Brian Silverman | 7c33ab2 | 2018-08-04 17:14:51 -0700 | [diff] [blame^] | 1 | /* |
| 2 | [auto_generated] |
| 3 | libs/numeric/odeint/examples/black_hole.cpp |
| 4 | |
| 5 | [begin_description] |
| 6 | This example shows how the __float128 from gcc libquadmath can be used with odeint. |
| 7 | [end_description] |
| 8 | |
| 9 | Copyright 2012 Karsten Ahnert |
| 10 | Copyright 2012 Lee Hodgkinson |
| 11 | Copyright 2012 Mario Mulansky |
| 12 | |
| 13 | Distributed under the Boost Software License, Version 1.0. |
| 14 | (See accompanying file LICENSE_1_0.txt or |
| 15 | copy at http://www.boost.org/LICENSE_1_0.txt) |
| 16 | */ |
| 17 | |
| 18 | #include <cstdlib> |
| 19 | #include <cmath> |
| 20 | #include <iostream> |
| 21 | #include <iterator> |
| 22 | #include <utility> |
| 23 | #include <algorithm> |
| 24 | #include <cassert> |
| 25 | #include <vector> |
| 26 | #include <complex> |
| 27 | |
| 28 | extern "C" { |
| 29 | #include <quadmath.h> |
| 30 | } |
| 31 | |
| 32 | const __float128 zero =strtoflt128 ("0.0", NULL); |
| 33 | |
| 34 | namespace std { |
| 35 | |
| 36 | inline __float128 abs( __float128 x ) |
| 37 | { |
| 38 | return fabsq( x ); |
| 39 | } |
| 40 | |
| 41 | inline __float128 sqrt( __float128 x ) |
| 42 | { |
| 43 | return sqrtq( x ); |
| 44 | } |
| 45 | |
| 46 | inline __float128 pow( __float128 x , __float128 y ) |
| 47 | { |
| 48 | return powq( x , y ); |
| 49 | } |
| 50 | |
| 51 | inline __float128 abs( std::complex< __float128 > x ) |
| 52 | { |
| 53 | return sqrtq( x.real() * x.real() + x.imag() * x.imag() ); |
| 54 | } |
| 55 | |
| 56 | inline std::complex< __float128 > pow( std::complex< __float128> x , __float128 y ) |
| 57 | { |
| 58 | __float128 r = pow( abs(x) , y ); |
| 59 | __float128 phi = atanq( x.imag() / x.real() ); |
| 60 | return std::complex< __float128 >( r * cosq( y * phi ) , r * sinq( y * phi ) ); |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | inline std::ostream& operator<< (std::ostream& os, const __float128& f) { |
| 65 | |
| 66 | char* y = new char[1000]; |
| 67 | quadmath_snprintf(y, 1000, "%.30Qg", f) ; |
| 68 | os.precision(30); |
| 69 | os<<y; |
| 70 | delete[] y; |
| 71 | return os; |
| 72 | } |
| 73 | |
| 74 | |
| 75 | #include <boost/array.hpp> |
| 76 | #include <boost/range/algorithm.hpp> |
| 77 | #include <boost/range/adaptor/filtered.hpp> |
| 78 | #include <boost/range/numeric.hpp> |
| 79 | #include <boost/numeric/odeint.hpp> |
| 80 | |
| 81 | |
| 82 | |
| 83 | using namespace boost::numeric::odeint; |
| 84 | using namespace std; |
| 85 | |
| 86 | typedef __float128 my_float; |
| 87 | typedef std::vector< std::complex < my_float > > state_type; |
| 88 | |
| 89 | struct radMod |
| 90 | { |
| 91 | my_float m_om; |
| 92 | my_float m_l; |
| 93 | |
| 94 | radMod( my_float om , my_float l ) |
| 95 | : m_om( om ) , m_l( l ) { } |
| 96 | |
| 97 | void operator()( const state_type &x , state_type &dxdt , my_float r ) const |
| 98 | { |
| 99 | |
| 100 | dxdt[0] = x[1]; |
| 101 | dxdt[1] = -(2*(r-1)/(r*(r-2)))*x[1]-((m_om*m_om*r*r/((r-2)*(r-2)))-(m_l*(m_l+1)/(r*(r-2))))*x[0]; |
| 102 | } |
| 103 | }; |
| 104 | |
| 105 | |
| 106 | |
| 107 | |
| 108 | |
| 109 | |
| 110 | |
| 111 | int main( int argc , char **argv ) |
| 112 | { |
| 113 | |
| 114 | |
| 115 | state_type x(2); |
| 116 | |
| 117 | my_float re0 = strtoflt128( "-0.00008944230755601224204687038354994353820468" , NULL ); |
| 118 | my_float im0 = strtoflt128( "0.00004472229441850588228136889483397204368247" , NULL ); |
| 119 | my_float re1 = strtoflt128( "-4.464175354293244250869336196695966076150E-6 " , NULL ); |
| 120 | my_float im1 = strtoflt128( "-8.950483248390306670770345406051469584488E-6" , NULL ); |
| 121 | |
| 122 | x[0] = complex< my_float >( re0 ,im0 ); |
| 123 | x[1] = complex< my_float >( re1 ,im1 ); |
| 124 | |
| 125 | const my_float dt =strtoflt128 ("-0.001", NULL); |
| 126 | const my_float start =strtoflt128 ("10000.0", NULL); |
| 127 | const my_float end =strtoflt128 ("9990.0", NULL); |
| 128 | const my_float omega =strtoflt128 ("2.0", NULL); |
| 129 | const my_float ell =strtoflt128 ("1.0", NULL); |
| 130 | |
| 131 | |
| 132 | |
| 133 | my_float abs_err = strtoflt128( "1.0E-15" , NULL ) , rel_err = strtoflt128( "1.0E-10" , NULL ); |
| 134 | my_float a_x = strtoflt128( "1.0" , NULL ) , a_dxdt = strtoflt128( "1.0" , NULL ); |
| 135 | |
| 136 | typedef runge_kutta_dopri5< state_type, my_float > dopri5_type; |
| 137 | typedef controlled_runge_kutta< dopri5_type > controlled_dopri5_type; |
| 138 | typedef dense_output_runge_kutta< controlled_dopri5_type > dense_output_dopri5_type; |
| 139 | |
| 140 | dense_output_dopri5_type dopri5( controlled_dopri5_type( default_error_checker< my_float >( abs_err , rel_err , a_x , a_dxdt ) ) ); |
| 141 | |
| 142 | std::for_each( make_adaptive_time_iterator_begin(dopri5 , radMod(omega , ell) , x , start , end , dt) , |
| 143 | make_adaptive_time_iterator_end(dopri5 , radMod(omega , ell) , x ) , |
| 144 | []( const std::pair< state_type&, my_float > &x ) { |
| 145 | std::cout << x.second << ", " << x.first[0].real() << "\n"; } |
| 146 | ); |
| 147 | |
| 148 | |
| 149 | |
| 150 | return 0; |
| 151 | } |