blob: ff1bec72ce5b0ea81e9034b1b8966accf0407529 [file] [log] [blame]
Austin Schuh745610d2015-09-06 18:19:50 -07001// Copyright (c) 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// ---
31// Author: Craig Silverstein
32//
33// The main purpose of this file is to patch the libc allocation
34// routines (malloc and friends, but also _msize and other
35// windows-specific libc-style routines). However, we also patch
36// windows routines to do accounting. We do better at the former than
37// the latter. Here are some comments from Paul Pluzhnikov about what
38// it might take to do a really good job patching windows routines to
39// keep track of memory usage:
40//
41// "You should intercept at least the following:
42// HeapCreate HeapDestroy HeapAlloc HeapReAlloc HeapFree
43// RtlCreateHeap RtlDestroyHeap RtlAllocateHeap RtlFreeHeap
44// malloc calloc realloc free
45// malloc_dbg calloc_dbg realloc_dbg free_dbg
46// Some of these call the other ones (but not always), sometimes
47// recursively (i.e. HeapCreate may call HeapAlloc on a different
48// heap, IIRC)."
49//
50// Since Paul didn't mention VirtualAllocEx, he may not have even been
51// considering all the mmap-like functions that windows has (or he may
52// just be ignoring it because he's seen we already patch it). Of the
53// above, we do not patch the *_dbg functions, and of the windows
54// functions, we only patch HeapAlloc and HeapFree.
55//
56// The *_dbg functions come into play with /MDd, /MTd, and /MLd,
57// probably. It may be ok to just turn off tcmalloc in those cases --
58// if the user wants the windows debug malloc, they probably don't
59// want tcmalloc! We should also test with all of /MD, /MT, and /ML,
60// which we're not currently doing.
61
62// TODO(csilvers): try to do better here? Paul does conclude:
63// "Keeping track of all of this was a nightmare."
64
65#ifndef _WIN32
66# error You should only be including windows/patch_functions.cc in a windows environment!
67#endif
68
69#include <config.h>
70
71#ifdef WIN32_OVERRIDE_ALLOCATORS
72#error This file is intended for patching allocators - use override_functions.cc instead.
73#endif
74
75// We use psapi. Non-MSVC systems will have to link this in themselves.
76#ifdef _MSC_VER
77#pragma comment(lib, "Psapi.lib")
78#endif
79
80// Make sure we always use the 'old' names of the psapi functions.
81#ifndef PSAPI_VERSION
82#define PSAPI_VERSION 1
83#endif
84
85#include <windows.h>
86#include <stdio.h>
87#include <malloc.h> // for _msize and _expand
88#include <psapi.h> // for EnumProcessModules, GetModuleInformation, etc.
89#include <set>
90#include <map>
91#include <vector>
92#include <base/logging.h>
93#include "base/spinlock.h"
94#include "gperftools/malloc_hook.h"
95#include "malloc_hook-inl.h"
96#include "preamble_patcher.h"
97
98// The maximum number of modules we allow to be in one executable
99const int kMaxModules = 8182;
100
101// These are hard-coded, unfortunately. :-( They are also probably
102// compiler specific. See get_mangled_names.cc, in this directory,
103// for instructions on how to update these names for your compiler.
104const char kMangledNew[] = "??2@YAPAXI@Z";
105const char kMangledNewArray[] = "??_U@YAPAXI@Z";
106const char kMangledDelete[] = "??3@YAXPAX@Z";
107const char kMangledDeleteArray[] = "??_V@YAXPAX@Z";
108const char kMangledNewNothrow[] = "??2@YAPAXIABUnothrow_t@std@@@Z";
109const char kMangledNewArrayNothrow[] = "??_U@YAPAXIABUnothrow_t@std@@@Z";
110const char kMangledDeleteNothrow[] = "??3@YAXPAXABUnothrow_t@std@@@Z";
111const char kMangledDeleteArrayNothrow[] = "??_V@YAXPAXABUnothrow_t@std@@@Z";
112
113// This is an unused but exported symbol that we can use to tell the
114// MSVC linker to bring in libtcmalloc, via the /INCLUDE linker flag.
115// Without this, the linker will likely decide that libtcmalloc.dll
116// doesn't add anything to the executable (since it does all its work
117// through patching, which the linker can't see), and ignore it
118// entirely. (The name 'tcmalloc' is already reserved for a
119// namespace. I'd rather export a variable named "_tcmalloc", but I
120// couldn't figure out how to get that to work. This function exports
121// the symbol "__tcmalloc".)
122extern "C" PERFTOOLS_DLL_DECL void _tcmalloc();
123void _tcmalloc() { }
124
125// This is the version needed for windows x64, which has a different
126// decoration scheme which doesn't auto-add a leading underscore.
127extern "C" PERFTOOLS_DLL_DECL void __tcmalloc();
128void __tcmalloc() { }
129
130namespace { // most everything here is in an unnamed namespace
131
132typedef void (*GenericFnPtr)();
133
134using sidestep::PreamblePatcher;
135
136struct ModuleEntryCopy; // defined below
137
138// These functions are how we override the memory allocation
139// functions, just like tcmalloc.cc and malloc_hook.cc do.
140
141// This is information about the routines we're patching, for a given
142// module that implements libc memory routines. A single executable
143// can have several libc implementations running about (in different
144// .dll's), and we need to patch/unpatch them all. This defines
145// everything except the new functions we're patching in, which
146// are defined in LibcFunctions, below.
147class LibcInfo {
148 public:
149 LibcInfo() {
150 memset(this, 0, sizeof(*this)); // easiest way to initialize the array
151 }
152
153 bool patched() const { return is_valid(); }
154 void set_is_valid(bool b) { is_valid_ = b; }
155 // According to http://msdn.microsoft.com/en-us/library/ms684229(VS.85).aspx:
156 // "The load address of a module (lpBaseOfDll) is the same as the HMODULE
157 // value."
158 HMODULE hmodule() const {
159 return reinterpret_cast<HMODULE>(const_cast<void*>(module_base_address_));
160 }
161
162 // Populates all the windows_fn_[] vars based on our module info.
