 1363 | _t0 = _mm256_load_pd( &pT[0+ldt*2] ); |
| 1364 | _t0 = _mm256_blend_pd( _t0, _tz, 0x3 ); |
| 1365 | _tp = _mm256_broadcast_sd( &pW[2+ps*0] ); |
| 1366 | _w0 = _mm256_fmadd_pd( _t0, _tp, _w0 ); |
| 1367 | _tp = _mm256_broadcast_sd( &pW[2+ps*1] ); |
| 1368 | _w1 = _mm256_fmadd_pd( _t0, _tp, _w1 ); |
| 1369 | _tp = _mm256_broadcast_sd( &pW[2+ps*2] ); |
| 1370 | _w2 = _mm256_fmadd_pd( _t0, _tp, _w2 ); |
| 1371 | _tp = _mm256_broadcast_sd( &pW[2+ps*3] ); |
| 1372 | _w3 = _mm256_fmadd_pd( _t0, _tp, _w3 ); |
| 1373 | |
| 1374 | _t0 = _mm256_load_pd( &pT[0+ldt*3] ); |
| 1375 | _t0 = _mm256_blend_pd( _t0, _tz, 0x7 ); |
| 1376 | _tp = _mm256_broadcast_sd( &pW[3+ps*0] ); |
| 1377 | _w0 = _mm256_fmadd_pd( _t0, _tp, _w0 ); |
| 1378 | _tp = _mm256_broadcast_sd( &pW[3+ps*1] ); |
| 1379 | _w1 = _mm256_fmadd_pd( _t0, _tp, _w1 ); |
| 1380 | _tp = _mm256_broadcast_sd( &pW[3+ps*2] ); |
| 1381 | _w2 = _mm256_fmadd_pd( _t0, _tp, _w2 ); |
| 1382 | _tp = _mm256_broadcast_sd( &pW[3+ps*3] ); |
| 1383 | _w3 = _mm256_fmadd_pd( _t0, _tp, _w3 ); |
| 1384 | #else |
| 1385 | _t0 = _mm256_load_pd( &pT[0+ldt*1] ); |
| 1386 | _t0 = _mm256_blend_pd( _t0, _tz, 0x1 ); |
| 1387 | _tp = _mm256_broadcast_sd( &pW[1+ps*0] ); |
| 1388 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1389 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1390 | _tp = _mm256_broadcast_sd( &pW[1+ps*1] ); |
| 1391 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1392 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1393 | _tp = _mm256_broadcast_sd( &pW[1+ps*2] ); |
| 1394 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1395 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1396 | _tp = _mm256_broadcast_sd( &pW[1+ps*3] ); |
| 1397 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1398 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1399 | |
| 1400 | _t0 = _mm256_load_pd( &pT[0+ldt*2] ); |
| 1401 | _t0 = _mm256_blend_pd( _t0, _tz, 0x3 ); |
| 1402 | _tp = _mm256_broadcast_sd( &pW[2+ps*0] ); |
| 1403 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1404 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1405 | _tp = _mm256_broadcast_sd( &pW[2+ps*1] ); |
| 1406 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1407 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1408 | _tp = _mm256_broadcast_sd( &pW[2+ps*2] ); |
| 1409 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1410 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1411 | _tp = _mm256_broadcast_sd( &pW[2+ps*3] ); |
| 1412 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1413 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1414 | |
| 1415 | _t0 = _mm256_load_pd( &pT[0+ldt*3] ); |
| 1416 | _t0 = _mm256_blend_pd( _t0, _tz, 0x7 ); |
| 1417 | _tp = _mm256_broadcast_sd( &pW[3+ps*0] ); |
| 1418 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1419 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1420 | _tp = _mm256_broadcast_sd( &pW[3+ps*1] ); |
| 1421 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1422 | _w1 = _mm256_add_pd( _w1, _tp ); |
| 1423 | _tp = _mm256_broadcast_sd( &pW[3+ps*2] ); |
| 1424 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1425 | _w2 = _mm256_add_pd( _w2, _tp ); |
| 1426 | _tp = _mm256_broadcast_sd( &pW[3+ps*3] ); |
| 1427 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1428 | _w3 = _mm256_add_pd( _w3, _tp ); |
| 1429 | #endif |
| 1430 | |
| 1431 | _mm256_store_pd( &pW[0+ps*0], _w0 ); |
| 1432 | _mm256_store_pd( &pW[0+ps*1], _w1 ); |
| 1433 | _mm256_store_pd( &pW[0+ps*2], _w2 ); |
| 1434 | _mm256_store_pd( &pW[0+ps*3], _w3 ); |
| 1435 | } |
| 1436 | for( ; ii<n; ii++) |
| 1437 | { |
| 1438 | pW = pW0+ii*ps; |
| 1439 | pC = pC0+ii*ps; |
| 1440 | |
| 1441 | // compute W^T *= T |
| 1442 | _tz = _mm256_setzero_pd(); |
| 1443 | |
| 1444 | _t0 = _mm256_load_pd( &pT[0+ldt*0] ); |
| 1445 | _tp = _mm256_broadcast_sd( &pW[0+ps*0] ); |
| 1446 | _w0 = _mm256_mul_pd( _t0, _tp ); |
| 1447 | |
| 1448 | _t0 = _mm256_load_pd( &pT[0+ldt*1] ); |
| 1449 | _t0 = _mm256_blend_pd( _t0, _tz, 0x1 ); |
| 1450 | _tp = _mm256_broadcast_sd( &pW[1+ps*0] ); |
| 1451 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1452 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1453 | |
| 1454 | _t0 = _mm256_load_pd( &pT[0+ldt*2] ); |
| 1455 | _t0 = _mm256_blend_pd( _t0, _tz, 0x3 ); |
| 1456 | _tp = _mm256_broadcast_sd( &pW[2+ps*0] ); |
| 1457 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1458 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1459 | |
| 1460 | _t0 = _mm256_load_pd( &pT[0+ldt*3] ); |
| 1461 | _t0 = _mm256_blend_pd( _t0, _tz, 0x7 ); |
| 1462 | _tp = _mm256_broadcast_sd( &pW[3+ps*0] ); |
| 1463 | _tp = _mm256_mul_pd( _t0, _tp ); |
| 1464 | _w0 = _mm256_add_pd( _w0, _tp ); |
| 1465 | |
| 1466 | _mm256_store_pd( &pW[0+ps*0], _w0 ); |
| 1467 | } |
| 1468 | |
| 1469 | ii = 0; |
| 1470 | for( ; ii<n-3; ii+=4) |
| 1471 | { |
| 1472 | pW = pW0+ii*ps; |
| 1473 | pC = pC0+ii*ps; |
| 1474 | // compute C -= V * W^T |
| 1475 | jj = 0; |
| 1476 | // load |
| 1477 | c00 = pC[0+jj*sdc+ps*0]; |
| 1478 | c10 = pC[1+jj*sdc+ps*0]; |
| 1479 | c20 = pC[2+jj*sdc+ps*0]; |
| 1480 | c30 = pC[3+jj*sdc+ps*0]; |
| 1481 | c01 = pC[0+jj*sdc+ps*1]; |
| 1482 | c11 = pC[1+jj*sdc+ps*1]; |
| 1483 | c21 = pC[2+jj*sdc+ps*1]; |
| 1484 | c31 = pC[3+jj*sdc+ps*1]; |
| 1485 | // rank1 |
| 1486 | a1 = pD[1+jj*sdd+ps*0]; |
| 1487 | a2 = pD[2+jj*sdd+ps*0]; |
| 1488 | a3 = pD[3+jj*sdd+ps*0]; |
| 1489 | b0 = pW[0+ps*0]; |
| 1490 | c00 -= b0; |
