Austin Schuh | 745610d | 2015-09-06 18:19:50 -0700 | [diff] [blame^] | 1 | // -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- |
| 2 | // Copyright (c) 2000, Google Inc. |
| 3 | // All rights reserved. |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | // --- |
| 32 | // Author: Urs Holzle <opensource@google.com> |
| 33 | |
| 34 | #include "config.h" |
| 35 | #include <errno.h> |
| 36 | #ifdef HAVE_FCNTL_H |
| 37 | #include <fcntl.h> |
| 38 | #endif |
| 39 | #ifdef HAVE_INTTYPES_H |
| 40 | #include <inttypes.h> |
| 41 | #endif |
| 42 | // We only need malloc.h for struct mallinfo. |
| 43 | #ifdef HAVE_STRUCT_MALLINFO |
| 44 | // Malloc can be in several places on older versions of OS X. |
| 45 | # if defined(HAVE_MALLOC_H) |
| 46 | # include <malloc.h> |
| 47 | # elif defined(HAVE_MALLOC_MALLOC_H) |
| 48 | # include <malloc/malloc.h> |
| 49 | # elif defined(HAVE_SYS_MALLOC_H) |
| 50 | # include <sys/malloc.h> |
| 51 | # endif |
| 52 | #endif |
| 53 | #ifdef HAVE_PTHREAD |
| 54 | #include <pthread.h> |
| 55 | #endif |
| 56 | #include <stdarg.h> |
| 57 | #include <stdio.h> |
| 58 | #include <string.h> |
| 59 | #ifdef HAVE_MMAP |
| 60 | #include <sys/mman.h> |
| 61 | #endif |
| 62 | #include <sys/stat.h> |
| 63 | #include <sys/types.h> |
| 64 | #ifdef HAVE_UNISTD_H |
| 65 | #include <unistd.h> |
| 66 | #endif |
| 67 | |
| 68 | #include <gperftools/malloc_extension.h> |
| 69 | #include <gperftools/malloc_hook.h> |
| 70 | #include <gperftools/stacktrace.h> |
| 71 | #include "addressmap-inl.h" |
| 72 | #include "base/commandlineflags.h" |
| 73 | #include "base/googleinit.h" |
| 74 | #include "base/logging.h" |
| 75 | #include "base/spinlock.h" |
| 76 | #include "malloc_hook-inl.h" |
| 77 | #include "symbolize.h" |
| 78 | |
| 79 | // NOTE: due to #define below, tcmalloc.cc will omit tc_XXX |
| 80 | // definitions. So that debug implementations can be defined |
| 81 | // instead. We're going to use do_malloc, do_free and other do_XXX |
| 82 | // functions that are defined in tcmalloc.cc for actual memory |
| 83 | // management |
| 84 | #define TCMALLOC_USING_DEBUGALLOCATION |
| 85 | #include "tcmalloc.cc" |
| 86 | |
| 87 | // __THROW is defined in glibc systems. It means, counter-intuitively, |
| 88 | // "This function will never throw an exception." It's an optional |
| 89 | // optimization tool, but we may need to use it to match glibc prototypes. |
| 90 | #ifndef __THROW // I guess we're not on a glibc system |
| 91 | # define __THROW // __THROW is just an optimization, so ok to make it "" |
| 92 | #endif |
| 93 | |
| 94 | // On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old |
| 95 | // form of the name instead. |
| 96 | #ifndef MAP_ANONYMOUS |
| 97 | # define MAP_ANONYMOUS MAP_ANON |
| 98 | #endif |
| 99 | |
| 100 | // ========================================================================= // |
| 101 | |
| 102 | DEFINE_bool(malloctrace, |
| 103 | EnvToBool("TCMALLOC_TRACE", false), |
| 104 | "Enables memory (de)allocation tracing to /tmp/google.alloc."); |
| 105 | #ifdef HAVE_MMAP |
| 106 | DEFINE_bool(malloc_page_fence, |
| 107 | EnvToBool("TCMALLOC_PAGE_FENCE", false), |
| 108 | "Enables putting of memory allocations at page boundaries " |
| 109 | "with a guard page following the allocation (to catch buffer " |
| 110 | "overruns right when they happen)."); |
| 111 | DEFINE_bool(malloc_page_fence_never_reclaim, |
| 112 | EnvToBool("TCMALLOC_PAGE_FRANCE_NEVER_RECLAIM", false), |
| 113 | "Enables making the virtual address space inaccessible " |
| 114 | "upon a deallocation instead of returning it and reusing later."); |
| 115 | #else |
| 116 | DEFINE_bool(malloc_page_fence, false, "Not usable (requires mmap)"); |
| 117 | DEFINE_bool(malloc_page_fence_never_reclaim, false, "Not usable (required mmap)"); |
| 118 | #endif |
| 119 | DEFINE_bool(malloc_reclaim_memory, |
| 120 | EnvToBool("TCMALLOC_RECLAIM_MEMORY", true), |
| 121 | "If set to false, we never return memory to malloc " |
| 122 | "when an object is deallocated. This ensures that all " |
| 123 | "heap object addresses are unique."); |
| 124 | DEFINE_int32(max_free_queue_size, |
| 125 | EnvToInt("TCMALLOC_MAX_FREE_QUEUE_SIZE", 10*1024*1024), |
| 126 | "If greater than 0, keep freed blocks in a queue instead of " |
| 127 | "releasing them to the allocator immediately. Release them when " |
| 128 | "the total size of all blocks in the queue would otherwise exceed " |
| 129 | "this limit."); |
| 130 | |
| 131 | DEFINE_bool(symbolize_stacktrace, |
| 132 | EnvToBool("TCMALLOC_SYMBOLIZE_STACKTRACE", true), |
| 133 | "Symbolize the stack trace when provided (on some error exits)"); |
| 134 | |
| 135 | // If we are LD_PRELOAD-ed against a non-pthreads app, then |
| 136 | // pthread_once won't be defined. We declare it here, for that |
| 137 | // case (with weak linkage) which will cause the non-definition to |
| 138 | // resolve to NULL. We can then check for NULL or not in Instance. |
| 139 | extern "C" int pthread_once(pthread_once_t *, void (*)(void)) |
| 140 | ATTRIBUTE_WEAK; |
| 141 | |
| 142 | // ========================================================================= // |
| 143 | |
| 144 | // A safe version of printf() that does not do any allocation and |
| 145 | // uses very little stack space. |
| 146 | static void TracePrintf(int fd, const char *fmt, ...) |
| 147 | __attribute__ ((__format__ (__printf__, 2, 3))); |
| 148 | |
| 149 | // Round "value" up to next "alignment" boundary. |
| 150 | // Requires that "alignment" be a power of two. |
| 151 | static intptr_t RoundUp(intptr_t value, intptr_t alignment) { |
| 152 | return (value + alignment - 1) & ~(alignment - 1); |
| 153 | } |
| 154 | |
| 155 | // ========================================================================= // |
| 156 | |
| 157 | class MallocBlock; |
| 158 | |
| 159 | // A circular buffer to hold freed blocks of memory. MallocBlock::Deallocate |
| 160 | // (below) pushes blocks into this queue instead of returning them to the |
| 161 | // underlying allocator immediately. See MallocBlock::Deallocate for more |
| 162 | // information. |
| 163 | // |
| 164 | // We can't use an STL class for this because we need to be careful not to |
| 165 | // perform any heap de-allocations in any of the code in this class, since the |
| 166 | // code in MallocBlock::Deallocate is not re-entrant. |
| 167 | template <typename QueueEntry> |
| 168 | class FreeQueue { |
| 169 | public: |
| 170 | FreeQueue() : q_front_(0), q_back_(0) {} |
| 171 | |
| 172 | bool Full() { |
| 173 | return (q_front_ + 1) % kFreeQueueSize == q_back_; |
| 174 | } |
| 175 | |
| 176 | void Push(const QueueEntry& block) { |
| 177 | q_[q_front_] = block; |
| 178 | q_front_ = (q_front_ + 1) % kFreeQueueSize; |
| 179 | } |
| 180 | |
| 181 | QueueEntry Pop() { |
| 182 | RAW_CHECK(q_back_ != q_front_, "Queue is empty"); |
| 183 | const QueueEntry& ret = q_[q_back_]; |
| 184 | q_back_ = (q_back_ + 1) % kFreeQueueSize; |
| 185 | return ret; |
| 186 | } |
| 187 | |
| 188 | size_t size() const { |
| 189 | return (q_front_ - q_back_ + kFreeQueueSize) % kFreeQueueSize; |
| 190 | } |
| 191 | |
| 192 | private: |
| 193 | // Maximum number of blocks kept in the free queue before being freed. |
| 194 | static const int kFreeQueueSize = 1024; |
| 195 | |
| 196 | QueueEntry q_[kFreeQueueSize]; |
| 197 | int q_front_; |
| 198 | int q_back_; |
| 199 | }; |
| 200 | |
| 201 | struct MallocBlockQueueEntry { |
| 202 | MallocBlockQueueEntry() : block(NULL), size(0), |