163 // Returns false if windows_fn_ is all NULL's, because there's
164 // nothing to patch. Also populates the rest of the module_entry
165 // info, such as the module's name.
166 bool PopulateWindowsFn(const ModuleEntryCopy& module_entry);
167
168 protected:
169 void CopyFrom(const LibcInfo& that) {
170 if (this == &that)
171 return;
172 this->is_valid_ = that.is_valid_;
173 memcpy(this->windows_fn_, that.windows_fn_, sizeof(windows_fn_));
174 this->module_base_address_ = that.module_base_address_;
175 this->module_base_size_ = that.module_base_size_;
176 }
177
178 enum {
179 kMalloc, kFree, kRealloc, kCalloc,
180 kNew, kNewArray, kDelete, kDeleteArray,
181 kNewNothrow, kNewArrayNothrow, kDeleteNothrow, kDeleteArrayNothrow,
182 // These are windows-only functions from malloc.h
183 k_Msize, k_Expand,
184 // A MS CRT "internal" function, implemented using _calloc_impl
185 k_CallocCrt,
186 kNumFunctions
187 };
188
189 // I'd like to put these together in a struct (perhaps in the
190 // subclass, so we can put in perftools_fn_ as well), but vc8 seems
191 // to have a bug where it doesn't initialize the struct properly if
192 // we try to take the address of a function that's not yet loaded
193 // from a dll, as is the common case for static_fn_. So we need
194 // each to be in its own array. :-(
195 static const char* const function_name_[kNumFunctions];
196
197 // This function is only used when statically linking the binary.
198 // In that case, loading malloc/etc from the dll (via
199 // PatchOneModule) won't work, since there are no dlls. Instead,
200 // you just want to be taking the address of malloc/etc directly.
201 // In the common, non-static-link case, these pointers will all be
202 // NULL, since this initializer runs before msvcrt.dll is loaded.
203 static const GenericFnPtr static_fn_[kNumFunctions];
204
205 // This is the address of the function we are going to patch
206 // (malloc, etc). Other info about the function is in the
207 // patch-specific subclasses, below.
208 GenericFnPtr windows_fn_[kNumFunctions];
209
210 // This is set to true when this structure is initialized (because
211 // we're patching a new library) and set to false when it's
212 // uninitialized (because we've freed that library).
213 bool is_valid_;
214
215 const void *module_base_address_;
216 size_t module_base_size_;
217
218 public:
219 // These shouldn't have to be public, since only subclasses of
220 // LibcInfo need it, but they do. Maybe something to do with
221 // templates. Shrug. I hide them down here so users won't see
222 // them. :-) (OK, I also need to define ctrgProcAddress late.)
223 bool is_valid() const { return is_valid_; }
224 GenericFnPtr windows_fn(int ifunction) const {
225 return windows_fn_[ifunction];
226 }
227 // These three are needed by ModuleEntryCopy.
228 static const int ctrgProcAddress = kNumFunctions;
229 static GenericFnPtr static_fn(int ifunction) {
230 return static_fn_[ifunction];
231 }
232 static const char* const function_name(int ifunction) {
233 return function_name_[ifunction];
234 }
235};
236
237// Template trickiness: logically, a LibcInfo would include
238// Windows_malloc_, origstub_malloc_, and Perftools_malloc_: for a
239// given module, these three go together. And in fact,
240// Perftools_malloc_ may need to call origstub_malloc_, which means we
241// either need to change Perftools_malloc_ to take origstub_malloc_ as
242// an argument -- unfortunately impossible since it needs to keep the
243// same API as normal malloc -- or we need to write a different
244// version of Perftools_malloc_ for each LibcInfo instance we create.
245// We choose the second route, and use templates to implement it (we
246// could have also used macros). So to get multiple versions
247// of the struct, we say "struct<1> var1; struct<2> var2;". The price
248// we pay is some code duplication, and more annoying, each instance
249// of this var is a separate type.
250template<int> class LibcInfoWithPatchFunctions : public LibcInfo {
251 public:
252 // me_info should have had PopulateWindowsFn() called on it, so the
253 // module_* vars and windows_fn_ are set up.
254 bool Patch(const LibcInfo& me_info);
255 void Unpatch();
256
257 private:
258 // This holds the original function contents after we patch the function.
259 // This has to be defined static in the subclass, because the perftools_fns
260 // reference origstub_fn_.
261 static GenericFnPtr origstub_fn_[kNumFunctions];
262
263 // This is the function we want to patch in
264 static const GenericFnPtr perftools_fn_[kNumFunctions];
265
266 static void* Perftools_malloc(size_t size) __THROW;
267 static void Perftools_free(void* ptr) __THROW;
268 static void* Perftools_realloc(void* ptr, size_t size) __THROW;
269 static void* Perftools_calloc(size_t nmemb, size_t size) __THROW;
270 static void* Perftools_new(size_t size);
271 static void* Perftools_newarray(size_t size);
272 static void Perftools_delete(void *ptr);
273 static void Perftools_deletearray(void *ptr);
274 static void* Perftools_new_nothrow(size_t size,
275 const std::nothrow_t&) __THROW;
276 static void* Perftools_newarray_nothrow(size_t size,
277 const std::nothrow_t&) __THROW;
278 static void Perftools_delete_nothrow(void *ptr,
279 const std::nothrow_t&) __THROW;
280 static void Perftools_deletearray_nothrow(void *ptr,
281 const std::nothrow_t&) __THROW;
282 static size_t Perftools__msize(void *ptr) __THROW;
283 static void* Perftools__expand(void *ptr, size_t size) __THROW;
284 // malloc.h also defines these functions:
285 // _aligned_malloc, _aligned_free,
286 // _recalloc, _aligned_offset_malloc, _aligned_realloc, _aligned_recalloc
287 // _aligned_offset_realloc, _aligned_offset_recalloc, _malloca, _freea
288 // But they seem pretty obscure, and I'm fine not overriding them for now.
289 // It may be they all call into malloc/free anyway.
290};
291
292// This is a subset of MODDULEENTRY32, that we need for patching.