| 1491 | c10 -= a1*b0; |
| 1492 | c20 -= a2*b0; |
| 1493 | c30 -= a3*b0; |
| 1494 | b1 = pW[0+ps*1]; |
| 1495 | c01 -= b1; |
| 1496 | c11 -= a1*b1; |
| 1497 | c21 -= a2*b1; |
| 1498 | c31 -= a3*b1; |
| 1499 | // rank2 |
| 1500 | a2 = pD[2+jj*sdd+ps*1]; |
| 1501 | a3 = pD[3+jj*sdd+ps*1]; |
| 1502 | b0 = pW[1+ps*0]; |
| 1503 | c10 -= b0; |
| 1504 | c20 -= a2*b0; |
| 1505 | c30 -= a3*b0; |
| 1506 | b1 = pW[1+ps*1]; |
| 1507 | c11 -= b1; |
| 1508 | c21 -= a2*b1; |
| 1509 | c31 -= a3*b1; |
| 1510 | // rank3 |
| 1511 | a3 = pD[3+jj*sdd+ps*2]; |
| 1512 | b0 = pW[2+ps*0]; |
| 1513 | c20 -= b0; |
| 1514 | c30 -= a3*b0; |
| 1515 | b1 = pW[2+ps*1]; |
| 1516 | c21 -= b1; |
| 1517 | c31 -= a3*b1; |
| 1518 | // rank4 |
| 1519 | a3 = pD[3+jj*sdd+ps*3]; |
| 1520 | b0 = pW[3+ps*0]; |
| 1521 | c30 -= b0; |
| 1522 | b1 = pW[3+ps*1]; |
| 1523 | c31 -= b1; |
| 1524 | // store |
| 1525 | pC[0+jj*sdc+ps*0] = c00; |
| 1526 | pC[0+jj*sdc+ps*1] = c01; |
| 1527 | if(m>1) |
| 1528 | { |
| 1529 | pC[1+jj*sdc+ps*0] = c10; |
| 1530 | pC[1+jj*sdc+ps*1] = c11; |
| 1531 | if(m>2) |
| 1532 | { |
| 1533 | pC[2+jj*sdc+ps*0] = c20; |
| 1534 | pC[2+jj*sdc+ps*1] = c21; |
| 1535 | if(m>3) |
| 1536 | { |
| 1537 | pC[3+jj*sdc+ps*0] = c30; |
| 1538 | pC[3+jj*sdc+ps*1] = c31; |
| 1539 | } |
| 1540 | } |
| 1541 | } |
| 1542 | // load |
| 1543 | c00 = pC[0+jj*sdc+ps*2]; |
| 1544 | c10 = pC[1+jj*sdc+ps*2]; |
| 1545 | c20 = pC[2+jj*sdc+ps*2]; |
| 1546 | c30 = pC[3+jj*sdc+ps*2]; |
| 1547 | c01 = pC[0+jj*sdc+ps*3]; |
| 1548 | c11 = pC[1+jj*sdc+ps*3]; |
| 1549 | c21 = pC[2+jj*sdc+ps*3]; |
| 1550 | c31 = pC[3+jj*sdc+ps*3]; |
| 1551 | // rank1 |
| 1552 | a1 = pD[1+jj*sdd+ps*0]; |
| 1553 | a2 = pD[2+jj*sdd+ps*0]; |
| 1554 | a3 = pD[3+jj*sdd+ps*0]; |
| 1555 | b0 = pW[0+ps*2]; |
| 1556 | c00 -= b0; |
| 1557 | c10 -= a1*b0; |
| 1558 | c20 -= a2*b0; |
| 1559 | c30 -= a3*b0; |
| 1560 | b1 = pW[0+ps*3]; |
| 1561 | c01 -= b1; |
| 1562 | c11 -= a1*b1; |
| 1563 | c21 -= a2*b1; |
| 1564 | c31 -= a3*b1; |
| 1565 | // rank2 |
| 1566 | a2 = pD[2+jj*sdd+ps*1]; |
| 1567 | a3 = pD[3+jj*sdd+ps*1]; |
| 1568 | b0 = pW[1+ps*2]; |
| 1569 | c10 -= b0; |
| 1570 | c20 -= a2*b0; |
| 1571 | c30 -= a3*b0; |
| 1572 | b1 = pW[1+ps*3]; |
| 1573 | c11 -= b1; |
| 1574 | c21 -= a2*b1; |
| 1575 | c31 -= a3*b1; |
| 1576 | // rank3 |
| 1577 | a3 = pD[3+jj*sdd+ps*2]; |
| 1578 | b0 = pW[2+ps*2]; |
| 1579 | c20 -= b0; |
| 1580 | c30 -= a3*b0; |
| 1581 | b1 = pW[2+ps*3]; |
| 1582 | c21 -= b1; |
| 1583 | c31 -= a3*b1; |
| 1584 | // rank4 |
| 1585 | a3 = pD[3+jj*sdd+ps*3]; |
| 1586 | b0 = pW[3+ps*2]; |
| 1587 | c30 -= b0; |
| 1588 | b1 = pW[3+ps*3]; |
| 1589 | c31 -= b1; |
| 1590 | // store |
| 1591 | pC[0+jj*sdc+ps*2] = c00; |
| 1592 | pC[0+jj*sdc+ps*3] = c01; |
| 1593 | if(m>1) |
| 1594 | { |
| 1595 | pC[1+jj*sdc+ps*2] = c10; |
| 1596 | pC[1+jj*sdc+ps*3] = c11; |
| 1597 | if(m>2) |
| 1598 | { |
| 1599 | pC[2+jj*sdc+ps*2] = c20; |
| 1600 | pC[2+jj*sdc+ps*3] = c21; |
| 1601 | if(m>3) |
| 1602 | { |
| 1603 | pC[3+jj*sdc+ps*2] = c30; |
| 1604 | pC[3+jj*sdc+ps*3] = c31; |
| 1605 | } |
| 1606 | } |
| 1607 | } |
| 1608 | } |
| 1609 | for( ; ii<n; ii++) |
| 1610 | { |
| 1611 | pW = pW0+ii*ps; |
| 1612 | pC = pC0+ii*ps; |
| 1613 | // compute C -= V * W^T |
| 1614 | jj = 0; |
| 1615 | // load |
| 1616 | c00 = pC[0+jj*sdc+ps*0]; |
| 1617 | c10 = pC[1+jj*sdc+ps*0]; |
| 1618 | c20 = pC[2+jj*sdc+ps*0]; |
| 1619 | c30 = pC[3+jj*sdc+ps*0]; |
| 1620 | // rank1 |
| 1621 | a1 = pD[1+jj*sdd+ps*0]; |
| 1622 | a2 = pD[2+jj*sdd+ps*0]; |
| 1623 | a3 = pD[3+jj*sdd+ps*0]; |
| 1624 | b0 = pW[0+ps*0]; |
| 1625 | c00 -= b0; |
| 1626 | c10 -= a1*b0; |
| 1627 | c20 -= a2*b0; |
| 1628 | c30 -= a3*b0; |
| 1629 | // rank2 |
| 1630 | a2 = pD[2+jj*sdd+ps*1]; |
| 1631 | a3 = pD[3+jj*sdd+ps*1]; |
| 1632 | b0 = pW[1+ps*0]; |
| 1633 | c10 -= b0; |
| 1634 | c20 -= a2*b0; |
| 1635 | c30 -= a3*b0; |
| 1636 | // rank3 |
| 1637 | a3 = pD[3+jj*sdd+ps*2]; |
| 1638 | b0 = pW[2+ps*0]; |
| 1639 | c20 -= b0; |
| 1640 | c30 -= a3*b0; |
| 1641 | // rank4 |
| 1642 | a3 = pD[3+jj*sdd+ps*3]; |
| 1643 | b0 = pW[3+ps*0]; |
| 1644 | c30 -= b0; |
| 1645 | // store |
| 1646 | pC[0+jj*sdc+ps*0] = c00; |
| 1647 | if(m>1) |
| 1648 | { |
| 1649 | pC[1+jj*sdc+ps*0] = c10; |
| 1650 | if(m>2) |
| 1651 | { |
| 1652 | pC[2+jj*sdc+ps*0] = c20; |
| 1653 | if(m>3) |
| 1654 | { |
| 1655 | pC[3+jj*sdc+ps*0] = c30; |
| 1656 | } |
| 1657 | } |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | #if 1 |
| 1662 | jj = 4; |
| 1663 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 1664 | for(; jj<m-11; jj+=12) |
| 1665 | { |
| 1666 | kernel_dger4_sub_12r_lib4(n, &pD[jj*sdd], sdd, &pW0[0], &pC0[jj*sdc], sdc); |
| 1667 | } |
| 1668 | #endif |
| 1669 | for(; jj<m-7; jj+=8) |
| 1670 | { |
| 1671 | kernel_dger4_sub_8r_lib4(n, &pD[jj*sdd], sdd, &pW0[0], &pC0[jj*sdc], sdc); |
| 1672 | } |
| 1673 | for(; jj<m-3; jj+=4) |
| 1674 | { |
| 1675 | kernel_dger4_sub_4r_lib4(n, &pD[jj*sdd], &pW0[0], &pC0[jj*sdc]); |
| 1676 | } |
| 1677 | if(jj<m) |
| 1678 | { |
| 1679 | kernel_dger4_sub_4r_vs_lib4(n, &pD[jj*sdd], &pW0[0], &pC0[jj*sdc], m-jj); |
| 1680 | } |
| 1681 | #else |
| 1682 | ii = 0; |
| 1683 | for( ; ii<n-3; ii+=4) |
| 1684 | { |
| 1685 | pW = pW0+ii*ps; |
| 1686 | pC = pC0+ii*ps; |
| 1687 | for(jj=4; jj<m-3; jj+=4) |
| 1688 | { |
| 1689 | // load |
| 1690 | _c0 = _mm256_load_pd( &pC[0+jj*sdc+ps*0] ); |
| 1691 | _c1 = _mm256_load_pd( &pC[0+jj*sdc+ps*1] ); |
| 1692 | _c2 = _mm256_load_pd( &pC[0+jj*sdc+ps*2] ); |
| 1693 | _c3 = _mm256_load_pd( &pC[0+jj*sdc+ps*3] ); |
