Brian Silverman | 7c33ab2 | 2018-08-04 17:14:51 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * chaotic_system.cpp |
| 3 | * |
| 4 | * This example demonstrates how one can use odeint to determine the Lyapunov |
| 5 | * exponents of a chaotic system namely the well known Lorenz system. Furthermore, |
| 6 | * it shows how odeint interacts with boost.range. |
| 7 | * |
| 8 | * Copyright 2011-2012 Karsten Ahnert |
| 9 | * Copyright 2011-2013 Mario Mulansky |
| 10 | * |
| 11 | * Distributed under the Boost Software License, Version 1.0. |
| 12 | * (See accompanying file LICENSE_1_0.txt or |
| 13 | * copy at http://www.boost.org/LICENSE_1_0.txt) |
| 14 | */ |
| 15 | |
| 16 | |
| 17 | #include <iostream> |
| 18 | #include <boost/array.hpp> |
| 19 | |
| 20 | #include <boost/numeric/odeint.hpp> |
| 21 | |
| 22 | #include "gram_schmidt.hpp" |
| 23 | |
| 24 | using namespace std; |
| 25 | using namespace boost::numeric::odeint; |
| 26 | |
| 27 | |
| 28 | const double sigma = 10.0; |
| 29 | const double R = 28.0; |
| 30 | const double b = 8.0 / 3.0; |
| 31 | |
| 32 | //[ system_function_without_perturbations |
| 33 | struct lorenz |
| 34 | { |
| 35 | template< class State , class Deriv > |
| 36 | void operator()( const State &x_ , Deriv &dxdt_ , double t ) const |
| 37 | { |
| 38 | typename boost::range_iterator< const State >::type x = boost::begin( x_ ); |
| 39 | typename boost::range_iterator< Deriv >::type dxdt = boost::begin( dxdt_ ); |
| 40 | |
| 41 | dxdt[0] = sigma * ( x[1] - x[0] ); |
| 42 | dxdt[1] = R * x[0] - x[1] - x[0] * x[2]; |
| 43 | dxdt[2] = -b * x[2] + x[0] * x[1]; |
| 44 | } |
| 45 | }; |
| 46 | //] |
| 47 | |
| 48 | |
| 49 | |
| 50 | //[ system_function_with_perturbations |
| 51 | const size_t n = 3; |
| 52 | const size_t num_of_lyap = 3; |
| 53 | const size_t N = n + n*num_of_lyap; |
| 54 | |
| 55 | typedef boost::array< double , N > state_type; |
| 56 | typedef boost::array< double , num_of_lyap > lyap_type; |
| 57 | |
| 58 | void lorenz_with_lyap( const state_type &x , state_type &dxdt , double t ) |
| 59 | { |
| 60 | lorenz()( x , dxdt , t ); |
| 61 | |
| 62 | for( size_t l=0 ; l<num_of_lyap ; ++l ) |
| 63 | { |
| 64 | const double *pert = x.begin() + 3 + l * 3; |
| 65 | double *dpert = dxdt.begin() + 3 + l * 3; |
| 66 | dpert[0] = - sigma * pert[0] + 10.0 * pert[1]; |
| 67 | dpert[1] = ( R - x[2] ) * pert[0] - pert[1] - x[0] * pert[2]; |
| 68 | dpert[2] = x[1] * pert[0] + x[0] * pert[1] - b * pert[2]; |
| 69 | } |
| 70 | } |
| 71 | //] |
| 72 | |
| 73 | |
| 74 | |
| 75 | |
| 76 | |
| 77 | int main( int argc , char **argv ) |
| 78 | { |
| 79 | state_type x; |
| 80 | lyap_type lyap; |
| 81 | |
| 82 | fill( x.begin() , x.end() , 0.0 ); |
| 83 | x[0] = 10.0 ; x[1] = 10.0 ; x[2] = 5.0; |
| 84 | |
| 85 | const double dt = 0.01; |
| 86 | |
| 87 | //[ integrate_transients_with_range |
| 88 | // explicitly choose range_algebra to override default choice of array_algebra |
| 89 | runge_kutta4< state_type , double , state_type , double , range_algebra > rk4; |
| 90 | |
| 91 | // perform 10000 transient steps |
| 92 | integrate_n_steps( rk4 , lorenz() , std::make_pair( x.begin() , x.begin() + n ) , 0.0 , dt , 10000 ); |
| 93 | //] |
| 94 | |
| 95 | //[ lyapunov_full_code |
| 96 | fill( x.begin()+n , x.end() , 0.0 ); |
| 97 | for( size_t i=0 ; i<num_of_lyap ; ++i ) x[n+n*i+i] = 1.0; |
| 98 | fill( lyap.begin() , lyap.end() , 0.0 ); |
| 99 | |
| 100 | double t = 0.0; |
| 101 | size_t count = 0; |
| 102 | while( true ) |
| 103 | { |
| 104 | |
| 105 | t = integrate_n_steps( rk4 , lorenz_with_lyap , x , t , dt , 100 ); |
| 106 | gram_schmidt< num_of_lyap >( x , lyap , n ); |
| 107 | ++count; |
| 108 | |
| 109 | if( !(count % 100000) ) |
| 110 | { |
| 111 | cout << t; |
| 112 | for( size_t i=0 ; i<num_of_lyap ; ++i ) cout << "\t" << lyap[i] / t ; |
| 113 | cout << endl; |
| 114 | } |
| 115 | } |
| 116 | //] |
| 117 | |
| 118 | return 0; |
| 119 | } |