293struct ModuleEntryCopy {
294 LPVOID modBaseAddr; // the same as hmodule
295 DWORD modBaseSize;
296 // This is not part of MODDULEENTRY32, but is needed to avoid making
297 // windows syscalls while we're holding patch_all_modules_lock (see
298 // lock-inversion comments at patch_all_modules_lock definition, below).
299 GenericFnPtr rgProcAddresses[LibcInfo::ctrgProcAddress];
300
301 ModuleEntryCopy() {
302 modBaseAddr = NULL;
303 modBaseSize = 0;
304 for (int i = 0; i < sizeof(rgProcAddresses)/sizeof(*rgProcAddresses); i++)
305 rgProcAddresses[i] = LibcInfo::static_fn(i);
306 }
307 ModuleEntryCopy(const MODULEINFO& mi) {
308 this->modBaseAddr = mi.lpBaseOfDll;
309 this->modBaseSize = mi.SizeOfImage;
310 LPVOID modEndAddr = (char*)mi.lpBaseOfDll + mi.SizeOfImage;
311 for (int i = 0; i < sizeof(rgProcAddresses)/sizeof(*rgProcAddresses); i++) {
312 FARPROC target = ::GetProcAddress(
313 reinterpret_cast<const HMODULE>(mi.lpBaseOfDll),
314 LibcInfo::function_name(i));
315 // Sometimes a DLL forwards a function to a function in another
316 // DLL. We don't want to patch those forwarded functions --
317 // they'll get patched when the other DLL is processed.
318 if (target >= modBaseAddr && target < modEndAddr)
319 rgProcAddresses[i] = (GenericFnPtr)target;
320 else
321 rgProcAddresses[i] = (GenericFnPtr)NULL;
322 }
323 }
324};
325
326// This class is easier because there's only one of them.
327class WindowsInfo {
328 public:
329 void Patch();
330 void Unpatch();
331
332 private:
333 // TODO(csilvers): should we be patching GlobalAlloc/LocalAlloc instead,
334 // for pre-XP systems?
335 enum {
336 kHeapAlloc, kHeapFree, kVirtualAllocEx, kVirtualFreeEx,
337 kMapViewOfFileEx, kUnmapViewOfFile, kLoadLibraryExW, kFreeLibrary,
338 kNumFunctions
339 };
340
341 struct FunctionInfo {
342 const char* const name; // name of fn in a module (eg "malloc")
343 GenericFnPtr windows_fn; // the fn whose name we call (&malloc)
344 GenericFnPtr origstub_fn; // original fn contents after we patch
345 const GenericFnPtr perftools_fn; // fn we want to patch in
346 };
347
348 static FunctionInfo function_info_[kNumFunctions];
349
350 // A Windows-API equivalent of malloc and free
351 static LPVOID WINAPI Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags,
352 DWORD_PTR dwBytes);
353 static BOOL WINAPI Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags,
354 LPVOID lpMem);
355 // A Windows-API equivalent of mmap and munmap, for "anonymous regions"
356 static LPVOID WINAPI Perftools_VirtualAllocEx(HANDLE process, LPVOID address,
357 SIZE_T size, DWORD type,
358 DWORD protect);
359 static BOOL WINAPI Perftools_VirtualFreeEx(HANDLE process, LPVOID address,
360 SIZE_T size, DWORD type);
361 // A Windows-API equivalent of mmap and munmap, for actual files
362 static LPVOID WINAPI Perftools_MapViewOfFileEx(HANDLE hFileMappingObject,
363 DWORD dwDesiredAccess,
364 DWORD dwFileOffsetHigh,
365 DWORD dwFileOffsetLow,
366 SIZE_T dwNumberOfBytesToMap,
367 LPVOID lpBaseAddress);
368 static BOOL WINAPI Perftools_UnmapViewOfFile(LPCVOID lpBaseAddress);
369 // We don't need the other 3 variants because they all call this one. */
370 static HMODULE WINAPI Perftools_LoadLibraryExW(LPCWSTR lpFileName,
371 HANDLE hFile,
372 DWORD dwFlags);
373 static BOOL WINAPI Perftools_FreeLibrary(HMODULE hLibModule);
374};
375
376// If you run out, just add a few more to the array. You'll also need
377// to update the switch statement in PatchOneModule(), and the list in
378// UnpatchWindowsFunctions().
379// main_executable and main_executable_windows are two windows into
380// the same executable. One is responsible for patching the libc
381// routines that live in the main executable (if any) to use tcmalloc;
382// the other is responsible for patching the windows routines like
383// HeapAlloc/etc to use tcmalloc.
384static LibcInfoWithPatchFunctions<0> main_executable;
385static LibcInfoWithPatchFunctions<1> libc1;
386static LibcInfoWithPatchFunctions<2> libc2;
387static LibcInfoWithPatchFunctions<3> libc3;
388static LibcInfoWithPatchFunctions<4> libc4;
389static LibcInfoWithPatchFunctions<5> libc5;
390static LibcInfoWithPatchFunctions<6> libc6;
391static LibcInfoWithPatchFunctions<7> libc7;
392static LibcInfoWithPatchFunctions<8> libc8;
393static LibcInfo* g_module_libcs[] = {
394 &libc1, &libc2, &libc3, &libc4, &libc5, &libc6, &libc7, &libc8
395};
396static WindowsInfo main_executable_windows;
397
398const char* const LibcInfo::function_name_[] = {
399 "malloc", "free", "realloc", "calloc",
400 kMangledNew, kMangledNewArray, kMangledDelete, kMangledDeleteArray,
401 // Ideally we should patch the nothrow versions of new/delete, but
402 // at least in msvcrt, nothrow-new machine-code is of a type we
403 // can't patch. Since these are relatively rare, I'm hoping it's ok
404 // not to patch them. (NULL name turns off patching.)
405 NULL, // kMangledNewNothrow,
406 NULL, // kMangledNewArrayNothrow,
407 NULL, // kMangledDeleteNothrow,
408 NULL, // kMangledDeleteArrayNothrow,
409 "_msize", "_expand", "_calloc_crt",
410};
411
412// For mingw, I can't patch the new/delete here, because the
413// instructions are too small to patch. Luckily, they're so small
414// because all they do is call into malloc/free, so they still end up
415// calling tcmalloc routines, and we don't actually lose anything
416// (except maybe some stacktrace goodness) by not patching.