| 1694 | // |
| 1695 | _a0 = _mm256_load_pd( &pD[0+jj*sdd+ps*0] ); |
| 1696 | _b0 = _mm256_broadcast_sd( &pW[0+ps*0] ); |
| 1697 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1698 | _c0 = _mm256_sub_pd( _c0, _tp ); |
| 1699 | _b0 = _mm256_broadcast_sd( &pW[0+ps*1] ); |
| 1700 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1701 | _c1 = _mm256_sub_pd( _c1, _tp ); |
| 1702 | _b0 = _mm256_broadcast_sd( &pW[0+ps*2] ); |
| 1703 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1704 | _c2 = _mm256_sub_pd( _c2, _tp ); |
| 1705 | _b0 = _mm256_broadcast_sd( &pW[0+ps*3] ); |
| 1706 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1707 | _c3 = _mm256_sub_pd( _c3, _tp ); |
| 1708 | // |
| 1709 | _a0 = _mm256_load_pd( &pD[0+jj*sdd+ps*1] ); |
| 1710 | _b0 = _mm256_broadcast_sd( &pW[1+ps*0] ); |
| 1711 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1712 | _c0 = _mm256_sub_pd( _c0, _tp ); |
| 1713 | _b0 = _mm256_broadcast_sd( &pW[1+ps*1] ); |
| 1714 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1715 | _c1 = _mm256_sub_pd( _c1, _tp ); |
| 1716 | _b0 = _mm256_broadcast_sd( &pW[1+ps*2] ); |
| 1717 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1718 | _c2 = _mm256_sub_pd( _c2, _tp ); |
| 1719 | _b0 = _mm256_broadcast_sd( &pW[1+ps*3] ); |
| 1720 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1721 | _c3 = _mm256_sub_pd( _c3, _tp ); |
| 1722 | // |
| 1723 | _a0 = _mm256_load_pd( &pD[0+jj*sdd+ps*2] ); |
| 1724 | _b0 = _mm256_broadcast_sd( &pW[2+ps*0] ); |
| 1725 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1726 | _c0 = _mm256_sub_pd( _c0, _tp ); |
| 1727 | _b0 = _mm256_broadcast_sd( &pW[2+ps*1] ); |
| 1728 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1729 | _c1 = _mm256_sub_pd( _c1, _tp ); |
| 1730 | _b0 = _mm256_broadcast_sd( &pW[2+ps*2] ); |
| 1731 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1732 | _c2 = _mm256_sub_pd( _c2, _tp ); |
| 1733 | _b0 = _mm256_broadcast_sd( &pW[2+ps*3] ); |
| 1734 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1735 | _c3 = _mm256_sub_pd( _c3, _tp ); |
| 1736 | // |
| 1737 | _a0 = _mm256_load_pd( &pD[0+jj*sdd+ps*3] ); |
| 1738 | _b0 = _mm256_broadcast_sd( &pW[3+ps*0] ); |
| 1739 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1740 | _c0 = _mm256_sub_pd( _c0, _tp ); |
| 1741 | _b0 = _mm256_broadcast_sd( &pW[3+ps*1] ); |
| 1742 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1743 | _c1 = _mm256_sub_pd( _c1, _tp ); |
| 1744 | _b0 = _mm256_broadcast_sd( &pW[3+ps*2] ); |
| 1745 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1746 | _c2 = _mm256_sub_pd( _c2, _tp ); |
| 1747 | _b0 = _mm256_broadcast_sd( &pW[3+ps*3] ); |
| 1748 | _tp = _mm256_mul_pd( _a0, _b0 ); |
| 1749 | _c3 = _mm256_sub_pd( _c3, _tp ); |
| 1750 | // store |
| 1751 | _mm256_store_pd( &pC[0+jj*sdc+ps*0], _c0 ); |
| 1752 | _mm256_store_pd( &pC[0+jj*sdc+ps*1], _c1 ); |
| 1753 | _mm256_store_pd( &pC[0+jj*sdc+ps*2], _c2 ); |
| 1754 | _mm256_store_pd( &pC[0+jj*sdc+ps*3], _c3 ); |
| 1755 | } |
| 1756 | for(ll=0; ll<m-jj; ll++) |
| 1757 | { |
| 1758 | // load |
| 1759 | c00 = pC[ll+jj*sdc+ps*0]; |
| 1760 | c01 = pC[ll+jj*sdc+ps*1]; |
| 1761 | // |
| 1762 | a0 = pD[ll+jj*sdd+ps*0]; |
| 1763 | b0 = pW[0+ps*0]; |
| 1764 | c00 -= a0*b0; |
| 1765 | b1 = pW[0+ps*1]; |
| 1766 | c01 -= a0*b1; |
| 1767 | // |
| 1768 | a0 = pD[ll+jj*sdd+ps*1]; |
| 1769 | b0 = pW[1+ps*0]; |
| 1770 | c00 -= a0*b0; |
| 1771 | b1 = pW[1+ps*1]; |
| 1772 | c01 -= a0*b1; |
| 1773 | // |
| 1774 | a0 = pD[ll+jj*sdd+ps*2]; |
| 1775 | b0 = pW[2+ps*0]; |
| 1776 | c00 -= a0*b0; |
| 1777 | b1 = pW[2+ps*1]; |
| 1778 | c01 -= a0*b1; |
| 1779 | // |
| 1780 | a0 = pD[ll+jj*sdd+ps*3]; |
| 1781 | b0 = pW[3+ps*0]; |
| 1782 | c00 -= a0*b0; |
| 1783 | b1 = pW[3+ps*1]; |
| 1784 | c01 -= a0*b1; |
| 1785 | // store |
| 1786 | pC[ll+jj*sdc+ps*0] = c00; |
| 1787 | pC[ll+jj*sdc+ps*1] = c01; |
| 1788 | // load |
| 1789 | c00 = pC[ll+jj*sdc+ps*2]; |
| 1790 | c01 = pC[ll+jj*sdc+ps*3]; |
| 1791 | // |
| 1792 | a0 = pD[ll+jj*sdd+ps*0]; |
| 1793 | b0 = pW[0+ps*2]; |
| 1794 | c00 -= a0*b0; |
| 1795 | b1 = pW[0+ps*3]; |
| 1796 | c01 -= a0*b1; |
| 1797 | // |
| 1798 | a0 = pD[ll+jj*sdd+ps*1]; |
| 1799 | b0 = pW[1+ps*2]; |
| 1800 | c00 -= a0*b0; |
| 1801 | b1 = pW[1+ps*3]; |
| 1802 | c01 -= a0*b1; |
| 1803 | // |
| 1804 | a0 = pD[ll+jj*sdd+ps*2]; |
| 1805 | b0 = pW[2+ps*2]; |
| 1806 | c00 -= a0*b0; |
| 1807 | b1 = pW[2+ps*3]; |
| 1808 | c01 -= a0*b1; |
| 1809 | // |
| 1810 | a0 = pD[ll+jj*sdd+ps*3]; |
| 1811 | b0 = pW[3+ps*2]; |
| 1812 | c00 -= a0*b0; |
| 1813 | b1 = pW[3+ps*3]; |
| 1814 | c01 -= a0*b1; |
| 1815 | // store |
| 1816 | pC[ll+jj*sdc+ps*2] = c00; |
| 1817 | pC[ll+jj*sdc+ps*3] = c01; |
| 1818 | } |
| 1819 | } |
| 1820 | for( ; ii<n; ii++) |
| 1821 | { |
| 1822 | pW = pW0+ii*ps; |
| 1823 | pC = pC0+ii*ps; |
| 1824 | for(jj=4; jj<m-3; jj+=4) |
| 1825 | { |
| 1826 | // load |
| 1827 | c00 = pC[0+jj*sdc+ps*0]; |
| 1828 | c10 = pC[1+jj*sdc+ps*0]; |
| 1829 | c20 = pC[2+jj*sdc+ps*0]; |
| 1830 | c30 = pC[3+jj*sdc+ps*0]; |
| 1831 | // |
| 1832 | a0 = pD[0+jj*sdd+ps*0]; |
| 1833 | a1 = pD[1+jj*sdd+ps*0]; |
| 1834 | a2 = pD[2+jj*sdd+ps*0]; |
| 1835 | a3 = pD[3+jj*sdd+ps*0]; |
| 1836 | b0 = pW[0+ps*0]; |
| 1837 | c00 -= a0*b0; |
| 1838 | c10 -= a1*b0; |
| 1839 | c20 -= a2*b0; |
| 1840 | c30 -= a3*b0; |
| 1841 | // |
| 1842 | a0 = pD[0+jj*sdd+ps*1]; |
| 1843 | a1 = pD[1+jj*sdd+ps*1]; |
| 1844 | a2 = pD[2+jj*sdd+ps*1]; |
| 1845 | a3 = pD[3+jj*sdd+ps*1]; |
| 1846 | b0 = pW[1+ps*0]; |
| 1847 | c00 -= a0*b0; |