| 203 | num_deleter_pcs(0), deleter_threadid(0) {} |
| 204 | MallocBlockQueueEntry(MallocBlock* b, size_t s) : block(b), size(s) { |
| 205 | if (FLAGS_max_free_queue_size != 0 && b != NULL) { |
| 206 | // Adjust the number of frames to skip (4) if you change the |
| 207 | // location of this call. |
| 208 | num_deleter_pcs = |
| 209 | GetStackTrace(deleter_pcs, |
| 210 | sizeof(deleter_pcs) / sizeof(deleter_pcs[0]), |
| 211 | 4); |
| 212 | deleter_threadid = pthread_self(); |
| 213 | } else { |
| 214 | num_deleter_pcs = 0; |
| 215 | // Zero is an illegal pthread id by my reading of the pthread |
| 216 | // implementation: |
| 217 | deleter_threadid = 0; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | MallocBlock* block; |
| 222 | size_t size; |
| 223 | |
| 224 | // When deleted and put in the free queue, we (flag-controlled) |
| 225 | // record the stack so that if corruption is later found, we can |
| 226 | // print the deleter's stack. (These three vars add 144 bytes of |
| 227 | // overhead under the LP64 data model.) |
| 228 | void* deleter_pcs[16]; |
| 229 | int num_deleter_pcs; |
| 230 | pthread_t deleter_threadid; |
| 231 | }; |
| 232 | |
| 233 | class MallocBlock { |
| 234 | public: // allocation type constants |
| 235 | |
| 236 | // Different allocation types we distinguish. |
| 237 | // Note: The lower 4 bits are not random: we index kAllocName array |
| 238 | // by these values masked with kAllocTypeMask; |
| 239 | // the rest are "random" magic bits to help catch memory corruption. |
| 240 | static const int kMallocType = 0xEFCDAB90; |
| 241 | static const int kNewType = 0xFEBADC81; |
| 242 | static const int kArrayNewType = 0xBCEADF72; |
| 243 | |
| 244 | private: // constants |
| 245 | |
| 246 | // A mask used on alloc types above to get to 0, 1, 2 |
| 247 | static const int kAllocTypeMask = 0x3; |
| 248 | // An additional bit to set in AllocType constants |
| 249 | // to mark now deallocated regions. |
| 250 | static const int kDeallocatedTypeBit = 0x4; |
| 251 | |
| 252 | // For better memory debugging, we initialize all storage to known |
| 253 | // values, and overwrite the storage when it's deallocated: |
| 254 | // Byte that fills uninitialized storage. |
| 255 | static const int kMagicUninitializedByte = 0xAB; |
| 256 | // Byte that fills deallocated storage. |
| 257 | // NOTE: tcmalloc.cc depends on the value of kMagicDeletedByte |
| 258 | // to work around a bug in the pthread library. |
| 259 | static const int kMagicDeletedByte = 0xCD; |
| 260 | // A size_t (type of alloc_type_ below) in a deallocated storage |
| 261 | // filled with kMagicDeletedByte. |
| 262 | static const size_t kMagicDeletedSizeT = |
| 263 | 0xCDCDCDCD | (((size_t)0xCDCDCDCD << 16) << 16); |
| 264 | // Initializer works for 32 and 64 bit size_ts; |
| 265 | // "<< 16 << 16" is to fool gcc from issuing a warning |
| 266 | // when size_ts are 32 bits. |
| 267 | |
| 268 | // NOTE: on Linux, you can enable malloc debugging support in libc by |
| 269 | // setting the environment variable MALLOC_CHECK_ to 1 before you |
| 270 | // start the program (see man malloc). |
| 271 | |
| 272 | // We use either do_malloc or mmap to make the actual allocation. In |
| 273 | // order to remember which one of the two was used for any block, we store an |
| 274 | // appropriate magic word next to the block. |
| 275 | static const int kMagicMalloc = 0xDEADBEEF; |
| 276 | static const int kMagicMMap = 0xABCDEFAB; |
| 277 | |
| 278 | // This array will be filled with 0xCD, for use with memcmp. |
| 279 | static unsigned char kMagicDeletedBuffer[1024]; |
| 280 | static pthread_once_t deleted_buffer_initialized_; |
| 281 | static bool deleted_buffer_initialized_no_pthreads_; |
| 282 | |
| 283 | private: // data layout |
| 284 | |
| 285 | // The four fields size1_,offset_,magic1_,alloc_type_ |
| 286 | // should together occupy a multiple of 16 bytes. (At the |
| 287 | // moment, sizeof(size_t) == 4 or 8 depending on piii vs |
| 288 | // k8, and 4 of those sum to 16 or 32 bytes). |
| 289 | // This, combined with do_malloc's alignment guarantees, |
| 290 | // ensures that SSE types can be stored into the returned |
| 291 | // block, at &size2_. |
| 292 | size_t size1_; |
| 293 | size_t offset_; // normally 0 unless memaligned memory |
| 294 | // see comments in memalign() and FromRawPointer(). |
| 295 | size_t magic1_; |
| 296 | size_t alloc_type_; |
| 297 | // here comes the actual data (variable length) |
| 298 | // ... |
| 299 | // then come the size2_ and magic2_, or a full page of mprotect-ed memory |
| 300 | // if the malloc_page_fence feature is enabled. |
| 301 | size_t size2_; |
| 302 | int magic2_; |
| 303 | |
| 304 | private: // static data and helpers |
| 305 | |
| 306 | // Allocation map: stores the allocation type for each allocated object, |
| 307 | // or the type or'ed with kDeallocatedTypeBit |
| 308 | // for each formerly allocated object. |
| 309 | typedef AddressMap<int> AllocMap; |
| 310 | static AllocMap* alloc_map_; |
| 311 | // This protects alloc_map_ and consistent state of metadata |
| 312 | // for each still-allocated object in it. |
| 313 | // We use spin locks instead of pthread_mutex_t locks |
| 314 | // to prevent crashes via calls to pthread_mutex_(un)lock |
| 315 | // for the (de)allocations coming from pthreads initialization itself. |
| 316 | static SpinLock alloc_map_lock_; |
| 317 | |
| 318 | // A queue of freed blocks. Instead of releasing blocks to the allocator |
| 319 | // immediately, we put them in a queue, freeing them only when necessary |
| 320 | // to keep the total size of all the freed blocks below the limit set by |
| 321 | // FLAGS_max_free_queue_size. |
| 322 | static FreeQueue<MallocBlockQueueEntry>* free_queue_; |
| 323 | |
| 324 | static size_t free_queue_size_; // total size of blocks in free_queue_ |
| 325 | // protects free_queue_ and free_queue_size_ |
| 326 | static SpinLock free_queue_lock_; |
| 327 | |
| 328 | // Names of allocation types (kMallocType, kNewType, kArrayNewType) |
| 329 | static const char* const kAllocName[]; |
| 330 | // Names of corresponding deallocation types |
| 331 | static const char* const kDeallocName[]; |
| 332 | |
| 333 | static const char* AllocName(int type) { |
| 334 | return kAllocName[type & kAllocTypeMask]; |
| 335 | } |
| 336 | |
| 337 | static const char* DeallocName(int type) { |
| 338 | return kDeallocName[type & kAllocTypeMask]; |
| 339 | } |
| 340 | |
| 341 | private: // helper accessors |
| 342 | |
| 343 | bool IsMMapped() const { return kMagicMMap == magic1_; } |
| 344 | |
| 345 | bool IsValidMagicValue(int value) const { |
| 346 | return kMagicMMap == value || kMagicMalloc == value; |
| 347 | } |
| 348 | |
| 349 | static size_t real_malloced_size(size_t size) { |
| 350 | return size + sizeof(MallocBlock); |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * Here we assume size of page is kMinAlign aligned, |
| 355 | * so if size is MALLOC_ALIGNMENT aligned too, then we could |
| 356 | * guarantee return address is also kMinAlign aligned, because |
| 357 | * mmap return address at nearby page boundary on Linux. |
| 358 | */ |
| 359 | static size_t real_mmapped_size(size_t size) { |
| 360 | size_t tmp = size + MallocBlock::data_offset(); |
| 361 | tmp = RoundUp(tmp, kMinAlign); |
| 362 | return tmp; |
| 363 | } |
| 364 | |
| 365 | size_t real_size() { |
| 366 | return IsMMapped() ? real_mmapped_size(size1_) : real_malloced_size(size1_); |