417const GenericFnPtr LibcInfo::static_fn_[] = {
418 (GenericFnPtr)&::malloc,
419 (GenericFnPtr)&::free,
420 (GenericFnPtr)&::realloc,
421 (GenericFnPtr)&::calloc,
422#ifdef __MINGW32__
423 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
424#else
425 (GenericFnPtr)(void*(*)(size_t))&::operator new,
426 (GenericFnPtr)(void*(*)(size_t))&::operator new[],
427 (GenericFnPtr)(void(*)(void*))&::operator delete,
428 (GenericFnPtr)(void(*)(void*))&::operator delete[],
429 (GenericFnPtr)
430 (void*(*)(size_t, struct std::nothrow_t const &))&::operator new,
431 (GenericFnPtr)
432 (void*(*)(size_t, struct std::nothrow_t const &))&::operator new[],
433 (GenericFnPtr)
434 (void(*)(void*, struct std::nothrow_t const &))&::operator delete,
435 (GenericFnPtr)
436 (void(*)(void*, struct std::nothrow_t const &))&::operator delete[],
437#endif
438 (GenericFnPtr)&::_msize,
439 (GenericFnPtr)&::_expand,
440 (GenericFnPtr)&::calloc,
441};
442
443template<int T> GenericFnPtr LibcInfoWithPatchFunctions<T>::origstub_fn_[] = {
444 // This will get filled in at run-time, as patching is done.
445};
446
447template<int T>
448const GenericFnPtr LibcInfoWithPatchFunctions<T>::perftools_fn_[] = {
449 (GenericFnPtr)&Perftools_malloc,
450 (GenericFnPtr)&Perftools_free,
451 (GenericFnPtr)&Perftools_realloc,
452 (GenericFnPtr)&Perftools_calloc,
453 (GenericFnPtr)&Perftools_new,
454 (GenericFnPtr)&Perftools_newarray,
455 (GenericFnPtr)&Perftools_delete,
456 (GenericFnPtr)&Perftools_deletearray,
457 (GenericFnPtr)&Perftools_new_nothrow,
458 (GenericFnPtr)&Perftools_newarray_nothrow,
459 (GenericFnPtr)&Perftools_delete_nothrow,
460 (GenericFnPtr)&Perftools_deletearray_nothrow,
461 (GenericFnPtr)&Perftools__msize,
462 (GenericFnPtr)&Perftools__expand,
463 (GenericFnPtr)&Perftools_calloc,
464};
465
466/*static*/ WindowsInfo::FunctionInfo WindowsInfo::function_info_[] = {
467 { "HeapAlloc", NULL, NULL, (GenericFnPtr)&Perftools_HeapAlloc },
468 { "HeapFree", NULL, NULL, (GenericFnPtr)&Perftools_HeapFree },
469 { "VirtualAllocEx", NULL, NULL, (GenericFnPtr)&Perftools_VirtualAllocEx },
470 { "VirtualFreeEx", NULL, NULL, (GenericFnPtr)&Perftools_VirtualFreeEx },
471 { "MapViewOfFileEx", NULL, NULL, (GenericFnPtr)&Perftools_MapViewOfFileEx },
472 { "UnmapViewOfFile", NULL, NULL, (GenericFnPtr)&Perftools_UnmapViewOfFile },
473 { "LoadLibraryExW", NULL, NULL, (GenericFnPtr)&Perftools_LoadLibraryExW },
474 { "FreeLibrary", NULL, NULL, (GenericFnPtr)&Perftools_FreeLibrary },
475};
476
477bool LibcInfo::PopulateWindowsFn(const ModuleEntryCopy& module_entry) {
478 // First, store the location of the function to patch before
479 // patching it. If none of these functions are found in the module,
480 // then this module has no libc in it, and we just return false.
481 for (int i = 0; i < kNumFunctions; i++) {
482 if (!function_name_[i]) // we can turn off patching by unsetting name
483 continue;
484 // The ::GetProcAddress calls were done in the ModuleEntryCopy
485 // constructor, so we don't have to make any windows calls here.
486 const GenericFnPtr fn = module_entry.rgProcAddresses[i];
487 if (fn) {
488 windows_fn_[i] = PreamblePatcher::ResolveTarget(fn);
489 }
490 }
491
492 // Some modules use the same function pointer for new and new[]. If
493 // we find that, set one of the pointers to NULL so we don't double-
494 // patch. Same may happen with new and nothrow-new, or even new[]
495 // and nothrow-new. It's easiest just to check each fn-ptr against
496 // every other.
497 for (int i = 0; i < kNumFunctions; i++) {
498 for (int j = i+1; j < kNumFunctions; j++) {
499 if (windows_fn_[i] == windows_fn_[j]) {
500 // We NULL the later one (j), so as to minimize the chances we
501 // NULL kFree and kRealloc. See comments below. This is fragile!
502 windows_fn_[j] = NULL;
503 }
504 }
505 }
506
507 // There's always a chance that our module uses the same function
508 // as another module that we've already loaded. In that case, we
509 // need to set our windows_fn to NULL, to avoid double-patching.
510 for (int ifn = 0; ifn < kNumFunctions; ifn++) {
511 for (int imod = 0;
512 imod < sizeof(g_module_libcs)/sizeof(*g_module_libcs); imod++) {
513 if (g_module_libcs[imod]->is_valid() &&
514 this->windows_fn(ifn) == g_module_libcs[imod]->windows_fn(ifn)) {
515 windows_fn_[ifn] = NULL;
516 }
517 }
518 }
519
520 bool found_non_null = false;
521 for (int i = 0; i < kNumFunctions; i++) {
522 if (windows_fn_[i])
523 found_non_null = true;
524 }
525 if (!found_non_null)
526 return false;
527
528 // It's important we didn't NULL out windows_fn_[kFree] or [kRealloc].
529 // The reason is, if those are NULL-ed out, we'll never patch them
530 // and thus never get an origstub_fn_ value for them, and when we
531 // try to call origstub_fn_[kFree/kRealloc] in Perftools_free and
532 // Perftools_realloc, below, it will fail. We could work around
533 // that by adding a pointer from one patch-unit to the other, but we
534 // haven't needed to yet.