| 1848 | c10 -= a1*b0; |
| 1849 | c20 -= a2*b0; |
| 1850 | c30 -= a3*b0; |
| 1851 | // |
| 1852 | a0 = pD[0+jj*sdd+ps*2]; |
| 1853 | a1 = pD[1+jj*sdd+ps*2]; |
| 1854 | a2 = pD[2+jj*sdd+ps*2]; |
| 1855 | a3 = pD[3+jj*sdd+ps*2]; |
| 1856 | b0 = pW[2+ps*0]; |
| 1857 | c00 -= a0*b0; |
| 1858 | c10 -= a1*b0; |
| 1859 | c20 -= a2*b0; |
| 1860 | c30 -= a3*b0; |
| 1861 | // |
| 1862 | a0 = pD[0+jj*sdd+ps*3]; |
| 1863 | a1 = pD[1+jj*sdd+ps*3]; |
| 1864 | a2 = pD[2+jj*sdd+ps*3]; |
| 1865 | a3 = pD[3+jj*sdd+ps*3]; |
| 1866 | b0 = pW[3+ps*0]; |
| 1867 | c00 -= a0*b0; |
| 1868 | c10 -= a1*b0; |
| 1869 | c20 -= a2*b0; |
| 1870 | c30 -= a3*b0; |
| 1871 | // store |
| 1872 | pC[0+jj*sdc+ps*0] = c00; |
| 1873 | pC[1+jj*sdc+ps*0] = c10; |
| 1874 | pC[2+jj*sdc+ps*0] = c20; |
| 1875 | pC[3+jj*sdc+ps*0] = c30; |
| 1876 | } |
| 1877 | for(ll=0; ll<m-jj; ll++) |
| 1878 | { |
| 1879 | // load |
| 1880 | c00 = pC[ll+jj*sdc+ps*0]; |
| 1881 | // |
| 1882 | a0 = pD[ll+jj*sdd+ps*0]; |
| 1883 | b0 = pW[0+ps*0]; |
| 1884 | c00 -= a0*b0; |
| 1885 | // |
| 1886 | a0 = pD[ll+jj*sdd+ps*1]; |
| 1887 | b0 = pW[1+ps*0]; |
| 1888 | c00 -= a0*b0; |
| 1889 | // |
| 1890 | a0 = pD[ll+jj*sdd+ps*2]; |
| 1891 | b0 = pW[2+ps*0]; |
| 1892 | c00 -= a0*b0; |
| 1893 | // |
| 1894 | a0 = pD[ll+jj*sdd+ps*3]; |
| 1895 | b0 = pW[3+ps*0]; |
| 1896 | c00 -= a0*b0; |
| 1897 | // store |
| 1898 | pC[ll+jj*sdc+ps*0] = c00; |
| 1899 | } |
| 1900 | } |
| 1901 | #endif |
| 1902 | |
| 1903 | return; |
| 1904 | } |
| 1905 | |
| 1906 | |
| 1907 | |
| 1908 | // assume n>=4 |
| 1909 | void kernel_dgelqf_4_lib4(int n, double *pD, double *dD) |
| 1910 | { |
| 1911 | int ii, jj, ll; |
| 1912 | double alpha, beta, tmp, w1, w2, w3; |
| 1913 | const int ps = 4; |
| 1914 | // first column |
| 1915 | beta = 0.0; |
| 1916 | for(ii=1; ii<n; ii++) |
| 1917 | { |
| 1918 | tmp = pD[0+ps*ii]; |
| 1919 | beta += tmp*tmp; |
| 1920 | } |
| 1921 | if(beta==0.0) |
| 1922 | { |
| 1923 | dD[0] = 0.0; |
| 1924 | tmp = 0.0; |
| 1925 | goto col2; |
| 1926 | } |
| 1927 | alpha = pD[0+ps*0]; |
| 1928 | beta += alpha*alpha; |
| 1929 | beta = sqrt(beta); |
| 1930 | if(alpha>0) |
| 1931 | beta = -beta; |
| 1932 | dD[0] = (beta-alpha) / beta; |
| 1933 | tmp = 1.0 / (alpha-beta); |
| 1934 | // |
| 1935 | pD[0+ps*0] = beta; |
| 1936 | w1 = pD[1+ps*0]; |
| 1937 | w2 = pD[2+ps*0]; |
| 1938 | w3 = pD[3+ps*0]; |
| 1939 | // |
| 1940 | pD[0+ps*1] *= tmp; |
| 1941 | w1 += pD[1+ps*1] * pD[0+ps*1]; |
| 1942 | w2 += pD[2+ps*1] * pD[0+ps*1]; |
| 1943 | w3 += pD[3+ps*1] * pD[0+ps*1]; |
| 1944 | // |
| 1945 | pD[0+ps*2] *= tmp; |
| 1946 | w1 += pD[1+ps*2] * pD[0+ps*2]; |
| 1947 | w2 += pD[2+ps*2] * pD[0+ps*2]; |
| 1948 | w3 += pD[3+ps*2] * pD[0+ps*2]; |
| 1949 | // |
| 1950 | pD[0+ps*3] *= tmp; |
| 1951 | w1 += pD[1+ps*3] * pD[0+ps*3]; |
| 1952 | w2 += pD[2+ps*3] * pD[0+ps*3]; |
| 1953 | w3 += pD[3+ps*3] * pD[0+ps*3]; |
| 1954 | // |
| 1955 | for(ii=4; ii<n; ii++) |
| 1956 | { |
| 1957 | pD[0+ps*ii] *= tmp; |
| 1958 | w1 += pD[1+ps*ii] * pD[0+ps*ii]; |
| 1959 | w2 += pD[2+ps*ii] * pD[0+ps*ii]; |
| 1960 | w3 += pD[3+ps*ii] * pD[0+ps*ii]; |
| 1961 | } |
| 1962 | // |
| 1963 | w1 = - dD[0] * w1; |
| 1964 | w2 = - dD[0] * w2; |
| 1965 | w3 = - dD[0] * w3; |
| 1966 | // |
| 1967 | pD[1+ps*0] += w1; |
| 1968 | pD[2+ps*0] += w2; |
| 1969 | pD[3+ps*0] += w3; |
| 1970 | // |
| 1971 | pD[1+ps*1] += w1 * pD[0+ps*1]; |
| 1972 | pD[2+ps*1] += w2 * pD[0+ps*1]; |
| 1973 | pD[3+ps*1] += w3 * pD[0+ps*1]; |
| 1974 | // |
| 1975 | pD[1+ps*2] += w1 * pD[0+ps*2]; |
| 1976 | pD[2+ps*2] += w2 * pD[0+ps*2]; |
| 1977 | pD[3+ps*2] += w3 * pD[0+ps*2]; |
| 1978 | beta = pD[1+ps*2] * pD[1+ps*2]; |
| 1979 | // |
| 1980 | pD[1+ps*3] += w1 * pD[0+ps*3]; |
| 1981 | pD[2+ps*3] += w2 * pD[0+ps*3]; |
| 1982 | pD[3+ps*3] += w3 * pD[0+ps*3]; |
| 1983 | beta += pD[1+ps*3] * pD[1+ps*3]; |
| 1984 | // |
| 1985 | for(ii=4; ii<n; ii++) |
| 1986 | { |
| 1987 | pD[1+ps*ii] += w1 * pD[0+ps*ii]; |
| 1988 | pD[2+ps*ii] += w2 * pD[0+ps*ii]; |
| 1989 | pD[3+ps*ii] += w3 * pD[0+ps*ii]; |
| 1990 | beta += pD[1+ps*ii] * pD[1+ps*ii]; |
| 1991 | } |
| 1992 | // second column |
| 1993 | col2: |
| 1994 | if(beta==0.0) |
| 1995 | { |
| 1996 | dD[1] = 0.0; |
| 1997 | tmp = 0.0; |
| 1998 | goto col3; |
| 1999 | } |
| 2000 | alpha = pD[1+ps*1]; |
| 2001 | beta += alpha*alpha; |
| 2002 | beta = sqrt(beta); |
| 2003 | if(alpha>0) |
| 2004 | beta = -beta; |
| 2005 | dD[1] = (beta-alpha) / beta; |
| 2006 | tmp = 1.0 / (alpha-beta); |
| 2007 | // |
| 2008 | pD[1+ps*1] = beta; |
| 2009 | w2 = pD[2+ps*1]; |
| 2010 | w3 = pD[3+ps*1]; |
| 2011 | // |
| 2012 | pD[1+ps*2] *= tmp; |
| 2013 | w2 += pD[2+ps*2] * pD[1+ps*2]; |
| 2014 | w3 += pD[3+ps*2] * pD[1+ps*2]; |
| 2015 | // |
| 2016 | pD[1+ps*3] *= tmp; |
| 2017 | w2 += pD[2+ps*3] * pD[1+ps*3]; |
| 2018 | w3 += pD[3+ps*3] * pD[1+ps*3]; |
| 2019 | // |
| 2020 | for(ii=4; ii<n; ii++) |
| 2021 | { |
| 2022 | pD[1+ps*ii] *= tmp; |
| 2023 | w2 += pD[2+ps*ii] * pD[1+ps*ii]; |
| 2024 | w3 += pD[3+ps*ii] * pD[1+ps*ii]; |
| 2025 | } |
| 2026 | // |
| 2027 | w2 = - dD[1] * w2; |
| 2028 | w3 = - dD[1] * w3; |
| 2029 | // |
| 2030 | pD[2+ps*1] += w2; |
| 2031 | pD[3+ps*1] += w3; |
| 2032 | // |
| 2033 | pD[2+ps*2] += w2 * pD[1+ps*2]; |
| 2034 | pD[3+ps*2] += w3 * pD[1+ps*2]; |
| 2035 | // |
| 2036 | pD[2+ps*3] += w2 * pD[1+ps*3]; |
| 2037 | pD[3+ps*3] += w3 * pD[1+ps*3]; |
| 2038 | beta = pD[2+ps*3] * pD[2+ps*3]; |
| 2039 | // |
| 2040 | for(ii=4; ii<n; ii++) |
| 2041 | { |
| 2042 | pD[2+ps*ii] += w2 * pD[1+ps*ii]; |
