blob: 6ab8072955246891dec66e1406d60771a65364a6 [file] [log] [blame]
Austin Schuh48d60c12017-02-04 21:58:58 -08001#!/usr/bin/python
2
3from aos.common.util.trapezoid_profile import TrapezoidProfile
4from frc971.control_loops.python import control_loop
5from frc971.control_loops.python import controls
6import numpy
7import sys
8import matplotlib
9from matplotlib import pylab
10import gflags
11import glog
12
13FLAGS = gflags.FLAGS
14
15try:
16 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
17except gflags.DuplicateFlagError:
18 pass
19
20class Hood(control_loop.ControlLoop):
21 def __init__(self, name='Hood'):
22 super(Hood, self).__init__(name)
23 # Stall Torque in N m
24 self.stall_torque = 0.43
25 # Stall Current in Amps
26 self.stall_current = 53.0
27 # Free Speed in RPM
28 self.free_speed = 13180.0
29 # Free Current in Amps
30 self.free_current = 1.8
31
32 # Resistance of the motor
33 self.R = 12.0 / self.stall_current
34 # Motor velocity constant
35 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
36 (12.0 - self.R * self.free_current))
37 # Torque constant
38 self.Kt = self.stall_torque / self.stall_current
39 # First axle gear ratio off the motor
40 self.G1 = (12.0 / 60.0)
41 # Second axle gear ratio off the motor
42 self.G2 = self.G1 * (14.0 / 36.0)
43 # Third axle gear ratio off the motor
44 self.G3 = self.G2 * (14.0 / 36.0)
Austin Schuh0991edb2017-02-05 17:16:44 -080045 # The last gear reduction (encoder -> hood angle)
Ed Jordan8683f432017-02-12 00:13:26 +000046 self.last_G = (20.0 / 345.0)
Austin Schuh48d60c12017-02-04 21:58:58 -080047 # Gear ratio
Austin Schuh0991edb2017-02-05 17:16:44 -080048 self.G = (12.0 / 60.0) * (14.0 / 36.0) * (14.0 / 36.0) * self.last_G
Austin Schuh48d60c12017-02-04 21:58:58 -080049
50 # 36 tooth gear inertia in kg * m^2
51 self.big_gear_inertia = 0.5 * 0.039 * ((36.0 / 40.0 * 0.025) ** 2)
52
53 # Motor inertia in kg * m^2
54 self.motor_inertia = 0.000006
55 glog.debug(self.big_gear_inertia)
56
57 # Moment of inertia, measured in CAD.
58 # Extra mass to compensate for friction is added on.
59 self.J = 0.08 + \
60 self.big_gear_inertia * ((self.G1 / self.G) ** 2) + \
61 self.big_gear_inertia * ((self.G2 / self.G) ** 2) + \
62 self.motor_inertia * ((1.0 / self.G) ** 2.0)
63 glog.debug('J effective %f', self.J)
64
65 # Control loop time step
66 self.dt = 0.005
67
68 # State is [position, velocity]
69 # Input is [Voltage]
70
71 C1 = self.Kt / (self.R * self.J * self.Kv * self.G * self.G)
72 C2 = self.Kt / (self.J * self.R * self.G)
73
74 self.A_continuous = numpy.matrix(
75 [[0, 1],
76 [0, -C1]])
77
78 # Start with the unmodified input
79 self.B_continuous = numpy.matrix(
80 [[0],
81 [C2]])
82
83 self.C = numpy.matrix([[1, 0]])
84 self.D = numpy.matrix([[0]])
85
86 self.A, self.B = self.ContinuousToDiscrete(
87 self.A_continuous, self.B_continuous, self.dt)
88
89 controllability = controls.ctrb(self.A, self.B)
90
91 glog.debug('Free speed is %f',
92 -self.B_continuous[1, 0] / self.A_continuous[1, 1] * 12.0)
93 glog.debug(repr(self.A_continuous))
94
95 # Calculate the LQR controller gain
96 q_pos = 2.0
97 q_vel = 500.0
98 self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
99 [0.0, (1.0 / (q_vel ** 2.0))]])
100
101 self.R = numpy.matrix([[(5.0 / (12.0 ** 2.0))]])
102 self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
103
104 # Calculate the feed forwards gain.