| 367 | } |
| 368 | |
| 369 | // NOTE: if the block is mmapped (that is, we're using the |
| 370 | // malloc_page_fence option) then there's no size2 or magic2 |
| 371 | // (instead, the guard page begins where size2 would be). |
| 372 | |
| 373 | size_t* size2_addr() { return (size_t*)((char*)&size2_ + size1_); } |
| 374 | const size_t* size2_addr() const { |
| 375 | return (const size_t*)((char*)&size2_ + size1_); |
| 376 | } |
| 377 | |
| 378 | int* magic2_addr() { return (int*)(size2_addr() + 1); } |
| 379 | const int* magic2_addr() const { return (const int*)(size2_addr() + 1); } |
| 380 | |
| 381 | private: // other helpers |
| 382 | |
| 383 | void Initialize(size_t size, int type) { |
| 384 | RAW_CHECK(IsValidMagicValue(magic1_), ""); |
| 385 | // record us as allocated in the map |
| 386 | alloc_map_lock_.Lock(); |
| 387 | if (!alloc_map_) { |
| 388 | void* p = do_malloc(sizeof(AllocMap)); |
| 389 | alloc_map_ = new(p) AllocMap(do_malloc, do_free); |
| 390 | } |
| 391 | alloc_map_->Insert(data_addr(), type); |
| 392 | // initialize us |
| 393 | size1_ = size; |
| 394 | offset_ = 0; |
| 395 | alloc_type_ = type; |
| 396 | if (!IsMMapped()) { |
| 397 | *magic2_addr() = magic1_; |
| 398 | *size2_addr() = size; |
| 399 | } |
| 400 | alloc_map_lock_.Unlock(); |
| 401 | memset(data_addr(), kMagicUninitializedByte, size); |
| 402 | if (!IsMMapped()) { |
| 403 | RAW_CHECK(size1_ == *size2_addr(), "should hold"); |
| 404 | RAW_CHECK(magic1_ == *magic2_addr(), "should hold"); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | size_t CheckAndClear(int type) { |
| 409 | alloc_map_lock_.Lock(); |
| 410 | CheckLocked(type); |
| 411 | if (!IsMMapped()) { |
| 412 | RAW_CHECK(size1_ == *size2_addr(), "should hold"); |
| 413 | } |
| 414 | // record us as deallocated in the map |
| 415 | alloc_map_->Insert(data_addr(), type | kDeallocatedTypeBit); |
| 416 | alloc_map_lock_.Unlock(); |
| 417 | // clear us |
| 418 | const size_t size = real_size(); |
| 419 | memset(this, kMagicDeletedByte, size); |
| 420 | return size; |
| 421 | } |
| 422 | |
| 423 | void CheckLocked(int type) const { |
| 424 | int map_type = 0; |
| 425 | const int* found_type = |
| 426 | alloc_map_ != NULL ? alloc_map_->Find(data_addr()) : NULL; |
| 427 | if (found_type == NULL) { |
| 428 | RAW_LOG(FATAL, "memory allocation bug: object at %p " |
| 429 | "has never been allocated", data_addr()); |
| 430 | } else { |
| 431 | map_type = *found_type; |
| 432 | } |
| 433 | if ((map_type & kDeallocatedTypeBit) != 0) { |
| 434 | RAW_LOG(FATAL, "memory allocation bug: object at %p " |
| 435 | "has been already deallocated (it was allocated with %s)", |
| 436 | data_addr(), AllocName(map_type & ~kDeallocatedTypeBit)); |
| 437 | } |
| 438 | if (alloc_type_ == kMagicDeletedSizeT) { |
| 439 | RAW_LOG(FATAL, "memory stomping bug: a word before object at %p " |
| 440 | "has been corrupted; or else the object has been already " |
| 441 | "deallocated and our memory map has been corrupted", |
| 442 | data_addr()); |
| 443 | } |
| 444 | if (!IsValidMagicValue(magic1_)) { |
| 445 | RAW_LOG(FATAL, "memory stomping bug: a word before object at %p " |
| 446 | "has been corrupted; " |
| 447 | "or else our memory map has been corrupted and this is a " |
| 448 | "deallocation for not (currently) heap-allocated object", |
| 449 | data_addr()); |
| 450 | } |
| 451 | if (!IsMMapped()) { |
| 452 | if (size1_ != *size2_addr()) { |
| 453 | RAW_LOG(FATAL, "memory stomping bug: a word after object at %p " |
| 454 | "has been corrupted", data_addr()); |
| 455 | } |
| 456 | if (!IsValidMagicValue(*magic2_addr())) { |
| 457 | RAW_LOG(FATAL, "memory stomping bug: a word after object at %p " |
| 458 | "has been corrupted", data_addr()); |
| 459 | } |
| 460 | } |
| 461 | if (alloc_type_ != type) { |
| 462 | if ((alloc_type_ != MallocBlock::kMallocType) && |
| 463 | (alloc_type_ != MallocBlock::kNewType) && |
| 464 | (alloc_type_ != MallocBlock::kArrayNewType)) { |
| 465 | RAW_LOG(FATAL, "memory stomping bug: a word before object at %p " |
| 466 | "has been corrupted", data_addr()); |
| 467 | } |
| 468 | RAW_LOG(FATAL, "memory allocation/deallocation mismatch at %p: " |
| 469 | "allocated with %s being deallocated with %s", |
| 470 | data_addr(), AllocName(alloc_type_), DeallocName(type)); |
| 471 | } |
| 472 | if (alloc_type_ != map_type) { |
| 473 | RAW_LOG(FATAL, "memory stomping bug: our memory map has been corrupted : " |
| 474 | "allocation at %p made with %s " |
| 475 | "is recorded in the map to be made with %s", |
| 476 | data_addr(), AllocName(alloc_type_), AllocName(map_type)); |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | public: // public accessors |
| 481 | |
| 482 | void* data_addr() { return (void*)&size2_; } |
| 483 | const void* data_addr() const { return (const void*)&size2_; } |
| 484 | |
| 485 | static size_t data_offset() { return OFFSETOF_MEMBER(MallocBlock, size2_); } |
| 486 | |
| 487 | size_t data_size() const { return size1_; } |
| 488 | |
| 489 | void set_offset(int offset) { this->offset_ = offset; } |
| 490 | |
| 491 | public: // our main interface |
| 492 | |
| 493 | static MallocBlock* Allocate(size_t size, int type) { |
| 494 | // Prevent an integer overflow / crash with large allocation sizes. |
| 495 | // TODO - Note that for a e.g. 64-bit size_t, max_size_t may not actually |
| 496 | // be the maximum value, depending on how the compiler treats ~0. The worst |
| 497 | // practical effect is that allocations are limited to 4Gb or so, even if |
| 498 | // the address space could take more. |
| 499 | static size_t max_size_t = ~0; |
| 500 | if (size > max_size_t - sizeof(MallocBlock)) { |
| 501 | RAW_LOG(ERROR, "Massive size passed to malloc: %" PRIuS "", size); |
| 502 | return NULL; |
| 503 | } |
| 504 | MallocBlock* b = NULL; |
| 505 | const bool use_malloc_page_fence = FLAGS_malloc_page_fence; |
| 506 | #ifdef HAVE_MMAP |
| 507 | if (use_malloc_page_fence) { |
| 508 | // Put the block towards the end of the page and make the next page |
| 509 | // inaccessible. This will catch buffer overrun right when it happens. |
| 510 | size_t sz = real_mmapped_size(size); |
| 511 | int pagesize = getpagesize(); |
| 512 | int num_pages = (sz + pagesize - 1) / pagesize + 1; |
| 513 | char* p = (char*) mmap(NULL, num_pages * pagesize, PROT_READ|PROT_WRITE, |
| 514 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| 515 | if (p == MAP_FAILED) { |
| 516 | // If the allocation fails, abort rather than returning NULL to |
| 517 | // malloc. This is because in most cases, the program will run out |
| 518 | // of memory in this mode due to tremendous amount of wastage. There |
| 519 | // is no point in propagating the error elsewhere. |
| 520 | RAW_LOG(FATAL, "Out of memory: possibly due to page fence overhead: %s", |
| 521 | strerror(errno)); |
| 522 | } |
| 523 | // Mark the page after the block inaccessible |
| 524 | if (mprotect(p + (num_pages - 1) * pagesize, pagesize, PROT_NONE)) { |
| 525 | RAW_LOG(FATAL, "Guard page setup failed: %s", strerror(errno)); |
| 526 | } |
| 527 | b = (MallocBlock*) (p + (num_pages - 1) * pagesize - sz); |
| 528 | } else { |
| 529 | b = (MallocBlock*) do_malloc(real_malloced_size(size)); |
| 530 | } |
| 531 | #else |
| 532 | b = (MallocBlock*) do_malloc(real_malloced_size(size)); |
| 533 | #endif |
| 534 | |
| 535 | // It would be nice to output a diagnostic on allocation failure |
| 536 | // here, but logging (other than FATAL) requires allocating |