| 2043 | pD[3+ps*ii] += w3 * pD[1+ps*ii]; |
| 2044 | beta += pD[2+ps*ii] * pD[2+ps*ii]; |
| 2045 | } |
| 2046 | // third column |
| 2047 | col3: |
| 2048 | if(beta==0.0) |
| 2049 | { |
| 2050 | dD[2] = 0.0; |
| 2051 | tmp = 0.0; |
| 2052 | goto col4; |
| 2053 | } |
| 2054 | alpha = pD[2+ps*2]; |
| 2055 | beta += alpha*alpha; |
| 2056 | beta = sqrt(beta); |
| 2057 | if(alpha>0) |
| 2058 | beta = -beta; |
| 2059 | dD[2] = (beta-alpha) / beta; |
| 2060 | tmp = 1.0 / (alpha-beta); |
| 2061 | // |
| 2062 | pD[2+ps*2] = beta; |
| 2063 | w3 = pD[3+ps*2]; |
| 2064 | // |
| 2065 | pD[2+ps*3] *= tmp; |
| 2066 | w3 += pD[3+ps*3] * pD[2+ps*3]; |
| 2067 | // |
| 2068 | for(ii=4; ii<n; ii++) |
| 2069 | { |
| 2070 | pD[2+ps*ii] *= tmp; |
| 2071 | w3 += pD[3+ps*ii] * pD[2+ps*ii]; |
| 2072 | } |
| 2073 | // |
| 2074 | w3 = - dD[2] * w3; |
| 2075 | // |
| 2076 | pD[3+ps*2] += w3; |
| 2077 | // |
| 2078 | pD[3+ps*3] += w3 * pD[2+ps*3]; |
| 2079 | // |
| 2080 | beta = 0.0; |
| 2081 | for(ii=4; ii<n; ii++) |
| 2082 | { |
| 2083 | pD[3+ps*ii] += w3 * pD[2+ps*ii]; |
| 2084 | beta += pD[3+ps*ii] * pD[3+ps*ii]; |
| 2085 | } |
| 2086 | // fourth column |
| 2087 | col4: |
| 2088 | if(beta==0.0) |
| 2089 | { |
| 2090 | dD[3] = 0.0; |
| 2091 | tmp = 0.0; |
| 2092 | return; |
| 2093 | } |
| 2094 | alpha = pD[3+ps*3]; |
| 2095 | beta += alpha*alpha; |
| 2096 | beta = sqrt(beta); |
| 2097 | if(alpha>0) |
| 2098 | beta = -beta; |
| 2099 | dD[3] = (beta-alpha) / beta; |
| 2100 | tmp = 1.0 / (alpha-beta); |
| 2101 | // |
| 2102 | pD[3+ps*3] = beta; |
| 2103 | for(ii=4; ii<n; ii++) |
| 2104 | { |
| 2105 | pD[3+ps*ii] *= tmp; |
| 2106 | } |
| 2107 | return; |
| 2108 | } |
| 2109 | |
| 2110 | |
| 2111 | |
| 2112 | // unblocked algorithm |
| 2113 | void kernel_dgelqf_vs_lib4(int m, int n, int k, int offD, double *pD, int sdd, double *dD) |
| 2114 | { |
| 2115 | if(m<=0 | n<=0) |
| 2116 | return; |
| 2117 | int ii, jj, kk, ll, imax, jmax, jmax0, kmax, kmax0; |
| 2118 | const int ps = 4; |
| 2119 | imax = k;//m<n ? m : n; |
| 2120 | double alpha, beta, tmp; |
| 2121 | double w00, w01, |
| 2122 | w10, w11, |
| 2123 | w20, w21, |
| 2124 | w30, w31; |
| 2125 | __m256d |
| 2126 | _a0, _b0, _t0, _w0, _w1; |
| 2127 | double *pC00, *pC10, *pC10a, *pC20, *pC20a, *pC01, *pC11; |
| 2128 | double pT[4]; |
| 2129 | int ldt = 2; |
| 2130 | double *pD0 = pD-offD; |
| 2131 | ii = 0; |
| 2132 | #if 1 // rank 2 |
| 2133 | for(; ii<imax-1; ii+=2) |
| 2134 | { |
| 2135 | // first row |
| 2136 | pC00 = &pD0[((offD+ii)&(ps-1))+((offD+ii)-((offD+ii)&(ps-1)))*sdd+ii*ps]; |
| 2137 | beta = 0.0; |
| 2138 | for(jj=1; jj<n-ii; jj++) |
| 2139 | { |
| 2140 | tmp = pC00[0+ps*jj]; |
| 2141 | beta += tmp*tmp; |
| 2142 | } |
| 2143 | if(beta==0.0) |
| 2144 | { |
| 2145 | dD[ii] = 0.0; |
| 2146 | } |
| 2147 | else |
| 2148 | { |
| 2149 | alpha = pC00[0]; |
| 2150 | beta += alpha*alpha; |
| 2151 | beta = sqrt(beta); |
| 2152 | if(alpha>0) |
| 2153 | beta = -beta; |
| 2154 | dD[ii] = (beta-alpha) / beta; |
| 2155 | tmp = 1.0 / (alpha-beta); |
| 2156 | pC00[0] = beta; |
| 2157 | for(jj=1; jj<n-ii; jj++) |
| 2158 | pC00[0+ps*jj] *= tmp; |
| 2159 | } |
| 2160 | pC10 = &pD0[((offD+ii+1)&(ps-1))+((offD+ii+1)-((offD+ii+1)&(ps-1)))*sdd+ii*ps]; |
| 2161 | kmax = n-ii; |
| 2162 | w00 = pC10[0+ps*0]; // pC00[0+ps*0] = 1.0 |
| 2163 | for(kk=1; kk<kmax; kk++) |
| 2164 | { |
| 2165 | w00 += pC10[0+ps*kk] * pC00[0+ps*kk]; |
| 2166 | } |
| 2167 | w00 = - w00*dD[ii]; |
| 2168 | pC10[0+ps*0] += w00; // pC00[0+ps*0] = 1.0 |
| 2169 | for(kk=1; kk<kmax; kk++) |
| 2170 | { |
| 2171 | pC10[0+ps*kk] += w00 * pC00[0+ps*kk]; |
| 2172 | } |
| 2173 | // second row |
| 2174 | pC11 = pC10+ps*1; |
| 2175 | beta = 0.0; |
| 2176 | for(jj=1; jj<n-(ii+1); jj++) |
| 2177 | { |
| 2178 | tmp = pC11[0+ps*jj]; |
| 2179 | beta += tmp*tmp; |
| 2180 | } |
| 2181 | if(beta==0.0) |
| 2182 | { |
| 2183 | dD[(ii+1)] = 0.0; |
| 2184 | } |
| 2185 | else |
| 2186 | { |
| 2187 | alpha = pC11[0+ps*0]; |
| 2188 | beta += alpha*alpha; |
| 2189 | beta = sqrt(beta); |
| 2190 | if(alpha>0) |
| 2191 | beta = -beta; |
| 2192 | dD[(ii+1)] = (beta-alpha) / beta; |
| 2193 | tmp = 1.0 / (alpha-beta); |
| 2194 | pC11[0+ps*0] = beta; |
| 2195 | for(jj=1; jj<n-(ii+1); jj++) |
| 2196 | pC11[0+ps*jj] *= tmp; |
| 2197 | } |
| 2198 | // compute T |
| 2199 | kmax = n-ii; |
| 2200 | tmp = 1.0*0.0 + pC00[0+ps*1]*1.0; |
| 2201 | for(kk=2; kk<kmax; kk++) |
| 2202 | tmp += pC00[0+ps*kk]*pC10[0+ps*kk]; |
| 2203 | pT[0+ldt*0] = - dD[ii+0]; |
| 2204 | pT[0+ldt*1] = + dD[ii+1] * tmp * dD[ii+0]; |
| 2205 | pT[1+ldt*1] = - dD[ii+1]; |
| 2206 | // downgrade |
| 2207 | kmax = n-ii; |
| 2208 | jmax = m-ii-2; |
| 2209 | jmax0 = (ps-((ii+2+offD)&(ps-1)))&(ps-1); |
| 2210 | jmax0 = jmax<jmax0 ? jmax : jmax0; |
| 2211 | jj = 0; |
| 2212 | pC20a = &pD0[((offD+ii+2)&(ps-1))+((offD+ii+2)-((offD+ii+2)&(ps-1)))*sdd+ii*ps]; |
| 2213 | pC20 = pC20a; |
| 2214 | if(jmax0>0) |
| 2215 | { |
| 2216 | for( ; jj<jmax0; jj++) |
| 2217 | { |
| 2218 | w00 = pC20[0+ps*0]*1.0 + pC20[0+ps*1]*pC00[0+ps*1]; |
| 2219 | w01 = pC20[0+ps*0]*0.0 + pC20[0+ps*1]*1.0; |
| 2220 | for(kk=2; kk<kmax; kk++) |
| 2221 | { |
| 2222 | w00 += pC20[0+ps*kk]*pC00[0+ps*kk]; |
| 2223 | w01 += pC20[0+ps*kk]*pC10[0+ps*kk]; |
| 2224 | } |
| 2225 | w01 = w00*pT[0+ldt*1] + w01*pT[1+ldt*1]; |
| 2226 | w00 = w00*pT[0+ldt*0]; |
| 2227 | pC20[0+ps*0] += w00*1.0 + w01*0.0; |
| 2228 | pC20[0+ps*1] += w00*pC00[0+ps*1] + w01*1.0; |
| 2229 | for(kk=2; kk<kmax; kk++) |
| 2230 | { |
