Austin Schuh | 9a24b37 | 2018-01-28 16:12:29 -0800 | [diff] [blame^] | 1 | /************************************************************************************************** |
| 2 | * * |
| 3 | * This file is part of BLASFEO. * |
| 4 | * * |
| 5 | * BLASFEO -- BLAS For Embedded Optimization. * |
| 6 | * Copyright (C) 2016-2017 by Gianluca Frison. * |
| 7 | * Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. * |
| 8 | * All rights reserved. * |
| 9 | * * |
| 10 | * HPMPC is free software; you can redistribute it and/or * |
| 11 | * modify it under the terms of the GNU Lesser General Public * |
| 12 | * License as published by the Free Software Foundation; either * |
| 13 | * version 2.1 of the License, or (at your option) any later version. * |
| 14 | * * |
| 15 | * HPMPC is distributed in the hope that it will be useful, * |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| 18 | * See the GNU Lesser General Public License for more details. * |
| 19 | * * |
| 20 | * You should have received a copy of the GNU Lesser General Public * |
| 21 | * License along with HPMPC; if not, write to the Free Software * |
| 22 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| 23 | * * |
| 24 | * Author: Gianluca Frison, giaf (at) dtu.dk * |
| 25 | * gianluca.frison (at) imtek.uni-freiburg.de * |
| 26 | * * |
| 27 | **************************************************************************************************/ |
| 28 | |
| 29 | |
| 30 | |
| 31 | // transposed of general matrices, read along panels, write across panels |
| 32 | void kernel_dgetr_4_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| 33 | { |
| 34 | |
| 35 | if(tri==1) |
| 36 | { |
| 37 | // A is lower triangular, C is upper triangular |
| 38 | // kmax+1 4-wide + end 3x3 triangle |
| 39 | |
| 40 | kmax += 1; |
| 41 | } |
| 42 | |
| 43 | const int bs = 4; |
| 44 | |
| 45 | int k; |
| 46 | |
| 47 | k = 0; |
| 48 | |
| 49 | if(kmax<kna) |
| 50 | goto cleanup_loop; |
| 51 | |
| 52 | if(kna>0) |
| 53 | { |
| 54 | for( ; k<kna; k++) |
| 55 | { |
| 56 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 57 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 58 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 59 | C[0+bs*3] = alpha * A[3+bs*0]; |
| 60 | |
| 61 | C += 1; |
| 62 | A += bs; |
| 63 | } |
| 64 | C += bs*(sdc-1); |
| 65 | } |
| 66 | |
| 67 | for( ; k<kmax-3; k+=4) |
| 68 | { |
| 69 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 70 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 71 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 72 | C[0+bs*3] = alpha * A[3+bs*0]; |
| 73 | |
| 74 | C[1+bs*0] = alpha * A[0+bs*1]; |
| 75 | C[1+bs*1] = alpha * A[1+bs*1]; |
| 76 | C[1+bs*2] = alpha * A[2+bs*1]; |
| 77 | C[1+bs*3] = alpha * A[3+bs*1]; |
| 78 | |
| 79 | C[2+bs*0] = alpha * A[0+bs*2]; |
| 80 | C[2+bs*1] = alpha * A[1+bs*2]; |
| 81 | C[2+bs*2] = alpha * A[2+bs*2]; |
| 82 | C[2+bs*3] = alpha * A[3+bs*2]; |
| 83 | |
| 84 | C[3+bs*0] = alpha * A[0+bs*3]; |
| 85 | C[3+bs*1] = alpha * A[1+bs*3]; |
| 86 | C[3+bs*2] = alpha * A[2+bs*3]; |
| 87 | C[3+bs*3] = alpha * A[3+bs*3]; |
| 88 | |
| 89 | C += bs*sdc; |
| 90 | A += bs*bs; |
| 91 | } |
| 92 | |
| 93 | cleanup_loop: |
| 94 | |
| 95 | for( ; k<kmax; k++) |
| 96 | { |
| 97 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 98 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 99 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 100 | C[0+bs*3] = alpha * A[3+bs*0]; |
| 101 | |
| 102 | C += 1; |
| 103 | A += bs; |
| 104 | } |
| 105 | |
| 106 | if(tri==1) |
| 107 | { |
| 108 | // end 3x3 triangle |
| 109 | kna = (bs-(bs-kna+kmax)%bs)%bs; |
| 110 | |
| 111 | if(kna==1) |
| 112 | { |
| 113 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 114 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 115 | C[0+bs*3] = alpha * A[3+bs*0]; |