| 537 | // memory, which could trigger a nasty recursion. Instead, preserve |
| 538 | // malloc semantics and return NULL on failure. |
| 539 | if (b != NULL) { |
| 540 | b->magic1_ = use_malloc_page_fence ? kMagicMMap : kMagicMalloc; |
| 541 | b->Initialize(size, type); |
| 542 | } |
| 543 | return b; |
| 544 | } |
| 545 | |
| 546 | void Deallocate(int type) { |
| 547 | if (IsMMapped()) { // have to do this before CheckAndClear |
| 548 | #ifdef HAVE_MMAP |
| 549 | int size = CheckAndClear(type); |
| 550 | int pagesize = getpagesize(); |
| 551 | int num_pages = (size + pagesize - 1) / pagesize + 1; |
| 552 | char* p = (char*) this; |
| 553 | if (FLAGS_malloc_page_fence_never_reclaim || |
| 554 | !FLAGS_malloc_reclaim_memory) { |
| 555 | mprotect(p - (num_pages - 1) * pagesize + size, |
| 556 | num_pages * pagesize, PROT_NONE); |
| 557 | } else { |
| 558 | munmap(p - (num_pages - 1) * pagesize + size, num_pages * pagesize); |
| 559 | } |
| 560 | #endif |
| 561 | } else { |
| 562 | const size_t size = CheckAndClear(type); |
| 563 | if (FLAGS_malloc_reclaim_memory) { |
| 564 | // Instead of freeing the block immediately, push it onto a queue of |
| 565 | // recently freed blocks. Free only enough blocks to keep from |
| 566 | // exceeding the capacity of the queue or causing the total amount of |
| 567 | // un-released memory in the queue from exceeding |
| 568 | // FLAGS_max_free_queue_size. |
| 569 | ProcessFreeQueue(this, size, FLAGS_max_free_queue_size); |
| 570 | } |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | static size_t FreeQueueSize() { |
| 575 | SpinLockHolder l(&free_queue_lock_); |
| 576 | return free_queue_size_; |
| 577 | } |
| 578 | |
| 579 | static void ProcessFreeQueue(MallocBlock* b, size_t size, |
| 580 | int max_free_queue_size) { |
| 581 | // MallocBlockQueueEntry are about 144 in size, so we can only |
| 582 | // use a small array of them on the stack. |
| 583 | MallocBlockQueueEntry entries[4]; |
| 584 | int num_entries = 0; |
| 585 | MallocBlockQueueEntry new_entry(b, size); |
| 586 | free_queue_lock_.Lock(); |
| 587 | if (free_queue_ == NULL) |
| 588 | free_queue_ = new FreeQueue<MallocBlockQueueEntry>; |
| 589 | RAW_CHECK(!free_queue_->Full(), "Free queue mustn't be full!"); |
| 590 | |
| 591 | if (b != NULL) { |
| 592 | free_queue_size_ += size + sizeof(MallocBlockQueueEntry); |
| 593 | free_queue_->Push(new_entry); |
| 594 | } |
| 595 | |
| 596 | // Free blocks until the total size of unfreed blocks no longer exceeds |
| 597 | // max_free_queue_size, and the free queue has at least one free |
| 598 | // space in it. |
| 599 | while (free_queue_size_ > max_free_queue_size || free_queue_->Full()) { |
| 600 | RAW_CHECK(num_entries < arraysize(entries), "entries array overflow"); |
| 601 | entries[num_entries] = free_queue_->Pop(); |
| 602 | free_queue_size_ -= |
| 603 | entries[num_entries].size + sizeof(MallocBlockQueueEntry); |
| 604 | num_entries++; |
| 605 | if (num_entries == arraysize(entries)) { |
| 606 | // The queue will not be full at this point, so it is ok to |
| 607 | // release the lock. The queue may still contain more than |
| 608 | // max_free_queue_size, but this is not a strict invariant. |
| 609 | free_queue_lock_.Unlock(); |
| 610 | for (int i = 0; i < num_entries; i++) { |
| 611 | CheckForDanglingWrites(entries[i]); |
| 612 | do_free(entries[i].block); |
| 613 | } |
| 614 | num_entries = 0; |
| 615 | free_queue_lock_.Lock(); |
| 616 | } |
| 617 | } |
| 618 | RAW_CHECK(free_queue_size_ >= 0, "Free queue size went negative!"); |
| 619 | free_queue_lock_.Unlock(); |
| 620 | for (int i = 0; i < num_entries; i++) { |
| 621 | CheckForDanglingWrites(entries[i]); |
| 622 | do_free(entries[i].block); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | static void InitDeletedBuffer() { |
| 627 | memset(kMagicDeletedBuffer, kMagicDeletedByte, sizeof(kMagicDeletedBuffer)); |
| 628 | deleted_buffer_initialized_no_pthreads_ = true; |
| 629 | } |
| 630 | |
| 631 | static void CheckForDanglingWrites(const MallocBlockQueueEntry& queue_entry) { |
| 632 | // Initialize the buffer if necessary. |
| 633 | if (pthread_once) |
| 634 | pthread_once(&deleted_buffer_initialized_, &InitDeletedBuffer); |
| 635 | if (!deleted_buffer_initialized_no_pthreads_) { |
| 636 | // This will be the case on systems that don't link in pthreads, |
| 637 | // including on FreeBSD where pthread_once has a non-zero address |
| 638 | // (but doesn't do anything) even when pthreads isn't linked in. |
| 639 | InitDeletedBuffer(); |
| 640 | } |
| 641 | |
| 642 | const unsigned char* p = |
| 643 | reinterpret_cast<unsigned char*>(queue_entry.block); |
| 644 | |
| 645 | static const size_t size_of_buffer = sizeof(kMagicDeletedBuffer); |
| 646 | const size_t size = queue_entry.size; |
| 647 | const size_t buffers = size / size_of_buffer; |
| 648 | const size_t remainder = size % size_of_buffer; |
| 649 | size_t buffer_idx; |
| 650 | for (buffer_idx = 0; buffer_idx < buffers; ++buffer_idx) { |
| 651 | CheckForCorruptedBuffer(queue_entry, buffer_idx, p, size_of_buffer); |
| 652 | p += size_of_buffer; |
| 653 | } |
| 654 | CheckForCorruptedBuffer(queue_entry, buffer_idx, p, remainder); |
| 655 | } |
| 656 | |
| 657 | static void CheckForCorruptedBuffer(const MallocBlockQueueEntry& queue_entry, |
| 658 | size_t buffer_idx, |
| 659 | const unsigned char* buffer, |
| 660 | size_t size_of_buffer) { |
| 661 | if (memcmp(buffer, kMagicDeletedBuffer, size_of_buffer) == 0) { |
| 662 | return; |
| 663 | } |
| 664 | |
| 665 | RAW_LOG(ERROR, |
| 666 | "Found a corrupted memory buffer in MallocBlock (may be offset " |
| 667 | "from user ptr): buffer index: %zd, buffer ptr: %p, size of " |
| 668 | "buffer: %zd", buffer_idx, buffer, size_of_buffer); |
| 669 | |
| 670 | // The magic deleted buffer should only be 1024 bytes, but in case |
| 671 | // this changes, let's put an upper limit on the number of debug |
| 672 | // lines we'll output: |
| 673 | if (size_of_buffer <= 1024) { |
| 674 | for (int i = 0; i < size_of_buffer; ++i) { |
| 675 | if (buffer[i] != kMagicDeletedByte) { |
| 676 | RAW_LOG(ERROR, "Buffer byte %d is 0x%02x (should be 0x%02x).", |
| 677 | i, buffer[i], kMagicDeletedByte); |
| 678 | } |
| 679 | } |
| 680 | } else { |
| 681 | RAW_LOG(ERROR, "Buffer too large to print corruption."); |
| 682 | } |
| 683 | |
| 684 | const MallocBlock* b = queue_entry.block; |
| 685 | const size_t size = queue_entry.size; |
| 686 | if (queue_entry.num_deleter_pcs > 0) { |
| 687 | TracePrintf(STDERR_FILENO, "Deleted by thread %p\n", |
| 688 | reinterpret_cast<void*>( |
| 689 | PRINTABLE_PTHREAD(queue_entry.deleter_threadid))); |
| 690 | |
| 691 | // We don't want to allocate or deallocate memory here, so we use |
| 692 | // placement-new. It's ok that we don't destroy this, since we're |
| 693 | // just going to error-exit below anyway. Union is for alignment. |
| 694 | union { void* alignment; char buf[sizeof(SymbolTable)]; } tablebuf; |
| 695 | SymbolTable* symbolization_table = new (tablebuf.buf) SymbolTable; |
| 696 | for (int i = 0; i < queue_entry.num_deleter_pcs; i++) { |
| 697 | // Symbolizes the previous address of pc because pc may be in the |
| 698 | // next function. This may happen when the function ends with |
| 699 | // a call to a function annotated noreturn (e.g. CHECK). |
| 700 | char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]); |
| 701 | symbolization_table->Add(pc - 1); |