105 q_pos_ff = 0.005
106 q_vel_ff = 1.0
107 self.Qff = numpy.matrix([[(1.0 / (q_pos_ff ** 2.0)), 0.0],
108 [0.0, (1.0 / (q_vel_ff ** 2.0))]])
109
110 self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
111
112 glog.debug('K %s', repr(self.K))
113 glog.debug('Poles are %s',
114 repr(numpy.linalg.eig(self.A - self.B * self.K)[0]))
115
116 q_pos = 0.10
117 q_vel = 1.65
118 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
119 [0.0, (q_vel ** 2.0)]])
120
121 r_volts = 0.025
122 self.R = numpy.matrix([[(r_volts ** 2.0)]])
123
124 self.KalmanGain, self.Q_steady = controls.kalman(
125 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
126
127 glog.debug('Kal %s', repr(self.KalmanGain))
128 self.L = self.A * self.KalmanGain
129 glog.debug('KalL is %s', repr(self.L))
130
131 # The box formed by U_min and U_max must encompass all possible values,
132 # or else Austin's code gets angry.
133 self.U_max = numpy.matrix([[12.0]])
134 self.U_min = numpy.matrix([[-12.0]])
135
136 self.InitializeState()
137
138class IntegralHood(Hood):
139 def __init__(self, name='IntegralHood'):
140 super(IntegralHood, self).__init__(name=name)
141
142 self.A_continuous_unaugmented = self.A_continuous
143 self.B_continuous_unaugmented = self.B_continuous
144
145 self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
146 self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
147 self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
148
149 self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
150 self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
151
152 self.C_unaugmented = self.C
153 self.C = numpy.matrix(numpy.zeros((1, 3)))
154 self.C[0:1, 0:2] = self.C_unaugmented
155
156 self.A, self.B = self.ContinuousToDiscrete(
157 self.A_continuous, self.B_continuous, self.dt)
158
159 q_pos = 0.12
160 q_vel = 2.00
161 q_voltage = 3.0
162 self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
163 [0.0, (q_vel ** 2.0), 0.0],
164 [0.0, 0.0, (q_voltage ** 2.0)]])
165
166 r_pos = 0.05
167 self.R = numpy.matrix([[(r_pos ** 2.0)]])
168
169 self.KalmanGain, self.Q_steady = controls.kalman(
170 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
171 self.L = self.A * self.KalmanGain
172
173 self.K_unaugmented = self.K
174 self.K = numpy.matrix(numpy.zeros((1, 3)))
175 self.K[0, 0:2] = self.K_unaugmented
176 self.K[0, 2] = 1
177
178 self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((1, 1)))), axis=1)
179
180 self.InitializeState()
181
182class ScenarioPlotter(object):
183 def __init__(self):
184 # Various lists for graphing things.
185 self.t = []
186 self.x = []
187 self.v = []
188 self.a = []
189 self.x_hat = []
190 self.u = []
191 self.offset = []
192
193 def run_test(self, hood, end_goal,
194 controller_hood,
195 observer_hood=None,
196 iterations=200):
197 """Runs the hood plant with an initial condition and goal.
198
199 Args:
200 hood: hood object to use.
201 end_goal: end_goal state.
202 controller_hood: Hood object to get K from, or None if we should
203 use hood.
204 observer_hood: Hood object to use for the observer, or None if we should
205 use the actual state.
206 iterations: Number of timesteps to run the model for.