| 2231 | pC20[0+ps*kk] += w00*pC00[0+ps*kk] + w01*pC10[0+ps*kk]; |
| 2232 | } |
| 2233 | pC20 += 1; |
| 2234 | } |
| 2235 | pC20 += -ps+ps*sdd; |
| 2236 | } |
| 2237 | for( ; jj<jmax-3; jj+=4) |
| 2238 | { |
| 2239 | // |
| 2240 | _w0 = _mm256_load_pd( &pC20[0+ps*0] ); |
| 2241 | _a0 = _mm256_load_pd( &pC20[0+ps*1] ); |
| 2242 | _b0 = _mm256_broadcast_sd( &pC00[0+ps*1] ); |
| 2243 | _t0 = _mm256_mul_pd( _a0, _b0 ); |
| 2244 | _w0 = _mm256_add_pd( _w0, _t0 ); |
| 2245 | _w1 = _mm256_load_pd( &pC20[0+ps*1] ); |
| 2246 | for(kk=2; kk<kmax; kk++) |
| 2247 | { |
| 2248 | _a0 = _mm256_load_pd( &pC20[0+ps*kk] ); |
| 2249 | _b0 = _mm256_broadcast_sd( &pC00[0+ps*kk] ); |
| 2250 | _t0 = _mm256_mul_pd( _a0, _b0 ); |
| 2251 | _w0 = _mm256_add_pd( _w0, _t0 ); |
| 2252 | _b0 = _mm256_broadcast_sd( &pC10[0+ps*kk] ); |
| 2253 | _t0 = _mm256_mul_pd( _a0, _b0 ); |
| 2254 | _w1 = _mm256_add_pd( _w1, _t0 ); |
| 2255 | } |
| 2256 | // |
| 2257 | _b0 = _mm256_broadcast_sd( &pT[1+ldt*1] ); |
| 2258 | _w1 = _mm256_mul_pd( _w1, _b0 ); |
| 2259 | _b0 = _mm256_broadcast_sd( &pT[0+ldt*1] ); |
| 2260 | _t0 = _mm256_mul_pd( _w0, _b0 ); |
| 2261 | _w1 = _mm256_add_pd( _w1, _t0 ); |
| 2262 | _b0 = _mm256_broadcast_sd( &pT[0+ldt*0] ); |
| 2263 | _w0 = _mm256_mul_pd( _w0, _b0 ); |
| 2264 | // |
| 2265 | _a0 = _mm256_load_pd( &pC20[0+ps*0] ); |
| 2266 | _a0 = _mm256_add_pd( _a0, _w0 ); |
| 2267 | _mm256_store_pd( &pC20[0+ps*0], _a0 ); |
| 2268 | _a0 = _mm256_load_pd( &pC20[0+ps*1] ); |
| 2269 | _b0 = _mm256_broadcast_sd( &pC00[0+ps*1] ); |
| 2270 | _t0 = _mm256_mul_pd( _w0, _b0 ); |
| 2271 | _a0 = _mm256_add_pd( _a0, _t0 ); |
| 2272 | _a0 = _mm256_add_pd( _a0, _w1 ); |
| 2273 | _mm256_store_pd( &pC20[0+ps*1], _a0 ); |
| 2274 | for(kk=2; kk<kmax; kk++) |
| 2275 | { |
| 2276 | _a0 = _mm256_load_pd( &pC20[0+ps*kk] ); |
| 2277 | _b0 = _mm256_broadcast_sd( &pC00[0+ps*kk] ); |
| 2278 | _t0 = _mm256_mul_pd( _w0, _b0 ); |
| 2279 | _a0 = _mm256_add_pd( _a0, _t0 ); |
| 2280 | _b0 = _mm256_broadcast_sd( &pC10[0+ps*kk] ); |
| 2281 | _t0 = _mm256_mul_pd( _w1, _b0 ); |
| 2282 | _a0 = _mm256_add_pd( _a0, _t0 ); |
| 2283 | _mm256_store_pd( &pC20[0+ps*kk], _a0 ); |
| 2284 | } |
| 2285 | pC20 += ps*sdd; |
| 2286 | } |
| 2287 | for(ll=0; ll<jmax-jj; ll++) |
| 2288 | { |
| 2289 | w00 = pC20[0+ps*0]*1.0 + pC20[0+ps*1]*pC00[0+ps*1]; |
| 2290 | w01 = pC20[0+ps*0]*0.0 + pC20[0+ps*1]*1.0; |
| 2291 | for(kk=2; kk<kmax; kk++) |
| 2292 | { |
| 2293 | w00 += pC20[0+ps*kk]*pC00[0+ps*kk]; |
| 2294 | w01 += pC20[0+ps*kk]*pC10[0+ps*kk]; |
| 2295 | } |
| 2296 | w01 = w00*pT[0+ldt*1] + w01*pT[1+ldt*1]; |
| 2297 | w00 = w00*pT[0+ldt*0]; |
| 2298 | pC20[0+ps*0] += w00*1.0 + w01*0.0; |
| 2299 | pC20[0+ps*1] += w00*pC00[0+ps*1] + w01*1.0; |
| 2300 | for(kk=2; kk<kmax; kk++) |
| 2301 | { |
| 2302 | pC20[0+ps*kk] += w00*pC00[0+ps*kk] + w01*pC10[0+ps*kk]; |
| 2303 | } |
| 2304 | pC20 += 1; |
| 2305 | } |
| 2306 | } |
| 2307 | #endif |
| 2308 | for(; ii<imax; ii++) |
| 2309 | { |
| 2310 | pC00 = &pD0[((offD+ii)&(ps-1))+((offD+ii)-((offD+ii)&(ps-1)))*sdd+ii*ps]; |
| 2311 | beta = 0.0; |
| 2312 | for(jj=1; jj<n-ii; jj++) |
| 2313 | { |
| 2314 | tmp = pC00[0+ps*jj]; |
| 2315 | beta += tmp*tmp; |
| 2316 | } |
| 2317 | if(beta==0.0) |
| 2318 | { |
| 2319 | dD[ii] = 0.0; |
| 2320 | } |
| 2321 | else |
| 2322 | { |
| 2323 | alpha = pC00[0]; |
| 2324 | beta += alpha*alpha; |
| 2325 | beta = sqrt(beta); |
| 2326 | if(alpha>0) |
| 2327 | beta = -beta; |
| 2328 | dD[ii] = (beta-alpha) / beta; |
| 2329 | tmp = 1.0 / (alpha-beta); |
| 2330 | pC00[0] = beta; |
| 2331 | for(jj=1; jj<n-ii; jj++) |
| 2332 | pC00[0+ps*jj] *= tmp; |
| 2333 | } |
| 2334 | if(ii<n) |
| 2335 | { |
| 2336 | // compute T |
| 2337 | pT[0+ldt*0] = - dD[ii+0]; |
| 2338 | // downgrade |
| 2339 | kmax = n-ii; |
| 2340 | jmax = m-ii-1; |
| 2341 | jmax0 = (ps-((ii+1+offD)&(ps-1)))&(ps-1); |
| 2342 | jmax0 = jmax<jmax0 ? jmax : jmax0; |
| 2343 | jj = 0; |
| 2344 | pC10a = &pD0[((offD+ii+1)&(ps-1))+((offD+ii+1)-((offD+ii+1)&(ps-1)))*sdd+ii*ps]; |
| 2345 | pC10 = pC10a; |
| 2346 | if(jmax0>0) |
| 2347 | { |
| 2348 | for( ; jj<jmax0; jj++) |
| 2349 | { |
| 2350 | w00 = pC10[0+ps*0]; |
| 2351 | for(kk=1; kk<kmax; kk++) |
| 2352 | { |
| 2353 | w00 += pC10[0+ps*kk] * pC00[0+ps*kk]; |
| 2354 | } |
| 2355 | w00 = w00*pT[0+ldt*0]; |
| 2356 | pC10[0+ps*0] += w00; |
| 2357 | for(kk=1; kk<kmax; kk++) |
| 2358 | { |
| 2359 | pC10[0+ps*kk] += w00 * pC00[0+ps*kk]; |
| 2360 | } |
| 2361 | pC10 += 1; |
| 2362 | } |
| 2363 | pC10 += -ps+ps*sdd; |
| 2364 | } |
| 2365 | for( ; jj<jmax-3; jj+=4) |
| 2366 | { |
| 2367 | // |
| 2368 | _w0 = _mm256_load_pd( &pC10[0+ps*0] ); |
| 2369 | for(kk=1; kk<kmax; kk++) |
| 2370 | { |
| 2371 | _a0 = _mm256_load_pd( &pC10[0+ps*kk] ); |
| 2372 | _b0 = _mm256_broadcast_sd( &pC00[0+ps*kk] ); |
| 2373 | _t0 = _mm256_mul_pd( _a0, _b0 ); |
| 2374 | _w0 = _mm256_add_pd( _w0, _t0 ); |
| 2375 | } |
| 2376 | // |
| 2377 | _b0 = _mm256_broadcast_sd( &pT[0+ldt*0] ); |
| 2378 | _w0 = _mm256_mul_pd( _w0, _b0 ); |
| 2379 | // |
| 2380 | _a0 = _mm256_load_pd( &pC10[0+ps*0] ); |
| 2381 | _a0 = _mm256_add_pd( _a0, _w0 ); |
| 2382 | _mm256_store_pd( &pC10[0+ps*0], _a0 ); |
| 2383 | for(kk=1; kk<kmax; kk++) |
| 2384 | { |
| 2385 | _a0 = _mm256_load_pd( &pC10[0+ps*kk] ); |
| 2386 | _b0 = _mm256_broadcast_sd( &pC00[0+ps*kk] ); |
| 2387 | _t0 = _mm256_mul_pd( _w0, _b0 ); |
| 2388 | _a0 = _mm256_add_pd( _a0, _t0 ); |
| 2389 | _mm256_store_pd( &pC10[0+ps*kk], _a0 ); |
| 2390 | } |
| 2391 | pC10 += ps*sdd; |
| 2392 | } |