| 702 | } |
| 703 | if (FLAGS_symbolize_stacktrace) |
| 704 | symbolization_table->Symbolize(); |
| 705 | for (int i = 0; i < queue_entry.num_deleter_pcs; i++) { |
| 706 | char *pc = reinterpret_cast<char*>(queue_entry.deleter_pcs[i]); |
| 707 | TracePrintf(STDERR_FILENO, " @ %p %s\n", |
| 708 | pc, symbolization_table->GetSymbol(pc - 1)); |
| 709 | } |
| 710 | } else { |
| 711 | RAW_LOG(ERROR, |
| 712 | "Skipping the printing of the deleter's stack! Its stack was " |
| 713 | "not found; either the corruption occurred too early in " |
| 714 | "execution to obtain a stack trace or --max_free_queue_size was " |
| 715 | "set to 0."); |
| 716 | } |
| 717 | |
| 718 | RAW_LOG(FATAL, |
| 719 | "Memory was written to after being freed. MallocBlock: %p, user " |
| 720 | "ptr: %p, size: %zd. If you can't find the source of the error, " |
| 721 | "try using ASan (http://code.google.com/p/address-sanitizer/), " |
| 722 | "Valgrind, or Purify, or study the " |
| 723 | "output of the deleter's stack printed above.", |
| 724 | b, b->data_addr(), size); |
| 725 | } |
| 726 | |
| 727 | static MallocBlock* FromRawPointer(void* p) { |
| 728 | const size_t data_offset = MallocBlock::data_offset(); |
| 729 | // Find the header just before client's memory. |
| 730 | MallocBlock *mb = reinterpret_cast<MallocBlock *>( |
| 731 | reinterpret_cast<char *>(p) - data_offset); |
| 732 | // If mb->alloc_type_ is kMagicDeletedSizeT, we're not an ok pointer. |
| 733 | if (mb->alloc_type_ == kMagicDeletedSizeT) { |
| 734 | RAW_LOG(FATAL, "memory allocation bug: object at %p has been already" |
| 735 | " deallocated; or else a word before the object has been" |
| 736 | " corrupted (memory stomping bug)", p); |
| 737 | } |
| 738 | // If mb->offset_ is zero (common case), mb is the real header. |
| 739 | // If mb->offset_ is non-zero, this block was allocated by debug |
| 740 | // memallign implementation, and mb->offset_ is the distance |
| 741 | // backwards to the real header from mb, which is a fake header. |
| 742 | if (mb->offset_ == 0) { |
| 743 | return mb; |
| 744 | } |
| 745 | |
| 746 | MallocBlock *main_block = reinterpret_cast<MallocBlock *>( |
| 747 | reinterpret_cast<char *>(mb) - mb->offset_); |
| 748 | |
| 749 | if (main_block->offset_ != 0) { |
| 750 | RAW_LOG(FATAL, "memory corruption bug: offset_ field is corrupted." |
| 751 | " Need 0 but got %x", |
| 752 | (unsigned)(main_block->offset_)); |
| 753 | } |
| 754 | if (main_block >= p) { |
| 755 | RAW_LOG(FATAL, "memory corruption bug: offset_ field is corrupted." |
| 756 | " Detected main_block address overflow: %x", |
| 757 | (unsigned)(mb->offset_)); |
| 758 | } |
| 759 | if (main_block->size2_addr() < p) { |
| 760 | RAW_LOG(FATAL, "memory corruption bug: offset_ field is corrupted." |
| 761 | " It points below it's own main_block: %x", |
| 762 | (unsigned)(mb->offset_)); |
| 763 | } |
| 764 | |
| 765 | return main_block; |
| 766 | } |
| 767 | |
| 768 | static const MallocBlock* FromRawPointer(const void* p) { |
| 769 | // const-safe version: we just cast about |
| 770 | return FromRawPointer(const_cast<void*>(p)); |
| 771 | } |
| 772 | |
| 773 | void Check(int type) const { |
| 774 | alloc_map_lock_.Lock(); |
| 775 | CheckLocked(type); |
| 776 | alloc_map_lock_.Unlock(); |
| 777 | } |
| 778 | |
| 779 | static bool CheckEverything() { |
| 780 | alloc_map_lock_.Lock(); |
| 781 | if (alloc_map_ != NULL) alloc_map_->Iterate(CheckCallback, 0); |
| 782 | alloc_map_lock_.Unlock(); |
| 783 | return true; // if we get here, we're okay |
| 784 | } |
| 785 | |
| 786 | static bool MemoryStats(int* blocks, size_t* total, |
| 787 | int histogram[kMallocHistogramSize]) { |
| 788 | memset(histogram, 0, kMallocHistogramSize * sizeof(int)); |
| 789 | alloc_map_lock_.Lock(); |
| 790 | stats_blocks_ = 0; |
| 791 | stats_total_ = 0; |
| 792 | stats_histogram_ = histogram; |
| 793 | if (alloc_map_ != NULL) alloc_map_->Iterate(StatsCallback, 0); |
| 794 | *blocks = stats_blocks_; |
| 795 | *total = stats_total_; |
| 796 | alloc_map_lock_.Unlock(); |
| 797 | return true; |
| 798 | } |
| 799 | |
| 800 | private: // helpers for CheckEverything and MemoryStats |
| 801 | |
| 802 | static void CheckCallback(const void* ptr, int* type, int dummy) { |
| 803 | if ((*type & kDeallocatedTypeBit) == 0) { |
| 804 | FromRawPointer(ptr)->CheckLocked(*type); |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | // Accumulation variables for StatsCallback protected by alloc_map_lock_ |
| 809 | static int stats_blocks_; |
| 810 | static size_t stats_total_; |
| 811 | static int* stats_histogram_; |
| 812 | |
| 813 | static void StatsCallback(const void* ptr, int* type, int dummy) { |
| 814 | if ((*type & kDeallocatedTypeBit) == 0) { |
| 815 | const MallocBlock* b = FromRawPointer(ptr); |
| 816 | b->CheckLocked(*type); |
| 817 | ++stats_blocks_; |
| 818 | size_t mysize = b->size1_; |
| 819 | int entry = 0; |
| 820 | stats_total_ += mysize; |
| 821 | while (mysize) { |
| 822 | ++entry; |
| 823 | mysize >>= 1; |
| 824 | } |
| 825 | RAW_CHECK(entry < kMallocHistogramSize, |
| 826 | "kMallocHistogramSize should be at least as large as log2 " |
| 827 | "of the maximum process memory size"); |
| 828 | stats_histogram_[entry] += 1; |
| 829 | } |
| 830 | } |
| 831 | }; |
| 832 | |
| 833 | void DanglingWriteChecker() { |
| 834 | // Clear out the remaining free queue to check for dangling writes. |
| 835 | MallocBlock::ProcessFreeQueue(NULL, 0, 0); |
| 836 | } |
| 837 | |
| 838 | // ========================================================================= // |
| 839 | |
| 840 | const int MallocBlock::kMagicMalloc; |
| 841 | const int MallocBlock::kMagicMMap; |
| 842 | |
| 843 | MallocBlock::AllocMap* MallocBlock::alloc_map_ = NULL; |
| 844 | SpinLock MallocBlock::alloc_map_lock_(SpinLock::LINKER_INITIALIZED); |
| 845 | |
| 846 | FreeQueue<MallocBlockQueueEntry>* MallocBlock::free_queue_ = NULL; |
| 847 | size_t MallocBlock::free_queue_size_ = 0; |
| 848 | SpinLock MallocBlock::free_queue_lock_(SpinLock::LINKER_INITIALIZED); |
| 849 | |
| 850 | unsigned char MallocBlock::kMagicDeletedBuffer[1024]; |
| 851 | pthread_once_t MallocBlock::deleted_buffer_initialized_ = PTHREAD_ONCE_INIT; |
| 852 | bool MallocBlock::deleted_buffer_initialized_no_pthreads_ = false; |
| 853 | |
| 854 | const char* const MallocBlock::kAllocName[] = { |
| 855 | "malloc", |
| 856 | "new", |
| 857 | "new []", |
| 858 | NULL, |
| 859 | }; |
| 860 | |
| 861 | const char* const MallocBlock::kDeallocName[] = { |
| 862 | "free", |
| 863 | "delete", |
| 864 | "delete []", |
| 865 | NULL, |
| 866 | }; |
| 867 | |
| 868 | int MallocBlock::stats_blocks_; |
| 869 | size_t MallocBlock::stats_total_; |
| 870 | int* MallocBlock::stats_histogram_; |
| 871 | |
| 872 | // ========================================================================= // |
| 873 | |
| 874 | // The following cut-down version of printf() avoids |
| 875 | // using stdio or ostreams. |
| 876 | // This is to guarantee no recursive calls into |
| 877 | // the allocator and to bound the stack space consumed. (The pthread |
| 878 | // manager thread in linuxthreads has a very small stack, |
| 879 | // so fprintf can't be called.) |
| 880 | static void TracePrintf(int fd, const char *fmt, ...) { |
| 881 | char buf[64]; |
| 882 | int i = 0; |
| 883 | va_list ap; |
| 884 | va_start(ap, fmt); |
| 885 | const char *p = fmt; |
| 886 | char numbuf[25]; |
| 887 | if (fd < 0) { |
| 888 | return; |
| 889 | } |