| 116 | C[1+bs*(sdc+1)] = alpha * A[2+bs*1]; |
| 117 | C[1+bs*(sdc+2)] = alpha * A[3+bs*1]; |
| 118 | C[2+bs*(sdc+2)] = alpha * A[3+bs*2]; |
| 119 | } |
| 120 | else if(kna==2) |
| 121 | { |
| 122 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 123 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 124 | C[0+bs*3] = alpha * A[3+bs*0]; |
| 125 | C[1+bs*2] = alpha * A[2+bs*1]; |
| 126 | C[1+bs*3] = alpha * A[3+bs*1]; |
| 127 | C[2+bs*(sdc+2)] = alpha * A[3+bs*2]; |
| 128 | } |
| 129 | else |
| 130 | { |
| 131 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 132 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 133 | C[0+bs*3] = alpha * A[3+bs*0]; |
| 134 | C[1+bs*2] = alpha * A[2+bs*1]; |
| 135 | C[1+bs*3] = alpha * A[3+bs*1]; |
| 136 | C[2+bs*3] = alpha * A[3+bs*2]; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | } |
| 141 | |
| 142 | |
| 143 | |
| 144 | // transposed of general matrices, read along panels, write across panels |
| 145 | void kernel_dgetr_3_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| 146 | { |
| 147 | |
| 148 | if(tri==1) |
| 149 | { |
| 150 | // A is lower triangular, C is upper triangular |
| 151 | // kmax+1 3-wide + end 2x2 triangle |
| 152 | |
| 153 | kmax += 1; |
| 154 | } |
| 155 | |
| 156 | const int bs = 4; |
| 157 | |
| 158 | int k; |
| 159 | |
| 160 | k = 0; |
| 161 | |
| 162 | if(kmax<kna) |
| 163 | goto cleanup_loop; |
| 164 | |
| 165 | if(kna>0) |
| 166 | { |
| 167 | for( ; k<kna; k++) |
| 168 | { |
| 169 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 170 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 171 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 172 | |
| 173 | C += 1; |
| 174 | A += bs; |
| 175 | } |
| 176 | C += bs*(sdc-1); |
| 177 | } |
| 178 | |
| 179 | for( ; k<kmax-3; k+=4) |
| 180 | { |
| 181 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 182 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 183 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 184 | |
| 185 | C[1+bs*0] = alpha * A[0+bs*1]; |
| 186 | C[1+bs*1] = alpha * A[1+bs*1]; |
| 187 | C[1+bs*2] = alpha * A[2+bs*1]; |
| 188 | |
| 189 | C[2+bs*0] = alpha * A[0+bs*2]; |
| 190 | C[2+bs*1] = alpha * A[1+bs*2]; |
| 191 | C[2+bs*2] = alpha * A[2+bs*2]; |
| 192 | |
| 193 | C[3+bs*0] = alpha * A[0+bs*3]; |
| 194 | C[3+bs*1] = alpha * A[1+bs*3]; |
| 195 | C[3+bs*2] = alpha * A[2+bs*3]; |
| 196 | |
| 197 | C += bs*sdc; |
| 198 | A += bs*bs; |
| 199 | } |
| 200 | |
| 201 | cleanup_loop: |
| 202 | |
| 203 | for( ; k<kmax; k++) |
| 204 | { |
| 205 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 206 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 207 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 208 | |
| 209 | C += 1; |
| 210 | A += bs; |
| 211 | } |
| 212 | |
| 213 | if(tri==1) |
| 214 | { |
| 215 | // end 2x2 triangle |
| 216 | kna = (bs-(bs-kna+kmax)%bs)%bs; |
| 217 | |
| 218 | if(kna==1) |
| 219 | { |
| 220 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 221 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 222 | C[1+bs*(sdc+1)] = alpha * A[2+bs*1]; |
| 223 | } |
| 224 | else |
| 225 | { |
| 226 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 227 | C[0+bs*2] = alpha * A[2+bs*0]; |
| 228 | C[1+bs*2] = alpha * A[2+bs*1]; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | } |
| 233 | |
| 234 | |
| 235 | |
| 236 | // transposed of general matrices, read along panels, write across panels |
| 237 | void kernel_dgetr_2_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| 238 | { |
| 239 | |
| 240 | if(tri==1) |
| 241 | { |
| 242 | // A is lower triangular, C is upper triangular |
| 243 | // kmax+1 2-wide + end 1x1 triangle |
| 244 | |
| 245 | kmax += 1; |
| 246 | } |
| 247 | |
| 248 | const int bs = 4; |
| 249 | |
| 250 | int k; |
| 251 | |
| 252 | k = 0; |
| 253 | |