535 CHECK(windows_fn_[kFree]);
536 CHECK(windows_fn_[kRealloc]);
537
538 // OK, we successfully populated. Let's store our member information.
539 module_base_address_ = module_entry.modBaseAddr;
540 module_base_size_ = module_entry.modBaseSize;
541 return true;
542}
543
544template<int T>
545bool LibcInfoWithPatchFunctions<T>::Patch(const LibcInfo& me_info) {
546 CopyFrom(me_info); // copies the module_entry and the windows_fn_ array
547 for (int i = 0; i < kNumFunctions; i++) {
548 if (windows_fn_[i] && windows_fn_[i] != perftools_fn_[i]) {
549 // if origstub_fn_ is not NULL, it's left around from a previous
550 // patch. We need to set it to NULL for the new Patch call.
551 //
552 // Note that origstub_fn_ was logically freed by
553 // PreamblePatcher::Unpatch, so we don't have to do anything
554 // about it.
555 origstub_fn_[i] = NULL; // Patch() will fill this in
556 CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
557 PreamblePatcher::Patch(windows_fn_[i], perftools_fn_[i],
558 &origstub_fn_[i]));
559 }
560 }
561 set_is_valid(true);
562 return true;
563}
564
565template<int T>
566void LibcInfoWithPatchFunctions<T>::Unpatch() {
567 // We have to cast our GenericFnPtrs to void* for unpatch. This is
568 // contra the C++ spec; we use C-style casts to empahsize that.
569 for (int i = 0; i < kNumFunctions; i++) {
570 if (windows_fn_[i])
571 CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
572 PreamblePatcher::Unpatch((void*)windows_fn_[i],
573 (void*)perftools_fn_[i],
574 (void*)origstub_fn_[i]));
575 }
576 set_is_valid(false);
577}
578
579void WindowsInfo::Patch() {
580 HMODULE hkernel32 = ::GetModuleHandleA("kernel32");
581 CHECK_NE(hkernel32, NULL);
582
583 // Unlike for libc, we know these exist in our module, so we can get
584 // and patch at the same time.
585 for (int i = 0; i < kNumFunctions; i++) {
586 function_info_[i].windows_fn = (GenericFnPtr)
587 ::GetProcAddress(hkernel32, function_info_[i].name);
588 // If origstub_fn is not NULL, it's left around from a previous
589 // patch. We need to set it to NULL for the new Patch call.
590 // Since we've patched Unpatch() not to delete origstub_fn_ (it
591 // causes problems in some contexts, though obviously not this
592 // one), we should delete it now, before setting it to NULL.
593 // NOTE: casting from a function to a pointer is contra the C++
594 // spec. It's not safe on IA64, but is on i386. We use
595 // a C-style cast here to emphasize this is not legal C++.
596 delete[] (char*)(function_info_[i].origstub_fn);
597 function_info_[i].origstub_fn = NULL; // Patch() will fill this in
598 CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
599 PreamblePatcher::Patch(function_info_[i].windows_fn,
600 function_info_[i].perftools_fn,
601 &function_info_[i].origstub_fn));
602 }
603}
604
605void WindowsInfo::Unpatch() {
606 // We have to cast our GenericFnPtrs to void* for unpatch. This is
607 // contra the C++ spec; we use C-style casts to empahsize that.
608 for (int i = 0; i < kNumFunctions; i++) {
609 CHECK_EQ(sidestep::SIDESTEP_SUCCESS,
610 PreamblePatcher::Unpatch((void*)function_info_[i].windows_fn,
611 (void*)function_info_[i].perftools_fn,
612 (void*)function_info_[i].origstub_fn));
613 }
614}
615
616// You should hold the patch_all_modules_lock when calling this.
617void PatchOneModuleLocked(const LibcInfo& me_info) {
618 // If we don't already have info on this module, let's add it. This
619 // is where we're sad that each libcX has a different type, so we
620 // can't use an array; instead, we have to use a switch statement.
621 // Patch() returns false if there were no libc functions in the module.
622 for (int i = 0; i < sizeof(g_module_libcs)/sizeof(*g_module_libcs); i++) {
623 if (!g_module_libcs[i]->is_valid()) { // found an empty spot to add!
624 switch (i) {
625 case 0: libc1.Patch(me_info); return;
626 case 1: libc2.Patch(me_info); return;
627 case 2: libc3.Patch(me_info); return;
628 case 3: libc4.Patch(me_info); return;
629 case 4: libc5.Patch(me_info); return;
630 case 5: libc6.Patch(me_info); return;
631 case 6: libc7.Patch(me_info); return;
632 case 7: libc8.Patch(me_info); return;
633 }
634 }
635 }
636 printf("PERFTOOLS ERROR: Too many modules containing libc in this executable\n");
637}
638
639void PatchMainExecutableLocked() {
640 if (main_executable.patched())
641 return; // main executable has already been patched
642 ModuleEntryCopy fake_module_entry; // make a fake one to pass into Patch()
643 // No need to call PopulateModuleEntryProcAddresses on the main executable.
644 main_executable.PopulateWindowsFn(fake_module_entry);
645 main_executable.Patch(main_executable);
646}
647
648// This lock is subject to a subtle and annoying lock inversion
649// problem: it may interact badly with unknown internal windows locks.
650// In particular, windows may be holding a lock when it calls
651// LoadLibraryExW and FreeLibrary, which we've patched. We have those
652// routines call PatchAllModules, which acquires this lock. If we
653// make windows system calls while holding this lock, those system
654// calls may need the internal windows locks that are being held in
655// the call to LoadLibraryExW, resulting in deadlock. The solution is
656// to be very careful not to call *any* windows routines while holding
657// patch_all_modules_lock, inside PatchAllModules().
658static SpinLock patch_all_modules_lock(SpinLock::LINKER_INITIALIZED);
659
660// last_loaded: The set of modules that were loaded the last time
661// PatchAllModules was called. This is an optimization for only
662// looking at modules that were added or removed from the last call.
