Brian Silverman | 7c33ab2 | 2018-08-04 17:14:51 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Simulation of an ensemble of Roessler attractors using NT2 SIMD library |
| 3 | * This requires the SIMD library headers. |
| 4 | * |
| 5 | * Copyright 2014 Mario Mulansky |
| 6 | * |
| 7 | * Distributed under the Boost Software License, Version 1.0. |
| 8 | * (See accompanying file LICENSE_1_0.txt or |
| 9 | * copy at http://www.boost.org/LICENSE_1_0.txt) |
| 10 | * |
| 11 | */ |
| 12 | |
| 13 | |
| 14 | #include <iostream> |
| 15 | #include <vector> |
| 16 | #include <random> |
| 17 | |
| 18 | #include <boost/timer.hpp> |
| 19 | #include <boost/array.hpp> |
| 20 | |
| 21 | #include <boost/numeric/odeint.hpp> |
| 22 | #include <boost/simd/sdk/simd/pack.hpp> |
| 23 | #include <boost/simd/sdk/simd/io.hpp> |
| 24 | #include <boost/simd/memory/allocator.hpp> |
| 25 | #include <boost/simd/include/functions/splat.hpp> |
| 26 | #include <boost/simd/include/functions/plus.hpp> |
| 27 | #include <boost/simd/include/functions/multiplies.hpp> |
| 28 | |
| 29 | |
| 30 | namespace odeint = boost::numeric::odeint; |
| 31 | namespace simd = boost::simd; |
| 32 | |
| 33 | typedef boost::timer timer_type; |
| 34 | |
| 35 | static const size_t dim = 3; // roessler is 3D |
| 36 | |
| 37 | typedef double fp_type; |
| 38 | //typedef float fp_type; |
| 39 | |
| 40 | typedef simd::pack<fp_type> simd_pack; |
| 41 | typedef boost::array<simd_pack, dim> state_type; |
| 42 | // use the simd allocator to get properly aligned memory |
| 43 | typedef std::vector< state_type, simd::allocator< state_type > > state_vec; |
| 44 | |
| 45 | static const size_t pack_size = simd_pack::static_size; |
| 46 | |
| 47 | //--------------------------------------------------------------------------- |
| 48 | struct roessler_system { |
| 49 | const fp_type m_a, m_b, m_c; |
| 50 | |
| 51 | roessler_system(const fp_type a, const fp_type b, const fp_type c) |
| 52 | : m_a(a), m_b(b), m_c(c) |
| 53 | {} |
| 54 | |
| 55 | void operator()(const state_type &x, state_type &dxdt, const fp_type t) const |
| 56 | { |
| 57 | dxdt[0] = -1.0*x[1] - x[2]; |
| 58 | dxdt[1] = x[0] + m_a * x[1]; |
| 59 | dxdt[2] = m_b + x[2] * (x[0] - m_c); |
| 60 | } |
| 61 | }; |
| 62 | |
| 63 | //--------------------------------------------------------------------------- |
| 64 | int main(int argc, char *argv[]) { |
| 65 | if(argc<3) |
| 66 | { |
| 67 | std::cerr << "Expected size and steps as parameter" << std::endl; |
| 68 | exit(1); |
| 69 | } |
| 70 | const size_t n = atoi(argv[1]); |
| 71 | const size_t steps = atoi(argv[2]); |
| 72 | |
| 73 | const fp_type dt = 0.01; |
| 74 | |
| 75 | const fp_type a = 0.2; |
| 76 | const fp_type b = 1.0; |
| 77 | const fp_type c = 9.0; |
| 78 | |
| 79 | // random initial conditions on the device |
| 80 | std::vector<fp_type> x(n), y(n), z(n); |
| 81 | std::default_random_engine generator; |
| 82 | std::uniform_real_distribution<fp_type> distribution_xy(-8.0, 8.0); |
| 83 | std::uniform_real_distribution<fp_type> distribution_z(0.0, 20.0); |
| 84 | auto rand_xy = std::bind(distribution_xy, std::ref(generator)); |
| 85 | auto rand_z = std::bind(distribution_z, std::ref(generator)); |
| 86 | std::generate(x.begin(), x.end(), rand_xy); |
| 87 | std::generate(y.begin(), y.end(), rand_xy); |
| 88 | std::generate(z.begin(), z.end(), rand_z); |
| 89 | |
| 90 | state_vec state(n/pack_size); |
| 91 | for(size_t i=0; i<n/pack_size; ++i) |
| 92 | { |
| 93 | for(size_t p=0; p<pack_size; ++p) |
| 94 | { |
| 95 | state[i][0][p] = x[i*pack_size+p]; |
| 96 | state[i][1][p] = y[i*pack_size+p]; |
| 97 | state[i][2][p] = z[i*pack_size+p]; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | std::cout << "Systems: " << n << std::endl; |
| 102 | std::cout << "Steps: " << steps << std::endl; |
| 103 | std::cout << "SIMD pack size: " << pack_size << std::endl; |
| 104 | |
| 105 | std::cout << state[0][0] << std::endl; |
| 106 | |
| 107 | // Stepper type |
| 108 | odeint::runge_kutta4_classic<state_type, fp_type, state_type, fp_type, |
| 109 | odeint::array_algebra, odeint::default_operations, |
| 110 | odeint::never_resizer> stepper; |
| 111 | |
| 112 | roessler_system sys(a, b, c); |
| 113 | |
| 114 | timer_type timer; |
| 115 | |
| 116 | fp_type t = 0.0; |
| 117 | |
| 118 | for(int step = 0; step < steps; step++) |
| 119 | { |
| 120 | for(size_t i = 0; i < n/pack_size; ++i) |
| 121 | { |
| 122 | stepper.do_step(sys, state[i], t, dt); |
| 123 | } |
| 124 | t += dt; |
| 125 | } |
| 126 | |
| 127 | std::cout.precision(16); |
| 128 | |
| 129 | std::cout << "Integration finished, runtime for " << steps << " steps: "; |
| 130 | std::cout << timer.elapsed() << " s" << std::endl; |
| 131 | |
| 132 | // compute some accumulation to make sure all results have been computed |
| 133 | simd_pack s_pack = 0.0; |
| 134 | for(size_t i = 0; i < n/pack_size; ++i) |
| 135 | { |
| 136 | s_pack += state[i][0]; |
| 137 | } |
| 138 | |
| 139 | fp_type s = 0.0; |
| 140 | for(size_t p=0; p<pack_size; ++p) |
| 141 | { |
| 142 | s += s_pack[p]; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | std::cout << state[0][0] << std::endl; |
| 147 | std::cout << s/n << std::endl; |
| 148 | |
| 149 | } |