Brian Silverman | 7c33ab2 | 2018-08-04 17:14:51 -0700 | [diff] [blame^] | 1 | /* |
| 2 | libs/numeric/odeint/examples/stochastic_euler.hpp |
| 3 | |
| 4 | Copyright 2012 Karsten Ahnert |
| 5 | Copyright 2012 Mario Mulansky |
| 6 | |
| 7 | Stochastic euler stepper example and Ornstein-Uhlenbeck process |
| 8 | |
| 9 | Distributed under the Boost Software License, Version 1.0. |
| 10 | (See accompanying file LICENSE_1_0.txt or |
| 11 | copy at http://www.boost.org/LICENSE_1_0.txt) |
| 12 | */ |
| 13 | |
| 14 | |
| 15 | #include <vector> |
| 16 | #include <iostream> |
| 17 | #include <boost/random.hpp> |
| 18 | #include <boost/array.hpp> |
| 19 | |
| 20 | #include <boost/numeric/odeint.hpp> |
| 21 | |
| 22 | |
| 23 | /* |
| 24 | //[ stochastic_euler_class_definition |
| 25 | template< size_t N > class stochastic_euler |
| 26 | { |
| 27 | public: |
| 28 | |
| 29 | typedef boost::array< double , N > state_type; |
| 30 | typedef boost::array< double , N > deriv_type; |
| 31 | typedef double value_type; |
| 32 | typedef double time_type; |
| 33 | typedef unsigned short order_type; |
| 34 | typedef boost::numeric::odeint::stepper_tag stepper_category; |
| 35 | |
| 36 | static order_type order( void ) { return 1; } |
| 37 | |
| 38 | // ... |
| 39 | }; |
| 40 | //] |
| 41 | */ |
| 42 | |
| 43 | |
| 44 | /* |
| 45 | //[ stochastic_euler_do_step |
| 46 | template< size_t N > class stochastic_euler |
| 47 | { |
| 48 | public: |
| 49 | |
| 50 | // ... |
| 51 | |
| 52 | template< class System > |
| 53 | void do_step( System system , state_type &x , time_type t , time_type dt ) const |
| 54 | { |
| 55 | deriv_type det , stoch ; |
| 56 | system.first( x , det ); |
| 57 | system.second( x , stoch ); |
| 58 | for( size_t i=0 ; i<x.size() ; ++i ) |
| 59 | x[i] += dt * det[i] + sqrt( dt ) * stoch[i]; |
| 60 | } |
| 61 | }; |
| 62 | //] |
| 63 | */ |
| 64 | |
| 65 | |
| 66 | |
| 67 | |
| 68 | //[ stochastic_euler_class |
| 69 | template< size_t N > |
| 70 | class stochastic_euler |
| 71 | { |
| 72 | public: |
| 73 | |
| 74 | typedef boost::array< double , N > state_type; |
| 75 | typedef boost::array< double , N > deriv_type; |
| 76 | typedef double value_type; |
| 77 | typedef double time_type; |
| 78 | typedef unsigned short order_type; |
| 79 | |
| 80 | typedef boost::numeric::odeint::stepper_tag stepper_category; |
| 81 | |
| 82 | static order_type order( void ) { return 1; } |
| 83 | |
| 84 | template< class System > |
| 85 | void do_step( System system , state_type &x , time_type t , time_type dt ) const |
| 86 | { |
| 87 | deriv_type det , stoch ; |
| 88 | system.first( x , det ); |
| 89 | system.second( x , stoch ); |
| 90 | for( size_t i=0 ; i<x.size() ; ++i ) |
| 91 | x[i] += dt * det[i] + sqrt( dt ) * stoch[i]; |
| 92 | } |
| 93 | }; |
| 94 | //] |
| 95 | |
| 96 | |
| 97 | |
| 98 | //[ stochastic_euler_ornstein_uhlenbeck_def |
| 99 | const static size_t N = 1; |
| 100 | typedef boost::array< double , N > state_type; |
| 101 | |
| 102 | struct ornstein_det |
| 103 | { |
| 104 | void operator()( const state_type &x , state_type &dxdt ) const |
| 105 | { |
| 106 | dxdt[0] = -x[0]; |
| 107 | } |
| 108 | }; |
| 109 | |
| 110 | struct ornstein_stoch |
| 111 | { |
| 112 | boost::mt19937 &m_rng; |
| 113 | boost::normal_distribution<> m_dist; |
| 114 | |
| 115 | ornstein_stoch( boost::mt19937 &rng , double sigma ) : m_rng( rng ) , m_dist( 0.0 , sigma ) { } |
| 116 | |
| 117 | void operator()( const state_type &x , state_type &dxdt ) |
| 118 | { |
| 119 | dxdt[0] = m_dist( m_rng ); |
| 120 | } |
| 121 | }; |
| 122 | //] |
| 123 | |
| 124 | struct streaming_observer |
| 125 | { |
| 126 | template< class State > |
| 127 | void operator()( const State &x , double t ) const |
| 128 | { |
| 129 | std::cout << t << "\t" << x[0] << "\n"; |
| 130 | } |
| 131 | }; |
| 132 | |
| 133 | |
| 134 | int main( int argc , char **argv ) |
| 135 | { |
| 136 | using namespace std; |
| 137 | using namespace boost::numeric::odeint; |
| 138 | |
| 139 | //[ ornstein_uhlenbeck_main |
| 140 | boost::mt19937 rng; |
| 141 | double dt = 0.1; |
| 142 | state_type x = {{ 1.0 }}; |
| 143 | integrate_const( stochastic_euler< N >() , make_pair( ornstein_det() , ornstein_stoch( rng , 1.0 ) ), |
| 144 | x , 0.0 , 10.0 , dt , streaming_observer() ); |
| 145 | //] |
| 146 | return 0; |
| 147 | } |