| 890 | numbuf[sizeof(numbuf)-1] = 0; |
| 891 | while (*p != '\0') { // until end of format string |
| 892 | char *s = &numbuf[sizeof(numbuf)-1]; |
| 893 | if (p[0] == '%' && p[1] != 0) { // handle % formats |
| 894 | int64 l = 0; |
| 895 | unsigned long base = 0; |
| 896 | if (*++p == 's') { // %s |
| 897 | s = va_arg(ap, char *); |
| 898 | } else if (*p == 'l' && p[1] == 'd') { // %ld |
| 899 | l = va_arg(ap, long); |
| 900 | base = 10; |
| 901 | p++; |
| 902 | } else if (*p == 'l' && p[1] == 'u') { // %lu |
| 903 | l = va_arg(ap, unsigned long); |
| 904 | base = 10; |
| 905 | p++; |
| 906 | } else if (*p == 'z' && p[1] == 'u') { // %zu |
| 907 | l = va_arg(ap, size_t); |
| 908 | base = 10; |
| 909 | p++; |
| 910 | } else if (*p == 'u') { // %u |
| 911 | l = va_arg(ap, unsigned int); |
| 912 | base = 10; |
| 913 | } else if (*p == 'd') { // %d |
| 914 | l = va_arg(ap, int); |
| 915 | base = 10; |
| 916 | } else if (*p == 'p') { // %p |
| 917 | l = va_arg(ap, intptr_t); |
| 918 | base = 16; |
| 919 | } else { |
| 920 | write(STDERR_FILENO, "Unimplemented TracePrintf format\n", 33); |
| 921 | write(STDERR_FILENO, p, 2); |
| 922 | write(STDERR_FILENO, "\n", 1); |
| 923 | abort(); |
| 924 | } |
| 925 | p++; |
| 926 | if (base != 0) { |
| 927 | bool minus = (l < 0 && base == 10); |
| 928 | uint64 ul = minus? -l : l; |
| 929 | do { |
| 930 | *--s = "0123456789abcdef"[ul % base]; |
| 931 | ul /= base; |
| 932 | } while (ul != 0); |
| 933 | if (base == 16) { |
| 934 | *--s = 'x'; |
| 935 | *--s = '0'; |
| 936 | } else if (minus) { |
| 937 | *--s = '-'; |
| 938 | } |
| 939 | } |
| 940 | } else { // handle normal characters |
| 941 | *--s = *p++; |
| 942 | } |
| 943 | while (*s != 0) { |
| 944 | if (i == sizeof(buf)) { |
| 945 | write(fd, buf, i); |
| 946 | i = 0; |
| 947 | } |
| 948 | buf[i++] = *s++; |
| 949 | } |
| 950 | } |
| 951 | if (i != 0) { |
| 952 | write(fd, buf, i); |
| 953 | } |
| 954 | va_end(ap); |
| 955 | } |
| 956 | |
| 957 | // Return the file descriptor we're writing a log to |
| 958 | static int TraceFd() { |
| 959 | static int trace_fd = -1; |
| 960 | if (trace_fd == -1) { // Open the trace file on the first call |
| 961 | const char *val = getenv("TCMALLOC_TRACE_FILE"); |
| 962 | bool fallback_to_stderr = false; |
| 963 | if (!val) { |
| 964 | val = "/tmp/google.alloc"; |
| 965 | fallback_to_stderr = true; |
| 966 | } |
| 967 | trace_fd = open(val, O_CREAT|O_TRUNC|O_WRONLY, 0666); |
| 968 | if (trace_fd == -1) { |
| 969 | if (fallback_to_stderr) { |
| 970 | trace_fd = 2; |
| 971 | TracePrintf(trace_fd, "Can't open %s. Logging to stderr.\n", val); |
| 972 | } else { |
| 973 | TracePrintf(2, "Can't open %s. Logging disabled.\n", val); |
| 974 | } |
| 975 | } |
| 976 | // Add a header to the log. |
| 977 | TracePrintf(trace_fd, "Trace started: %lu\n", |
| 978 | static_cast<unsigned long>(time(NULL))); |
| 979 | TracePrintf(trace_fd, |
| 980 | "func\tsize\tptr\tthread_id\tstack pcs for tools/symbolize\n"); |
| 981 | } |
| 982 | return trace_fd; |
| 983 | } |
| 984 | |
| 985 | // Print the hex stack dump on a single line. PCs are separated by tabs. |
| 986 | static void TraceStack(void) { |
| 987 | void *pcs[16]; |
| 988 | int n = GetStackTrace(pcs, sizeof(pcs)/sizeof(pcs[0]), 0); |
| 989 | for (int i = 0; i != n; i++) { |
| 990 | TracePrintf(TraceFd(), "\t%p", pcs[i]); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | // This protects MALLOC_TRACE, to make sure its info is atomically written. |
| 995 | static SpinLock malloc_trace_lock(SpinLock::LINKER_INITIALIZED); |
| 996 | |
| 997 | #define MALLOC_TRACE(name, size, addr) \ |
| 998 | do { \ |
| 999 | if (FLAGS_malloctrace) { \ |
| 1000 | SpinLockHolder l(&malloc_trace_lock); \ |
| 1001 | TracePrintf(TraceFd(), "%s\t%" PRIuS "\t%p\t%" GPRIuPTHREAD, \ |
| 1002 | name, size, addr, PRINTABLE_PTHREAD(pthread_self())); \ |
| 1003 | TraceStack(); \ |
| 1004 | TracePrintf(TraceFd(), "\n"); \ |
| 1005 | } \ |
| 1006 | } while (0) |
| 1007 | |
| 1008 | // ========================================================================= // |
| 1009 | |
| 1010 | // Write the characters buf[0, ..., size-1] to |
| 1011 | // the malloc trace buffer. |
| 1012 | // This function is intended for debugging, |
| 1013 | // and is not declared in any header file. |
| 1014 | // You must insert a declaration of it by hand when you need |
| 1015 | // to use it. |
| 1016 | void __malloctrace_write(const char *buf, size_t size) { |
| 1017 | if (FLAGS_malloctrace) { |
| 1018 | write(TraceFd(), buf, size); |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | // ========================================================================= // |
| 1023 | |
| 1024 | // General debug allocation/deallocation |
| 1025 | |
| 1026 | static inline void* DebugAllocate(size_t size, int type) { |
| 1027 | MallocBlock* ptr = MallocBlock::Allocate(size, type); |
| 1028 | if (ptr == NULL) return NULL; |
| 1029 | MALLOC_TRACE("malloc", size, ptr->data_addr()); |
| 1030 | return ptr->data_addr(); |
| 1031 | } |
| 1032 | |
| 1033 | static inline void DebugDeallocate(void* ptr, int type) { |
| 1034 | MALLOC_TRACE("free", |
| 1035 | (ptr != 0 ? MallocBlock::FromRawPointer(ptr)->data_size() : 0), |
| 1036 | ptr); |
| 1037 | if (ptr) MallocBlock::FromRawPointer(ptr)->Deallocate(type); |
| 1038 | } |
| 1039 | |
| 1040 | // ========================================================================= // |
| 1041 | |
| 1042 | // The following functions may be called via MallocExtension::instance() |
| 1043 | // for memory verification and statistics. |
| 1044 | class DebugMallocImplementation : public TCMallocImplementation { |
| 1045 | public: |
| 1046 | virtual bool GetNumericProperty(const char* name, size_t* value) { |
| 1047 | bool result = TCMallocImplementation::GetNumericProperty(name, value); |
| 1048 | if (result && (strcmp(name, "generic.current_allocated_bytes") == 0)) { |
| 1049 | // Subtract bytes kept in the free queue |
| 1050 | size_t qsize = MallocBlock::FreeQueueSize(); |
| 1051 | if (*value >= qsize) { |
| 1052 | *value -= qsize; |
| 1053 | } |
| 1054 | } |
| 1055 | return result; |
| 1056 | } |
| 1057 | |
| 1058 | virtual bool VerifyNewMemory(const void* p) { |
| 1059 | if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kNewType); |
| 1060 | return true; |
| 1061 | } |
| 1062 | |
| 1063 | virtual bool VerifyArrayNewMemory(const void* p) { |
| 1064 | if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kArrayNewType); |
| 1065 | return true; |
| 1066 | } |
| 1067 | |
| 1068 | virtual bool VerifyMallocMemory(const void* p) { |
| 1069 | if (p) MallocBlock::FromRawPointer(p)->Check(MallocBlock::kMallocType); |
| 1070 | return true; |
| 1071 | } |
| 1072 | |
| 1073 | virtual bool VerifyAllMemory() { |
| 1074 | return MallocBlock::CheckEverything(); |
| 1075 | } |
| 1076 | |
| 1077 | virtual bool MallocMemoryStats(int* blocks, size_t* total, |
| 1078 | int histogram[kMallocHistogramSize]) { |
| 1079 | return MallocBlock::MemoryStats(blocks, total, histogram); |
| 1080 | } |
| 1081 | |
| 1082 | virtual size_t GetEstimatedAllocatedSize(size_t size) { |
| 1083 | return size; |
| 1084 | } |
| 1085 | |
| 1086 | virtual size_t GetAllocatedSize(const void* p) { |
| 1087 | if (p) { |
| 1088 | RAW_CHECK(GetOwnership(p) != MallocExtension::kNotOwned, |
| 1089 | "ptr not allocated by tcmalloc"); |
| 1090 | return MallocBlock::FromRawPointer(p)->data_size(); |
| 1091 | } |
| 1092 | return 0; |
| 1093 | } |
| 1094 | |