663static std::set<HMODULE> *g_last_loaded;
664
665// Iterates over all the modules currently loaded by the executable,
666// according to windows, and makes sure they're all patched. Most
667// modules will already be in loaded_modules, meaning we have already
668// loaded and either patched them or determined they did not need to
669// be patched. Others will not, which means we need to patch them
670// (if necessary). Finally, we have to go through the existing
671// g_module_libcs and see if any of those are *not* in the modules
672// currently loaded by the executable. If so, we need to invalidate
673// them. Returns true if we did any work (patching or invalidating),
674// false if we were a noop. May update loaded_modules as well.
675// NOTE: you must hold the patch_all_modules_lock to access loaded_modules.
676bool PatchAllModules() {
677 std::vector<ModuleEntryCopy> modules;
678 bool made_changes = false;
679
680 const HANDLE hCurrentProcess = GetCurrentProcess();
681 DWORD num_modules = 0;
682 HMODULE hModules[kMaxModules]; // max # of modules we support in one process
683 if (!::EnumProcessModules(hCurrentProcess, hModules, sizeof(hModules),
684 &num_modules)) {
685 num_modules = 0;
686 }
687 // EnumProcessModules actually set the bytes written into hModules,
688 // so we need to divide to make num_modules actually be a module-count.
689 num_modules /= sizeof(*hModules);
690 if (num_modules >= kMaxModules) {
691 printf("PERFTOOLS ERROR: Too many modules in this executable to try"
692 " to patch them all (if you need to, raise kMaxModules in"
693 " patch_functions.cc).\n");
694 num_modules = kMaxModules;
695 }
696
697 // Now we handle the unpatching of modules we have in g_module_libcs
698 // but that were not found in EnumProcessModules. We need to
699 // invalidate them. To speed that up, we store the EnumProcessModules
700 // output in a set.
701 // At the same time, we prepare for the adding of new modules, by
702 // removing from hModules all the modules we know we've already
703 // patched (or decided don't need to be patched). At the end,
704 // hModules will hold only the modules that we need to consider patching.
705 std::set<HMODULE> currently_loaded_modules;
706 {
707 SpinLockHolder h(&patch_all_modules_lock);
708 if (!g_last_loaded) g_last_loaded = new std::set<HMODULE>;
709 // At the end of this loop, currently_loaded_modules contains the
710 // full list of EnumProcessModules, and hModules just the ones we
711 // haven't handled yet.
712 for (int i = 0; i < num_modules; ) {
713 currently_loaded_modules.insert(hModules[i]);
714 if (g_last_loaded->count(hModules[i]) > 0) {
715 hModules[i] = hModules[--num_modules]; // replace element i with tail
716 } else {
717 i++; // keep element i
718 }
719 }
720 // Now we do the unpatching/invalidation.
721 for (int i = 0; i < sizeof(g_module_libcs)/sizeof(*g_module_libcs); i++) {
722 if (g_module_libcs[i]->patched() &&
723 currently_loaded_modules.count(g_module_libcs[i]->hmodule()) == 0) {
724 // Means g_module_libcs[i] is no longer loaded (no me32 matched).
725 // We could call Unpatch() here, but why bother? The module
726 // has gone away, so nobody is going to call into it anyway.
727 g_module_libcs[i]->set_is_valid(false);
728 made_changes = true;
729 }
730 }
731 // Update the loaded module cache.
732 g_last_loaded->swap(currently_loaded_modules);
733 }
734
735 // Now that we know what modules are new, let's get the info we'll
736 // need to patch them. Note this *cannot* be done while holding the
737 // lock, since it needs to make windows calls (see the lock-inversion
738 // comments before the definition of patch_all_modules_lock).
739 MODULEINFO mi;
740 for (int i = 0; i < num_modules; i++) {
741 if (::GetModuleInformation(hCurrentProcess, hModules[i], &mi, sizeof(mi)))
742 modules.push_back(ModuleEntryCopy(mi));
743 }
744
745 // Now we can do the patching of new modules.
746 {
747 SpinLockHolder h(&patch_all_modules_lock);
748 for (std::vector<ModuleEntryCopy>::iterator it = modules.begin();
749 it != modules.end(); ++it) {
750 LibcInfo libc_info;
751 if (libc_info.PopulateWindowsFn(*it)) { // true==module has libc routines
752 PatchOneModuleLocked(libc_info);
753 made_changes = true;
754 }
755 }
756
757 // Now that we've dealt with the modules (dlls), update the main
758 // executable. We do this last because PatchMainExecutableLocked
759 // wants to look at how other modules were patched.
760 if (!main_executable.patched()) {
761 PatchMainExecutableLocked();
762 made_changes = true;
763 }
764 }
765 // TODO(csilvers): for this to be reliable, we need to also take
766 // into account if we *would* have patched any modules had they not
767 // already been loaded. (That is, made_changes should ignore
768 // g_last_loaded.)
769 return made_changes;
770}
771
772
773} // end unnamed namespace
774
775// ---------------------------------------------------------------------
776// Now that we've done all the patching machinery, let's actually
777// define the functions we're patching in. Mostly these are
778// simple wrappers around the do_* routines in tcmalloc.cc.
779//
780// In fact, we #include tcmalloc.cc to get at the tcmalloc internal
781// do_* functions, the better to write our own hook functions.
782// U-G-L-Y, I know. But the alternatives are, perhaps, worse. This
783// also lets us define _msize(), _expand(), and other windows-specific
784// functions here, using tcmalloc internals, without polluting
785// tcmalloc.cc.
786// -------------------------------------------------------------------
787
788// TODO(csilvers): refactor tcmalloc.cc into two files, so I can link
789// against the file with do_malloc, and ignore the one with malloc.
790#include "tcmalloc.cc"
791
792template<int T>
793void* LibcInfoWithPatchFunctions<T>::Perftools_malloc(size_t size) __THROW {
794 void* result = do_malloc_or_cpp_alloc(size);
795 MallocHook::InvokeNewHook(result, size);
796 return result;
797}
798
799template<int T>
800void LibcInfoWithPatchFunctions<T>::Perftools_free(void* ptr) __THROW {
801 MallocHook::InvokeDeleteHook(ptr);
802 // This calls the windows free if do_free decides ptr was not
803 // allocated by tcmalloc. Note it calls the origstub_free from
804 // *this* templatized instance of LibcInfo. See "template
805 // trickiness" above.