| 254 | if(kmax<kna) |
| 255 | goto cleanup_loop; |
| 256 | |
| 257 | if(kna>0) |
| 258 | { |
| 259 | for( ; k<kna; k++) |
| 260 | { |
| 261 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 262 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 263 | |
| 264 | C += 1; |
| 265 | A += bs; |
| 266 | } |
| 267 | C += bs*(sdc-1); |
| 268 | } |
| 269 | |
| 270 | for( ; k<kmax-3; k+=4) |
| 271 | { |
| 272 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 273 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 274 | |
| 275 | C[1+bs*0] = alpha * A[0+bs*1]; |
| 276 | C[1+bs*1] = alpha * A[1+bs*1]; |
| 277 | |
| 278 | C[2+bs*0] = alpha * A[0+bs*2]; |
| 279 | C[2+bs*1] = alpha * A[1+bs*2]; |
| 280 | |
| 281 | C[3+bs*0] = alpha * A[0+bs*3]; |
| 282 | C[3+bs*1] = alpha * A[1+bs*3]; |
| 283 | |
| 284 | C += bs*sdc; |
| 285 | A += bs*bs; |
| 286 | } |
| 287 | |
| 288 | cleanup_loop: |
| 289 | |
| 290 | for( ; k<kmax; k++) |
| 291 | { |
| 292 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 293 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 294 | |
| 295 | C += 1; |
| 296 | A += bs; |
| 297 | } |
| 298 | |
| 299 | if(tri==1) |
| 300 | { |
| 301 | // end 1x1 triangle |
| 302 | C[0+bs*1] = alpha * A[1+bs*0]; |
| 303 | } |
| 304 | |
| 305 | } |
| 306 | |
| 307 | |
| 308 | |
| 309 | // transposed of general matrices, read along panels, write across panels |
| 310 | void kernel_dgetr_1_lib4(int tri, int kmax, int kna, double alpha, double *A, double *C, int sdc) |
| 311 | { |
| 312 | |
| 313 | if(tri==1) |
| 314 | { |
| 315 | // A is lower triangular, C is upper triangular |
| 316 | // kmax+1 1-wide |
| 317 | |
| 318 | kmax += 1; |
| 319 | } |
| 320 | |
| 321 | const int bs = 4; |
| 322 | |
| 323 | int k; |
| 324 | |
| 325 | k = 0; |
| 326 | |
| 327 | if(kmax<kna) |
| 328 | goto cleanup_loop; |
| 329 | |
| 330 | if(kna>0) |
| 331 | { |
| 332 | for( ; k<kna; k++) |
| 333 | { |
| 334 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 335 | |
| 336 | C += 1; |
| 337 | A += bs; |
| 338 | } |
| 339 | C += bs*(sdc-1); |
| 340 | } |
| 341 | |
| 342 | for( ; k<kmax-3; k+=4) |
| 343 | { |
| 344 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 345 | |
| 346 | C[1+bs*0] = alpha * A[0+bs*1]; |
| 347 | |
| 348 | C[2+bs*0] = alpha * A[0+bs*2]; |
| 349 | |
| 350 | C[3+bs*0] = alpha * A[0+bs*3]; |
| 351 | |
| 352 | C += bs*sdc; |
| 353 | A += bs*bs; |
| 354 | } |
| 355 | |
| 356 | cleanup_loop: |
| 357 | |
| 358 | for( ; k<kmax; k++) |
| 359 | { |
| 360 | C[0+bs*0] = alpha * A[0+bs*0]; |
| 361 | |
| 362 | C += 1; |
| 363 | A += bs; |
| 364 | } |
| 365 | |
| 366 | } |
| 367 | |
| 368 | |
| 369 | |
| 370 | // transposed of general matrices, read across panels, write along panels |
| 371 | void kernel_dgetr_4_0_lib4(int kmax, double *A, int sda, double *B) |
| 372 | { |
| 373 | const int ps = 4; |
| 374 | int k; |
| 375 | for(k=0; k<kmax-3; k+=4) |
| 376 | { |
| 377 | // |
| 378 | B[0+ps*0] = A[0+ps*0]; |
| 379 | B[0+ps*1] = A[1+ps*0]; |
| 380 | B[0+ps*2] = A[2+ps*0]; |
| 381 | B[0+ps*3] = A[3+ps*0]; |
| 382 | // |
| 383 | B[1+ps*0] = A[0+ps*1]; |
| 384 | B[1+ps*1] = A[1+ps*1]; |
| 385 | B[1+ps*2] = A[2+ps*1]; |
| 386 | B[1+ps*3] = A[3+ps*1]; |
| 387 | // |
| 388 | B[2+ps*0] = A[0+ps*2]; |
| 389 | B[2+ps*1] = A[1+ps*2]; |
| 390 | B[2+ps*2] = A[2+ps*2]; |
| 391 | B[2+ps*3] = A[3+ps*2]; |
| 392 | // |
| 393 | B[3+ps*0] = A[0+ps*3]; |
| 394 | B[3+ps*1] = A[1+ps*3]; |
| 395 | B[3+ps*2] = A[2+ps*3]; |
| 396 | B[3+ps*3] = A[3+ps*3]; |
| 397 | |
| 398 | A += ps*sda; |
| 399 | B += ps*ps; |
| 400 | } |
| 401 | for( ; k<kmax; k++) |
| 402 | { |
| 403 | // |
| 404 | B[0+ps*0] = A[0+ps*0]; |
| 405 | B[1+ps*0] = A[0+ps*1]; |
| 406 | B[2+ps*0] = A[0+ps*2]; |
| 407 | B[3+ps*0] = A[0+ps*3]; |
| 408 | |
| 409 | A += 1; |
| 410 | B += ps; |
| 411 | } |
| 412 | return; |
| 413 | } |
| 414 | |