207 """
208
209 if controller_hood is None:
210 controller_hood = hood
211
212 vbat = 12.0
213
214 if self.t:
215 initial_t = self.t[-1] + hood.dt
216 else:
217 initial_t = 0
218
219 goal = numpy.concatenate((hood.X, numpy.matrix(numpy.zeros((1, 1)))), axis=0)
220
221 profile = TrapezoidProfile(hood.dt)
222 profile.set_maximum_acceleration(10.0)
223 profile.set_maximum_velocity(1.0)
224 profile.SetGoal(goal[0, 0])
225
226 U_last = numpy.matrix(numpy.zeros((1, 1)))
227 for i in xrange(iterations):
228 observer_hood.Y = hood.Y
229 observer_hood.CorrectObserver(U_last)
230
231 self.offset.append(observer_hood.X_hat[2, 0])
232 self.x_hat.append(observer_hood.X_hat[0, 0])
233
234 next_goal = numpy.concatenate(
235 (profile.Update(end_goal[0, 0], end_goal[1, 0]),
236 numpy.matrix(numpy.zeros((1, 1)))),
237 axis=0)
238
239 ff_U = controller_hood.Kff * (next_goal - observer_hood.A * goal)
240
241 U_uncapped = controller_hood.K * (goal - observer_hood.X_hat) + ff_U
242 U = U_uncapped.copy()
243 U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
244 self.x.append(hood.X[0, 0])
245
246 if self.v:
247 last_v = self.v[-1]
248 else:
249 last_v = 0
250
251 self.v.append(hood.X[1, 0])
252 self.a.append((self.v[-1] - last_v) / hood.dt)
253
254 offset = 0.0
255 if i > 100:
256 offset = 2.0
257 hood.Update(U + offset)
258
259 observer_hood.PredictObserver(U)
260
261 self.t.append(initial_t + i * hood.dt)
262 self.u.append(U[0, 0])
263
264 ff_U -= U_uncapped - U
265 goal = controller_hood.A * goal + controller_hood.B * ff_U
266
267 if U[0, 0] != U_uncapped[0, 0]:
268 profile.MoveCurrentState(
269 numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
270
271 glog.debug('Time: %f', self.t[-1])
272 glog.debug('goal_error %s', repr(end_goal - goal))
273 glog.debug('error %s', repr(observer_hood.X_hat - end_goal))
274
275 def Plot(self):
276 pylab.subplot(3, 1, 1)
277 pylab.plot(self.t, self.x, label='x')
278 pylab.plot(self.t, self.x_hat, label='x_hat')
279 pylab.legend()
280
281 pylab.subplot(3, 1, 2)
282 pylab.plot(self.t, self.u, label='u')
283 pylab.plot(self.t, self.offset, label='voltage_offset')
284 pylab.legend()
285
286 pylab.subplot(3, 1, 3)
287 pylab.plot(self.t, self.a, label='a')
288 pylab.legend()
289
290 pylab.show()
291
292
293def main(argv):
294
295 scenario_plotter = ScenarioPlotter()
296
297 hood = Hood()
298 hood_controller = IntegralHood()
299 observer_hood = IntegralHood()
300
301 # Test moving the hood with constant separation.
302 initial_X = numpy.matrix([[0.0], [0.0]])
303 R = numpy.matrix([[numpy.pi/2.0], [0.0], [0.0]])
304 scenario_plotter.run_test(hood, end_goal=R,
305 controller_hood=hood_controller,
306 observer_hood=observer_hood, iterations=200)
307
308 if FLAGS.plot:
309 scenario_plotter.Plot()
310
311 # Write the generated constants out to a file.
312 if len(argv) != 5:
313 glog.fatal('Expected .h file name and .cc file name for the hood and integral hood.')
314 else:
315 namespaces = ['y2017', 'control_loops', 'superstructure', 'hood']
316 hood = Hood('Hood')
317 loop_writer = control_loop.ControlLoopWriter('Hood', [hood],
318 namespaces=namespaces)
319 loop_writer.Write(argv[1], argv[2])
320
321 integral_hood = IntegralHood('IntegralHood')
322 integral_loop_writer = control_loop.ControlLoopWriter('IntegralHood', [integral_hood],
323 namespaces=namespaces)
Austin Schuh0991edb2017-02-05 17:16:44 -0800324 integral_loop_writer.AddConstant(control_loop.Constant('kLastReduction', '%f',
325 integral_hood.last_G))
Austin Schuh48d60c12017-02-04 21:58:58 -0800326 integral_loop_writer.Write(argv[3], argv[4])
327
328
329if __name__ == '__main__':
330 argv = FLAGS(sys.argv)
331 glog.init()
332 sys.exit(main(argv))