806 do_free_with_callback(ptr, (void (*)(void*))origstub_fn_[kFree]);
807}
808
809template<int T>
810void* LibcInfoWithPatchFunctions<T>::Perftools_realloc(
811 void* old_ptr, size_t new_size) __THROW {
812 if (old_ptr == NULL) {
813 void* result = do_malloc_or_cpp_alloc(new_size);
814 MallocHook::InvokeNewHook(result, new_size);
815 return result;
816 }
817 if (new_size == 0) {
818 MallocHook::InvokeDeleteHook(old_ptr);
819 do_free_with_callback(old_ptr,
820 (void (*)(void*))origstub_fn_[kFree]);
821 return NULL;
822 }
823 return do_realloc_with_callback(
824 old_ptr, new_size,
825 (void (*)(void*))origstub_fn_[kFree],
826 (size_t (*)(const void*))origstub_fn_[k_Msize]);
827}
828
829template<int T>
830void* LibcInfoWithPatchFunctions<T>::Perftools_calloc(
831 size_t n, size_t elem_size) __THROW {
832 void* result = do_calloc(n, elem_size);
833 MallocHook::InvokeNewHook(result, n * elem_size);
834 return result;
835}
836
837template<int T>
838void* LibcInfoWithPatchFunctions<T>::Perftools_new(size_t size) {
839 void* p = cpp_alloc(size, false);
840 MallocHook::InvokeNewHook(p, size);
841 return p;
842}
843
844template<int T>
845void* LibcInfoWithPatchFunctions<T>::Perftools_newarray(size_t size) {
846 void* p = cpp_alloc(size, false);
847 MallocHook::InvokeNewHook(p, size);
848 return p;
849}
850
851template<int T>
852void LibcInfoWithPatchFunctions<T>::Perftools_delete(void *p) {
853 MallocHook::InvokeDeleteHook(p);
854 do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
855}
856
857template<int T>
858void LibcInfoWithPatchFunctions<T>::Perftools_deletearray(void *p) {
859 MallocHook::InvokeDeleteHook(p);
860 do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
861}
862
863template<int T>
864void* LibcInfoWithPatchFunctions<T>::Perftools_new_nothrow(
865 size_t size, const std::nothrow_t&) __THROW {
866 void* p = cpp_alloc(size, true);
867 MallocHook::InvokeNewHook(p, size);
868 return p;
869}
870
871template<int T>
872void* LibcInfoWithPatchFunctions<T>::Perftools_newarray_nothrow(
873 size_t size, const std::nothrow_t&) __THROW {
874 void* p = cpp_alloc(size, true);
875 MallocHook::InvokeNewHook(p, size);
876 return p;
877}
878
879template<int T>
880void LibcInfoWithPatchFunctions<T>::Perftools_delete_nothrow(
881 void *p, const std::nothrow_t&) __THROW {
882 MallocHook::InvokeDeleteHook(p);
883 do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
884}
885
886template<int T>
887void LibcInfoWithPatchFunctions<T>::Perftools_deletearray_nothrow(
888 void *p, const std::nothrow_t&) __THROW {
889 MallocHook::InvokeDeleteHook(p);
890 do_free_with_callback(p, (void (*)(void*))origstub_fn_[kFree]);
891}
892
893
894// _msize() lets you figure out how much space is reserved for a
895// pointer, in Windows. Even if applications don't call it, any DLL
896// with global constructors will call (transitively) something called
897// __dllonexit_lk in order to make sure the destructors get called
898// when the dll unloads. And that will call msize -- horrible things
899// can ensue if this is not hooked. Other parts of libc may also call
900// this internally.
901
902template<int T>
903size_t LibcInfoWithPatchFunctions<T>::Perftools__msize(void* ptr) __THROW {
904 return GetSizeWithCallback(ptr, (size_t (*)(const void*))origstub_fn_[k_Msize]);
905}
906
907// We need to define this because internal windows functions like to
908// call into it(?). _expand() is like realloc but doesn't move the
909// pointer. We punt, which will cause callers to fall back on realloc.
910template<int T>
911void* LibcInfoWithPatchFunctions<T>::Perftools__expand(void *ptr,
912 size_t size) __THROW {
913 return NULL;
914}
915
916LPVOID WINAPI WindowsInfo::Perftools_HeapAlloc(HANDLE hHeap, DWORD dwFlags,
917 DWORD_PTR dwBytes) {
918 LPVOID result = ((LPVOID (WINAPI *)(HANDLE, DWORD, DWORD_PTR))
919 function_info_[kHeapAlloc].origstub_fn)(
920 hHeap, dwFlags, dwBytes);
921 MallocHook::InvokeNewHook(result, dwBytes);
922 return result;
923}
924
925BOOL WINAPI WindowsInfo::Perftools_HeapFree(HANDLE hHeap, DWORD dwFlags,
926 LPVOID lpMem) {
927 MallocHook::InvokeDeleteHook(lpMem);
928 return ((BOOL (WINAPI *)(HANDLE, DWORD, LPVOID))
929 function_info_[kHeapFree].origstub_fn)(
930 hHeap, dwFlags, lpMem);
931}
932
933LPVOID WINAPI WindowsInfo::Perftools_VirtualAllocEx(HANDLE process,
934 LPVOID address,
935 SIZE_T size, DWORD type,
936 DWORD protect) {
937 LPVOID result = ((LPVOID (WINAPI *)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD))
938 function_info_[kVirtualAllocEx].origstub_fn)(
939 process, address, size, type, protect);
940 // VirtualAllocEx() seems to be the Windows equivalent of mmap()
941 MallocHook::InvokeMmapHook(result, address, size, protect, type, -1, 0);
942 return result;
943}
944
945BOOL WINAPI WindowsInfo::Perftools_VirtualFreeEx(HANDLE process, LPVOID address,
946 SIZE_T size, DWORD type) {
947 MallocHook::InvokeMunmapHook(address, size);
948 return ((BOOL (WINAPI *)(HANDLE, LPVOID, SIZE_T, DWORD))
949 function_info_[kVirtualFreeEx].origstub_fn)(
950 process, address, size, type);
951}
952
953LPVOID WINAPI WindowsInfo::Perftools_MapViewOfFileEx(
954 HANDLE hFileMappingObject, DWORD dwDesiredAccess, DWORD dwFileOffsetHigh,
955 DWORD dwFileOffsetLow, SIZE_T dwNumberOfBytesToMap, LPVOID lpBaseAddress) {
956 // For this function pair, you always deallocate the full block of
957 // data that you allocate, so NewHook/DeleteHook is the right API.