| 1095 | virtual MallocExtension::Ownership GetOwnership(const void* p) { |
| 1096 | if (!p) { |
| 1097 | // nobody owns NULL |
| 1098 | return MallocExtension::kNotOwned; |
| 1099 | } |
| 1100 | |
| 1101 | // FIXME: note that correct GetOwnership should not touch memory |
| 1102 | // that is not owned by tcmalloc. Main implementation is using |
| 1103 | // pagemap to discover if page in question is owned by us or |
| 1104 | // not. But pagemap only has marks for first and last page of |
| 1105 | // spans. Note that if p was returned out of our memalign with |
| 1106 | // big alignment, then it will point outside of marked pages. Also |
| 1107 | // note that FromRawPointer call below requires touching memory |
| 1108 | // before pointer in order to handle memalign-ed chunks |
| 1109 | // (offset_). This leaves us with two options: |
| 1110 | // |
| 1111 | // * do FromRawPointer first and have possibility of crashing if |
| 1112 | // we're given not owned pointer |
| 1113 | // |
| 1114 | // * return incorrect ownership for those large memalign chunks |
| 1115 | // |
| 1116 | // I've decided to choose later, which appears to happen rarer and |
| 1117 | // therefore is arguably a lesser evil |
| 1118 | |
| 1119 | MallocExtension::Ownership rv = TCMallocImplementation::GetOwnership(p); |
| 1120 | if (rv != MallocExtension::kOwned) { |
| 1121 | return rv; |
| 1122 | } |
| 1123 | |
| 1124 | const MallocBlock* mb = MallocBlock::FromRawPointer(p); |
| 1125 | return TCMallocImplementation::GetOwnership(mb); |
| 1126 | } |
| 1127 | |
| 1128 | virtual void GetFreeListSizes(vector<MallocExtension::FreeListInfo>* v) { |
| 1129 | static const char* kDebugFreeQueue = "debug.free_queue"; |
| 1130 | |
| 1131 | TCMallocImplementation::GetFreeListSizes(v); |
| 1132 | |
| 1133 | MallocExtension::FreeListInfo i; |
| 1134 | i.type = kDebugFreeQueue; |
| 1135 | i.min_object_size = 0; |
| 1136 | i.max_object_size = numeric_limits<size_t>::max(); |
| 1137 | i.total_bytes_free = MallocBlock::FreeQueueSize(); |
| 1138 | v->push_back(i); |
| 1139 | } |
| 1140 | |
| 1141 | }; |
| 1142 | |
| 1143 | static union { |
| 1144 | char chars[sizeof(DebugMallocImplementation)]; |
| 1145 | void *ptr; |
| 1146 | } debug_malloc_implementation_space; |
| 1147 | |
| 1148 | REGISTER_MODULE_INITIALIZER(debugallocation, { |
| 1149 | #if (__cplusplus >= 201103L) |
| 1150 | COMPILE_ASSERT(alignof(debug_malloc_implementation_space) >= alignof(DebugMallocImplementation), |
| 1151 | debug_malloc_implementation_space_is_not_properly_aligned); |
| 1152 | #endif |
| 1153 | // Either we or valgrind will control memory management. We |
| 1154 | // register our extension if we're the winner. Otherwise let |
| 1155 | // Valgrind use its own malloc (so don't register our extension). |
| 1156 | if (!RunningOnValgrind()) { |
| 1157 | DebugMallocImplementation *impl = new (debug_malloc_implementation_space.chars) DebugMallocImplementation(); |
| 1158 | MallocExtension::Register(impl); |
| 1159 | } |
| 1160 | }); |
| 1161 | |
| 1162 | REGISTER_MODULE_DESTRUCTOR(debugallocation, { |
| 1163 | if (!RunningOnValgrind()) { |
| 1164 | // When the program exits, check all blocks still in the free |
| 1165 | // queue for corruption. |
| 1166 | DanglingWriteChecker(); |
| 1167 | } |
| 1168 | }); |
| 1169 | |
| 1170 | // ========================================================================= // |
| 1171 | |
| 1172 | struct debug_alloc_retry_data { |
| 1173 | size_t size; |
| 1174 | int new_type; |
| 1175 | }; |
| 1176 | |
| 1177 | static void *retry_debug_allocate(void *arg) { |
| 1178 | debug_alloc_retry_data *data = static_cast<debug_alloc_retry_data *>(arg); |
| 1179 | return DebugAllocate(data->size, data->new_type); |
| 1180 | } |
| 1181 | |
| 1182 | // This is mostly the same a cpp_alloc in tcmalloc.cc. |
| 1183 | // TODO(csilvers): change Allocate() above to call cpp_alloc, so we |
| 1184 | // don't have to reproduce the logic here. To make tc_new_mode work |
| 1185 | // properly, I think we'll need to separate out the logic of throwing |
| 1186 | // from the logic of calling the new-handler. |
| 1187 | inline void* debug_cpp_alloc(size_t size, int new_type, bool nothrow) { |
| 1188 | void* p = DebugAllocate(size, new_type); |
| 1189 | if (p != NULL) { |
| 1190 | return p; |
| 1191 | } |
| 1192 | struct debug_alloc_retry_data data; |
| 1193 | data.size = size; |
| 1194 | data.new_type = new_type; |
| 1195 | return handle_oom(retry_debug_allocate, &data, |
| 1196 | true, nothrow); |
| 1197 | } |
| 1198 | |
| 1199 | inline void* do_debug_malloc_or_debug_cpp_alloc(size_t size) { |
| 1200 | void* p = DebugAllocate(size, MallocBlock::kMallocType); |
| 1201 | if (p != NULL) { |
| 1202 | return p; |
| 1203 | } |
| 1204 | struct debug_alloc_retry_data data; |
| 1205 | data.size = size; |
| 1206 | data.new_type = MallocBlock::kMallocType; |
| 1207 | return handle_oom(retry_debug_allocate, &data, |
| 1208 | false, true); |
| 1209 | } |
| 1210 | |
| 1211 | // Exported routines |
| 1212 | |
| 1213 | extern "C" PERFTOOLS_DLL_DECL void* tc_malloc(size_t size) __THROW { |
| 1214 | void* ptr = do_debug_malloc_or_debug_cpp_alloc(size); |
| 1215 | MallocHook::InvokeNewHook(ptr, size); |
| 1216 | return ptr; |
| 1217 | } |
| 1218 | |
| 1219 | extern "C" PERFTOOLS_DLL_DECL void tc_free(void* ptr) __THROW { |
| 1220 | MallocHook::InvokeDeleteHook(ptr); |
| 1221 | DebugDeallocate(ptr, MallocBlock::kMallocType); |
| 1222 | } |
| 1223 | |
| 1224 | extern "C" PERFTOOLS_DLL_DECL void* tc_calloc(size_t count, size_t size) __THROW { |
| 1225 | // Overflow check |
| 1226 | const size_t total_size = count * size; |
| 1227 | if (size != 0 && total_size / size != count) return NULL; |
| 1228 | |
| 1229 | void* block = do_debug_malloc_or_debug_cpp_alloc(total_size); |
| 1230 | MallocHook::InvokeNewHook(block, total_size); |
| 1231 | if (block) memset(block, 0, total_size); |
| 1232 | return block; |
| 1233 | } |
| 1234 | |
| 1235 | extern "C" PERFTOOLS_DLL_DECL void tc_cfree(void* ptr) __THROW { |
| 1236 | MallocHook::InvokeDeleteHook(ptr); |
| 1237 | DebugDeallocate(ptr, MallocBlock::kMallocType); |
| 1238 | } |
| 1239 | |
| 1240 | extern "C" PERFTOOLS_DLL_DECL void* tc_realloc(void* ptr, size_t size) __THROW { |
| 1241 | if (ptr == NULL) { |
| 1242 | ptr = do_debug_malloc_or_debug_cpp_alloc(size); |
| 1243 | MallocHook::InvokeNewHook(ptr, size); |
| 1244 | return ptr; |
| 1245 | } |
| 1246 | if (size == 0) { |
| 1247 | MallocHook::InvokeDeleteHook(ptr); |
| 1248 | DebugDeallocate(ptr, MallocBlock::kMallocType); |
| 1249 | return NULL; |
| 1250 | } |
| 1251 | MallocBlock* old = MallocBlock::FromRawPointer(ptr); |
| 1252 | old->Check(MallocBlock::kMallocType); |
| 1253 | MallocBlock* p = MallocBlock::Allocate(size, MallocBlock::kMallocType); |
| 1254 | |
| 1255 | // If realloc fails we are to leave the old block untouched and |
| 1256 | // return null |
| 1257 | if (p == NULL) return NULL; |
| 1258 | |
| 1259 | // if ptr was allocated via memalign, then old->data_size() is not |
| 1260 | // start of user data. So we must be careful to copy only user-data |
| 1261 | char *old_begin = (char *)old->data_addr(); |
| 1262 | char *old_end = old_begin + old->data_size(); |
| 1263 | |
| 1264 | ssize_t old_ssize = old_end - (char *)ptr; |
| 1265 | CHECK_CONDITION(old_ssize >= 0); |
| 1266 | |
| 1267 | size_t old_size = (size_t)old_ssize; |
| 1268 | CHECK_CONDITION(old_size <= old->data_size()); |
| 1269 | |