| 2393 | for(ll=0; ll<jmax-jj; ll++) |
| 2394 | { |
| 2395 | w00 = pC10[0+ps*0]; |
| 2396 | for(kk=1; kk<kmax; kk++) |
| 2397 | { |
| 2398 | w00 += pC10[0+ps*kk] * pC00[0+ps*kk]; |
| 2399 | } |
| 2400 | w00 = w00*pT[0+ldt*0]; |
| 2401 | pC10[0+ps*0] += w00; |
| 2402 | for(kk=1; kk<kmax; kk++) |
| 2403 | { |
| 2404 | pC10[0+ps*kk] += w00 * pC00[0+ps*kk]; |
| 2405 | } |
| 2406 | pC10 += 1; |
| 2407 | } |
| 2408 | } |
| 2409 | } |
| 2410 | return; |
| 2411 | } |
| 2412 | |
| 2413 | |
| 2414 | |
| 2415 | // assume kmax>=4 |
| 2416 | void kernel_dlarft_4_lib4(int kmax, double *pD, double *dD, double *pT) |
| 2417 | { |
| 2418 | const int ps = 4; |
| 2419 | int kk; |
| 2420 | double v10, |
| 2421 | v20, v21, |
| 2422 | v30, v31, v32; |
| 2423 | // 0 |
| 2424 | // 1 |
| 2425 | v10 = pD[0+ps*1]; |
| 2426 | // 2 |
| 2427 | v10 += pD[1+ps*2]*pD[0+ps*2]; |
| 2428 | v20 = pD[0+ps*2]; |
| 2429 | v21 = pD[1+ps*2]; |
| 2430 | // 3 |
| 2431 | v10 += pD[1+ps*3]*pD[0+ps*3]; |
| 2432 | v20 += pD[2+ps*3]*pD[0+ps*3]; |
| 2433 | v21 += pD[2+ps*3]*pD[1+ps*3]; |
| 2434 | v30 = pD[0+ps*3]; |
| 2435 | v31 = pD[1+ps*3]; |
| 2436 | v32 = pD[2+ps*3]; |
| 2437 | // |
| 2438 | for(kk=4; kk<kmax; kk++) |
| 2439 | { |
| 2440 | v10 += pD[1+ps*kk]*pD[0+ps*kk]; |
| 2441 | v20 += pD[2+ps*kk]*pD[0+ps*kk]; |
| 2442 | v30 += pD[3+ps*kk]*pD[0+ps*kk]; |
| 2443 | v21 += pD[2+ps*kk]*pD[1+ps*kk]; |
| 2444 | v31 += pD[3+ps*kk]*pD[1+ps*kk]; |
| 2445 | v32 += pD[3+ps*kk]*pD[2+ps*kk]; |
| 2446 | } |
| 2447 | pT[0+ps*0] = - dD[0]; |
| 2448 | pT[1+ps*1] = - dD[1]; |
| 2449 | pT[2+ps*2] = - dD[2]; |
| 2450 | pT[3+ps*3] = - dD[3]; |
| 2451 | pT[0+ps*1] = - dD[1] * (v10*pT[0+ps*0]); |
| 2452 | pT[1+ps*2] = - dD[2] * (v21*pT[1+ps*1]); |
| 2453 | pT[2+ps*3] = - dD[3] * (v32*pT[2+ps*2]); |
| 2454 | pT[0+ps*2] = - dD[2] * (v20*pT[0+ps*0] + v21*pT[0+ps*1]); |
| 2455 | pT[1+ps*3] = - dD[3] * (v31*pT[1+ps*1] + v32*pT[1+ps*2]); |
| 2456 | pT[0+ps*3] = - dD[3] * (v30*pT[0+ps*0] + v31*pT[0+ps*1] + v32*pT[0+ps*2]); |
| 2457 | return; |
| 2458 | } |
| 2459 | |
| 2460 | |
| 2461 | |
| 2462 | // assume n>=4 |
| 2463 | #if ! defined(TARGET_X64_INTEL_HASWELL) |
| 2464 | void kernel_dgelqf_dlarft4_4_lib4(int n, double *pD, double *dD, double *pT) |
| 2465 | { |
| 2466 | int ii, jj, ll; |
| 2467 | double alpha, beta, tmp, w0, w1, w2, w3; |
| 2468 | const int ps = 4; |
| 2469 | // zero tau matrix |
| 2470 | for(ii=0; ii<16; ii++) |
| 2471 | pT[ii] = 0.0; |
| 2472 | // first column |
| 2473 | beta = 0.0; |
| 2474 | for(ii=1; ii<n; ii++) |
| 2475 | { |
| 2476 | tmp = pD[0+ps*ii]; |
| 2477 | beta += tmp*tmp; |
| 2478 | } |
| 2479 | if(beta==0.0) |
| 2480 | { |
| 2481 | dD[0] = 0.0; |
| 2482 | tmp = 0.0; |
| 2483 | goto col2; |
| 2484 | } |
| 2485 | alpha = pD[0+ps*0]; |
| 2486 | beta += alpha*alpha; |
| 2487 | beta = sqrt(beta); |
| 2488 | if(alpha>0) |
| 2489 | beta = -beta; |
| 2490 | dD[0] = (beta-alpha) / beta; |
| 2491 | pT[0+ps*0] = - dD[0]; |
| 2492 | tmp = 1.0 / (alpha-beta); |
| 2493 | // |
| 2494 | pD[0+ps*0] = beta; |
| 2495 | w1 = pD[1+ps*0]; |
| 2496 | w2 = pD[2+ps*0]; |
| 2497 | w3 = pD[3+ps*0]; |
| 2498 | // |
| 2499 | pD[0+ps*1] *= tmp; |
| 2500 | w1 += pD[1+ps*1] * pD[0+ps*1]; |
| 2501 | w2 += pD[2+ps*1] * pD[0+ps*1]; |
| 2502 | w3 += pD[3+ps*1] * pD[0+ps*1]; |
| 2503 | // |
| 2504 | pD[0+ps*2] *= tmp; |
| 2505 | w1 += pD[1+ps*2] * pD[0+ps*2]; |
| 2506 | w2 += pD[2+ps*2] * pD[0+ps*2]; |
| 2507 | w3 += pD[3+ps*2] * pD[0+ps*2]; |
| 2508 | // |
| 2509 | pD[0+ps*3] *= tmp; |
| 2510 | w1 += pD[1+ps*3] * pD[0+ps*3]; |
| 2511 | w2 += pD[2+ps*3] * pD[0+ps*3]; |
| 2512 | w3 += pD[3+ps*3] * pD[0+ps*3]; |
| 2513 | // |
| 2514 | for(ii=4; ii<n; ii++) |
| 2515 | { |
| 2516 | pD[0+ps*ii] *= tmp; |
| 2517 | w1 += pD[1+ps*ii] * pD[0+ps*ii]; |
| 2518 | w2 += pD[2+ps*ii] * pD[0+ps*ii]; |
| 2519 | w3 += pD[3+ps*ii] * pD[0+ps*ii]; |
| 2520 | } |
| 2521 | // |
| 2522 | w1 = - dD[0] * w1; |
| 2523 | w2 = - dD[0] * w2; |
| 2524 | w3 = - dD[0] * w3; |
| 2525 | // |
| 2526 | pD[1+ps*0] += w1; |
| 2527 | pD[2+ps*0] += w2; |
| 2528 | pD[3+ps*0] += w3; |
| 2529 | // |
| 2530 | pD[1+ps*1] += w1 * pD[0+ps*1]; |
| 2531 | pD[2+ps*1] += w2 * pD[0+ps*1]; |
| 2532 | pD[3+ps*1] += w3 * pD[0+ps*1]; |
| 2533 | // |
| 2534 | pD[1+ps*2] += w1 * pD[0+ps*2]; |
| 2535 | pD[2+ps*2] += w2 * pD[0+ps*2]; |
| 2536 | pD[3+ps*2] += w3 * pD[0+ps*2]; |
| 2537 | beta = pD[1+ps*2] * pD[1+ps*2]; |
| 2538 | // |
| 2539 | pD[1+ps*3] += w1 * pD[0+ps*3]; |
| 2540 | pD[2+ps*3] += w2 * pD[0+ps*3]; |
| 2541 | pD[3+ps*3] += w3 * pD[0+ps*3]; |
| 2542 | beta += pD[1+ps*3] * pD[1+ps*3]; |
| 2543 | // |
| 2544 | for(ii=4; ii<n; ii++) |
| 2545 | { |
| 2546 | pD[1+ps*ii] += w1 * pD[0+ps*ii]; |
| 2547 | pD[2+ps*ii] += w2 * pD[0+ps*ii]; |
| 2548 | pD[3+ps*ii] += w3 * pD[0+ps*ii]; |
| 2549 | beta += pD[1+ps*ii] * pD[1+ps*ii]; |
| 2550 | } |
| 2551 | // second column |
| 2552 | col2: |
| 2553 | if(beta==0.0) |
| 2554 | { |
| 2555 | dD[1] = 0.0; |
| 2556 | tmp = 0.0; |
| 2557 | goto col3; |
| 2558 | } |
| 2559 | alpha = pD[1+ps*1]; |
| 2560 | beta += alpha*alpha; |
| 2561 | beta = sqrt(beta); |
| 2562 | if(alpha>0) |
| 2563 | beta = -beta; |
| 2564 | dD[1] = (beta-alpha) / beta; |
| 2565 | pT[1+ps*1] = - dD[1]; |
| 2566 | tmp = 1.0 / (alpha-beta); |
| 2567 | // |
| 2568 | pD[1+ps*1] = beta; |
| 2569 | w0 = pD[0+ps*1]; // |
| 2570 | w2 = pD[2+ps*1]; |
| 2571 | w3 = pD[3+ps*1]; |
| 2572 | // |
| 2573 | pD[1+ps*2] *= tmp; |
| 2574 | w0 += pD[0+ps*2] * pD[1+ps*2]; // |
| 2575 | w2 += pD[2+ps*2] * pD[1+ps*2]; |
| 2576 | w3 += pD[3+ps*2] * pD[1+ps*2]; |