958 LPVOID result = ((LPVOID (WINAPI *)(HANDLE, DWORD, DWORD, DWORD,
959 SIZE_T, LPVOID))
960 function_info_[kMapViewOfFileEx].origstub_fn)(
961 hFileMappingObject, dwDesiredAccess, dwFileOffsetHigh,
962 dwFileOffsetLow, dwNumberOfBytesToMap, lpBaseAddress);
963 MallocHook::InvokeNewHook(result, dwNumberOfBytesToMap);
964 return result;
965}
966
967BOOL WINAPI WindowsInfo::Perftools_UnmapViewOfFile(LPCVOID lpBaseAddress) {
968 MallocHook::InvokeDeleteHook(lpBaseAddress);
969 return ((BOOL (WINAPI *)(LPCVOID))
970 function_info_[kUnmapViewOfFile].origstub_fn)(
971 lpBaseAddress);
972}
973
974// g_load_map holds a copy of windows' refcount for how many times
975// each currently loaded module has been loaded and unloaded. We use
976// it as an optimization when the same module is loaded more than
977// once: as long as the refcount stays above 1, we don't need to worry
978// about patching because it's already patched. Likewise, we don't
979// need to unpatch until the refcount drops to 0. load_map is
980// maintained in LoadLibraryExW and FreeLibrary, and only covers
981// modules explicitly loaded/freed via those interfaces.
982static std::map<HMODULE, int>* g_load_map = NULL;
983
984HMODULE WINAPI WindowsInfo::Perftools_LoadLibraryExW(LPCWSTR lpFileName,
985 HANDLE hFile,
986 DWORD dwFlags) {
987 HMODULE rv;
988 // Check to see if the modules is already loaded, flag 0 gets a
989 // reference if it was loaded. If it was loaded no need to call
990 // PatchAllModules, just increase the reference count to match
991 // what GetModuleHandleExW does internally inside windows.
992 if (::GetModuleHandleExW(0, lpFileName, &rv)) {
993 return rv;
994 } else {
995 // Not already loaded, so load it.
996 rv = ((HMODULE (WINAPI *)(LPCWSTR, HANDLE, DWORD))
997 function_info_[kLoadLibraryExW].origstub_fn)(
998 lpFileName, hFile, dwFlags);
999 // This will patch any newly loaded libraries, if patching needs
1000 // to be done.
1001 PatchAllModules();
1002
1003 return rv;
1004 }
1005}
1006
1007BOOL WINAPI WindowsInfo::Perftools_FreeLibrary(HMODULE hLibModule) {
1008 BOOL rv = ((BOOL (WINAPI *)(HMODULE))
1009 function_info_[kFreeLibrary].origstub_fn)(hLibModule);
1010
1011 // Check to see if the module is still loaded by passing the base
1012 // address and seeing if it comes back with the same address. If it
1013 // is the same address it's still loaded, so the FreeLibrary() call
1014 // was a noop, and there's no need to redo the patching.
1015 HMODULE owner = NULL;
1016 BOOL result = ::GetModuleHandleExW(
1017 (GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
1018 GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT),
1019 (LPCWSTR)hLibModule,
1020 &owner);
1021 if (result && owner == hLibModule)
1022 return rv;
1023
1024 PatchAllModules(); // this will fix up the list of patched libraries
1025 return rv;
1026}
1027
1028
1029// ---------------------------------------------------------------------
1030// PatchWindowsFunctions()
1031// This is the function that is exposed to the outside world.
1032// It should be called before the program becomes multi-threaded,
1033// since main_executable_windows.Patch() is not thread-safe.
1034// ---------------------------------------------------------------------
1035
1036void PatchWindowsFunctions() {
1037 // This does the libc patching in every module, and the main executable.
1038 PatchAllModules();
1039 main_executable_windows.Patch();
1040}
1041
1042#if 0
1043// It's possible to unpatch all the functions when we are exiting.
1044
1045// The idea is to handle properly windows-internal data that is
1046// allocated before PatchWindowsFunctions is called. If all
1047// destruction happened in reverse order from construction, then we
1048// could call UnpatchWindowsFunctions at just the right time, so that
1049// that early-allocated data would be freed using the windows
1050// allocation functions rather than tcmalloc. The problem is that
1051// windows allocates some structures lazily, so it would allocate them
1052// late (using tcmalloc) and then try to deallocate them late as well.
1053// So instead of unpatching, we just modify all the tcmalloc routines
1054// so they call through to the libc rountines if the memory in
1055// question doesn't seem to have been allocated with tcmalloc. I keep
1056// this unpatch code around for reference.
1057
1058void UnpatchWindowsFunctions() {
1059 // We need to go back to the system malloc/etc at global destruct time,
1060 // so objects that were constructed before tcmalloc, using the system
1061 // malloc, can destroy themselves using the system free. This depends
1062 // on DLLs unloading in the reverse order in which they load!
1063 //
1064 // We also go back to the default HeapAlloc/etc, just for consistency.
1065 // Who knows, it may help avoid weird bugs in some situations.
1066 main_executable_windows.Unpatch();
1067 main_executable.Unpatch();
1068 if (libc1.is_valid()) libc1.Unpatch();
1069 if (libc2.is_valid()) libc2.Unpatch();
1070 if (libc3.is_valid()) libc3.Unpatch();
1071 if (libc4.is_valid()) libc4.Unpatch();
1072 if (libc5.is_valid()) libc5.Unpatch();
1073 if (libc6.is_valid()) libc6.Unpatch();
1074 if (libc7.is_valid()) libc7.Unpatch();
1075 if (libc8.is_valid()) libc8.Unpatch();
1076}
1077#endif