| 2577 | // |
| 2578 | pD[1+ps*3] *= tmp; |
| 2579 | w0 += pD[0+ps*3] * pD[1+ps*3]; // |
| 2580 | w2 += pD[2+ps*3] * pD[1+ps*3]; |
| 2581 | w3 += pD[3+ps*3] * pD[1+ps*3]; |
| 2582 | // |
| 2583 | for(ii=4; ii<n; ii++) |
| 2584 | { |
| 2585 | pD[1+ps*ii] *= tmp; |
| 2586 | w0 += pD[0+ps*ii] * pD[1+ps*ii]; // |
| 2587 | w2 += pD[2+ps*ii] * pD[1+ps*ii]; |
| 2588 | w3 += pD[3+ps*ii] * pD[1+ps*ii]; |
| 2589 | } |
| 2590 | // |
| 2591 | pT[0+ps*1] = - dD[1] * (w0*pT[0+ps*0]); |
| 2592 | w2 = - dD[1] * w2; |
| 2593 | w3 = - dD[1] * w3; |
| 2594 | // |
| 2595 | pD[2+ps*1] += w2; |
| 2596 | pD[3+ps*1] += w3; |
| 2597 | // |
| 2598 | pD[2+ps*2] += w2 * pD[1+ps*2]; |
| 2599 | pD[3+ps*2] += w3 * pD[1+ps*2]; |
| 2600 | // |
| 2601 | pD[2+ps*3] += w2 * pD[1+ps*3]; |
| 2602 | pD[3+ps*3] += w3 * pD[1+ps*3]; |
| 2603 | beta = pD[2+ps*3] * pD[2+ps*3]; |
| 2604 | // |
| 2605 | for(ii=4; ii<n; ii++) |
| 2606 | { |
| 2607 | pD[2+ps*ii] += w2 * pD[1+ps*ii]; |
| 2608 | pD[3+ps*ii] += w3 * pD[1+ps*ii]; |
| 2609 | beta += pD[2+ps*ii] * pD[2+ps*ii]; |
| 2610 | } |
| 2611 | // third column |
| 2612 | col3: |
| 2613 | if(beta==0.0) |
| 2614 | { |
| 2615 | dD[2] = 0.0; |
| 2616 | tmp = 0.0; |
| 2617 | goto col4; |
| 2618 | } |
| 2619 | alpha = pD[2+ps*2]; |
| 2620 | beta += alpha*alpha; |
| 2621 | beta = sqrt(beta); |
| 2622 | if(alpha>0) |
| 2623 | beta = -beta; |
| 2624 | dD[2] = (beta-alpha) / beta; |
| 2625 | pT[2+ps*2] = - dD[2]; |
| 2626 | tmp = 1.0 / (alpha-beta); |
| 2627 | // |
| 2628 | pD[2+ps*2] = beta; |
| 2629 | w0 = pD[0+ps*2]; |
| 2630 | w1 = pD[1+ps*2]; |
| 2631 | w3 = pD[3+ps*2]; |
| 2632 | // |
| 2633 | pD[2+ps*3] *= tmp; |
| 2634 | w0 += pD[0+ps*3] * pD[2+ps*3]; |
| 2635 | w1 += pD[1+ps*3] * pD[2+ps*3]; |
| 2636 | w3 += pD[3+ps*3] * pD[2+ps*3]; |
| 2637 | // |
| 2638 | for(ii=4; ii<n; ii++) |
| 2639 | { |
| 2640 | pD[2+ps*ii] *= tmp; |
| 2641 | w0 += pD[0+ps*ii] * pD[2+ps*ii]; |
| 2642 | w1 += pD[1+ps*ii] * pD[2+ps*ii]; |
| 2643 | w3 += pD[3+ps*ii] * pD[2+ps*ii]; |
| 2644 | } |
| 2645 | // |
| 2646 | pT[1+ps*2] = - dD[2] * (w1*pT[1+ps*1]); |
| 2647 | pT[0+ps*2] = - dD[2] * (w0*pT[0+ps*0] + w1*pT[0+ps*1]); |
| 2648 | w3 = - dD[2] * w3; |
| 2649 | // |
| 2650 | pD[3+ps*2] += w3; |
| 2651 | // |
| 2652 | pD[3+ps*3] += w3 * pD[2+ps*3]; |
| 2653 | // |
| 2654 | beta = 0.0; |
| 2655 | for(ii=4; ii<n; ii++) |
| 2656 | { |
| 2657 | pD[3+ps*ii] += w3 * pD[2+ps*ii]; |
| 2658 | beta += pD[3+ps*ii] * pD[3+ps*ii]; |
| 2659 | } |
| 2660 | // fourth column |
| 2661 | col4: |
| 2662 | if(beta==0.0) |
| 2663 | { |
| 2664 | dD[3] = 0.0; |
| 2665 | tmp = 0.0; |
| 2666 | return; |
| 2667 | } |
| 2668 | alpha = pD[3+ps*3]; |
| 2669 | beta += alpha*alpha; |
| 2670 | beta = sqrt(beta); |
| 2671 | if(alpha>0) |
| 2672 | beta = -beta; |
| 2673 | dD[3] = (beta-alpha) / beta; |
| 2674 | pT[3+ps*3] = - dD[3]; |
| 2675 | tmp = 1.0 / (alpha-beta); |
| 2676 | // |
| 2677 | pD[3+ps*3] = beta; |
| 2678 | w0 = pD[0+ps*3]; |
| 2679 | w1 = pD[1+ps*3]; |
| 2680 | w2 = pD[2+ps*3]; |
| 2681 | // |
| 2682 | for(ii=4; ii<n; ii++) |
| 2683 | { |
| 2684 | pD[3+ps*ii] *= tmp; |
| 2685 | w0 += pD[0+ps*ii] * pD[3+ps*ii]; |
| 2686 | w1 += pD[1+ps*ii] * pD[3+ps*ii]; |
| 2687 | w2 += pD[2+ps*ii] * pD[3+ps*ii]; |
| 2688 | } |
| 2689 | // |
| 2690 | pT[2+ps*3] = - dD[3] * (w2*pT[2+ps*2]); |
| 2691 | pT[1+ps*3] = - dD[3] * (w1*pT[1+ps*1] + w2*pT[1+ps*2]); |
| 2692 | pT[0+ps*3] = - dD[3] * (w0*pT[0+ps*0] + w1*pT[0+ps*1] + w2*pT[0+ps*2]); |
| 2693 | return; |
| 2694 | } |
| 2695 | #endif |
| 2696 | |
| 2697 | |
| 2698 | |
| 2699 | void kernel_dlarfb4_r_1_lib4(int kmax, double *pV, double *pT, double *pD) |
| 2700 | { |
| 2701 | const int ps = 4; |
| 2702 | double pW[16]; |
| 2703 | int kk; |
| 2704 | // 0 |
| 2705 | pW[0+ps*0] = pD[0+ps*0]; |
| 2706 | // 1 |
| 2707 | pW[0+ps*0] += pD[0+ps*1]*pV[0+ps*1]; |
| 2708 | pW[0+ps*1] = pD[0+ps*1]; |
| 2709 | // 2 |
| 2710 | pW[0+ps*0] += pD[0+ps*2]*pV[0+ps*2]; |
| 2711 | pW[0+ps*1] += pD[0+ps*2]*pV[1+ps*2]; |
| 2712 | pW[0+ps*2] = pD[0+ps*2]; |
| 2713 | // 3 |
| 2714 | pW[0+ps*0] += pD[0+ps*3]*pV[0+ps*3]; |
| 2715 | pW[0+ps*1] += pD[0+ps*3]*pV[1+ps*3]; |
| 2716 | pW[0+ps*2] += pD[0+ps*3]*pV[2+ps*3]; |
| 2717 | pW[0+ps*3] = pD[0+ps*3]; |
| 2718 | // |
| 2719 | for(kk=4; kk<kmax; kk++) |
| 2720 | { |
| 2721 | pW[0+ps*0] += pD[0+ps*kk]*pV[0+ps*kk]; |
| 2722 | pW[0+ps*1] += pD[0+ps*kk]*pV[1+ps*kk]; |
| 2723 | pW[0+ps*2] += pD[0+ps*kk]*pV[2+ps*kk]; |
| 2724 | pW[0+ps*3] += pD[0+ps*kk]*pV[3+ps*kk]; |
| 2725 | } |
| 2726 | // |
| 2727 | pW[0+ps*3] = pW[0+ps*0]*pT[0+ps*3] + pW[0+ps*1]*pT[1+ps*3] + pW[0+ps*2]*pT[2+ps*3] + pW[0+ps*3]*pT[3+ps*3]; |
| 2728 | // |
| 2729 | pW[0+ps*2] = pW[0+ps*0]*pT[0+ps*2] + pW[0+ps*1]*pT[1+ps*2] + pW[0+ps*2]*pT[2+ps*2]; |
| 2730 | // |
| 2731 | pW[0+ps*1] = pW[0+ps*0]*pT[0+ps*1] + pW[0+ps*1]*pT[1+ps*1]; |
| 2732 | // |
| 2733 | pW[0+ps*0] = pW[0+ps*0]*pT[0+ps*0]; |
| 2734 | // |
| 2735 | pD[0+ps*0] += pW[0+ps*0]; |
| 2736 | // |
| 2737 | pD[0+ps*1] += pW[0+ps*0]*pV[0+ps*1] + pW[0+ps*1]; |
| 2738 | // |
| 2739 | pD[0+ps*2] += pW[0+ps*0]*pV[0+ps*2] + pW[0+ps*1]*pV[1+ps*2] + pW[0+ps*2]; |
| 2740 | // |
| 2741 | pD[0+ps*3] += pW[0+ps*0]*pV[0+ps*3] + pW[0+ps*1]*pV[1+ps*3] + pW[0+ps*2]*pV[2+ps*3] + pW[0+ps*3]; |
| 2742 | for(kk=4; kk<kmax; kk++) |
| 2743 | { |
| 2744 | pD[0+ps*kk] += pW[0+ps*0]*pV[0+ps*kk] + pW[0+ps*1]*pV[1+ps*kk] + pW[0+ps*2]*pV[2+ps*kk] + pW[0+ps*3]*pV[3+ps*kk]; |
| 2745 | } |
| 2746 | return; |
| 2747 | } |
| 2748 | |
| 2749 | |
| 2750 | |
| 2751 | |