| 1270 | memcpy(p->data_addr(), ptr, (old_size < size) ? old_size : size); |
| 1271 | MallocHook::InvokeDeleteHook(ptr); |
| 1272 | MallocHook::InvokeNewHook(p->data_addr(), size); |
| 1273 | DebugDeallocate(ptr, MallocBlock::kMallocType); |
| 1274 | MALLOC_TRACE("realloc", p->data_size(), p->data_addr()); |
| 1275 | return p->data_addr(); |
| 1276 | } |
| 1277 | |
| 1278 | extern "C" PERFTOOLS_DLL_DECL void* tc_new(size_t size) { |
| 1279 | void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, false); |
| 1280 | MallocHook::InvokeNewHook(ptr, size); |
| 1281 | if (ptr == NULL) { |
| 1282 | RAW_LOG(FATAL, "Unable to allocate %" PRIuS " bytes: new failed.", size); |
| 1283 | } |
| 1284 | return ptr; |
| 1285 | } |
| 1286 | |
| 1287 | extern "C" PERFTOOLS_DLL_DECL void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW { |
| 1288 | void* ptr = debug_cpp_alloc(size, MallocBlock::kNewType, true); |
| 1289 | MallocHook::InvokeNewHook(ptr, size); |
| 1290 | return ptr; |
| 1291 | } |
| 1292 | |
| 1293 | extern "C" PERFTOOLS_DLL_DECL void tc_delete(void* p) __THROW { |
| 1294 | MallocHook::InvokeDeleteHook(p); |
| 1295 | DebugDeallocate(p, MallocBlock::kNewType); |
| 1296 | } |
| 1297 | |
| 1298 | // Some STL implementations explicitly invoke this. |
| 1299 | // It is completely equivalent to a normal delete (delete never throws). |
| 1300 | extern "C" PERFTOOLS_DLL_DECL void tc_delete_nothrow(void* p, const std::nothrow_t&) __THROW { |
| 1301 | MallocHook::InvokeDeleteHook(p); |
| 1302 | DebugDeallocate(p, MallocBlock::kNewType); |
| 1303 | } |
| 1304 | |
| 1305 | extern "C" PERFTOOLS_DLL_DECL void* tc_newarray(size_t size) { |
| 1306 | void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, false); |
| 1307 | MallocHook::InvokeNewHook(ptr, size); |
| 1308 | if (ptr == NULL) { |
| 1309 | RAW_LOG(FATAL, "Unable to allocate %" PRIuS " bytes: new[] failed.", size); |
| 1310 | } |
| 1311 | return ptr; |
| 1312 | } |
| 1313 | |
| 1314 | extern "C" PERFTOOLS_DLL_DECL void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) |
| 1315 | __THROW { |
| 1316 | void* ptr = debug_cpp_alloc(size, MallocBlock::kArrayNewType, true); |
| 1317 | MallocHook::InvokeNewHook(ptr, size); |
| 1318 | return ptr; |
| 1319 | } |
| 1320 | |
| 1321 | extern "C" PERFTOOLS_DLL_DECL void tc_deletearray(void* p) __THROW { |
| 1322 | MallocHook::InvokeDeleteHook(p); |
| 1323 | DebugDeallocate(p, MallocBlock::kArrayNewType); |
| 1324 | } |
| 1325 | |
| 1326 | // Some STL implementations explicitly invoke this. |
| 1327 | // It is completely equivalent to a normal delete (delete never throws). |
| 1328 | extern "C" PERFTOOLS_DLL_DECL void tc_deletearray_nothrow(void* p, const std::nothrow_t&) __THROW { |
| 1329 | MallocHook::InvokeDeleteHook(p); |
| 1330 | DebugDeallocate(p, MallocBlock::kArrayNewType); |
| 1331 | } |
| 1332 | |
| 1333 | // This is mostly the same as do_memalign in tcmalloc.cc. |
| 1334 | static void *do_debug_memalign(size_t alignment, size_t size) { |
| 1335 | // Allocate >= size bytes aligned on "alignment" boundary |
| 1336 | // "alignment" is a power of two. |
| 1337 | void *p = 0; |
| 1338 | RAW_CHECK((alignment & (alignment-1)) == 0, "must be power of two"); |
| 1339 | const size_t data_offset = MallocBlock::data_offset(); |
| 1340 | // Allocate "alignment-1" extra bytes to ensure alignment is possible, and |
| 1341 | // a further data_offset bytes for an additional fake header. |
| 1342 | size_t extra_bytes = data_offset + alignment - 1; |
| 1343 | if (size + extra_bytes < size) return NULL; // Overflow |
| 1344 | p = DebugAllocate(size + extra_bytes, MallocBlock::kMallocType); |
| 1345 | if (p != 0) { |
| 1346 | intptr_t orig_p = reinterpret_cast<intptr_t>(p); |
| 1347 | // Leave data_offset bytes for fake header, and round up to meet |
| 1348 | // alignment. |
| 1349 | p = reinterpret_cast<void *>(RoundUp(orig_p + data_offset, alignment)); |
| 1350 | // Create a fake header block with an offset_ that points back to the |
| 1351 | // real header. FromRawPointer uses this value. |
| 1352 | MallocBlock *fake_hdr = reinterpret_cast<MallocBlock *>( |
| 1353 | reinterpret_cast<char *>(p) - data_offset); |
| 1354 | // offset_ is distance between real and fake headers. |
| 1355 | // p is now end of fake header (beginning of client area), |
| 1356 | // and orig_p is the end of the real header, so offset_ |
| 1357 | // is their difference. |
| 1358 | // |
| 1359 | // Note that other fields of fake_hdr are initialized with |
| 1360 | // kMagicUninitializedByte |
| 1361 | fake_hdr->set_offset(reinterpret_cast<intptr_t>(p) - orig_p); |
| 1362 | } |
| 1363 | return p; |
| 1364 | } |
| 1365 | |
| 1366 | struct memalign_retry_data { |
| 1367 | size_t align; |
| 1368 | size_t size; |
| 1369 | }; |
| 1370 | |
| 1371 | static void *retry_debug_memalign(void *arg) { |
| 1372 | memalign_retry_data *data = static_cast<memalign_retry_data *>(arg); |
| 1373 | return do_debug_memalign(data->align, data->size); |
| 1374 | } |
| 1375 | |
| 1376 | inline void* do_debug_memalign_or_debug_cpp_memalign(size_t align, |
| 1377 | size_t size) { |
| 1378 | void* p = do_debug_memalign(align, size); |
| 1379 | if (p != NULL) { |
| 1380 | return p; |
| 1381 | } |
| 1382 | |
| 1383 | struct memalign_retry_data data; |
| 1384 | data.align = align; |
| 1385 | data.size = size; |
| 1386 | return handle_oom(retry_debug_memalign, &data, |
| 1387 | false, true); |
| 1388 | } |
| 1389 | |
| 1390 | extern "C" PERFTOOLS_DLL_DECL void* tc_memalign(size_t align, size_t size) __THROW { |
| 1391 | void *p = do_debug_memalign_or_debug_cpp_memalign(align, size); |
| 1392 | MallocHook::InvokeNewHook(p, size); |
| 1393 | return p; |
| 1394 | } |
| 1395 | |
| 1396 | // Implementation taken from tcmalloc/tcmalloc.cc |
| 1397 | extern "C" PERFTOOLS_DLL_DECL int tc_posix_memalign(void** result_ptr, size_t align, size_t size) |
| 1398 | __THROW { |
| 1399 | if (((align % sizeof(void*)) != 0) || |
| 1400 | ((align & (align - 1)) != 0) || |
| 1401 | (align == 0)) { |
| 1402 | return EINVAL; |
| 1403 | } |
| 1404 | |
| 1405 | void* result = do_debug_memalign_or_debug_cpp_memalign(align, size); |
| 1406 | MallocHook::InvokeNewHook(result, size); |
| 1407 | if (result == NULL) { |
| 1408 | return ENOMEM; |
| 1409 | } else { |
| 1410 | *result_ptr = result; |
| 1411 | return 0; |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | extern "C" PERFTOOLS_DLL_DECL void* tc_valloc(size_t size) __THROW { |
| 1416 | // Allocate >= size bytes starting on a page boundary |
| 1417 | void *p = do_debug_memalign_or_debug_cpp_memalign(getpagesize(), size); |
| 1418 | MallocHook::InvokeNewHook(p, size); |
| 1419 | return p; |
| 1420 | } |
| 1421 | |
| 1422 | extern "C" PERFTOOLS_DLL_DECL void* tc_pvalloc(size_t size) __THROW { |
| 1423 | // Round size up to a multiple of pages |
| 1424 | // then allocate memory on a page boundary |
| 1425 | int pagesize = getpagesize(); |
| 1426 | size = RoundUp(size, pagesize); |
| 1427 | if (size == 0) { // pvalloc(0) should allocate one page, according to |
| 1428 | size = pagesize; // http://man.free4web.biz/man3/libmpatrol.3.html |
| 1429 | } |
| 1430 | void *p = do_debug_memalign_or_debug_cpp_memalign(pagesize, size); |
| 1431 | MallocHook::InvokeNewHook(p, size); |
| 1432 | return p; |
| 1433 | } |
| 1434 | |
| 1435 | // malloc_stats just falls through to the base implementation. |
| 1436 | extern "C" PERFTOOLS_DLL_DECL void tc_malloc_stats(void) __THROW { |
| 1437 | do_malloc_stats(); |
| 1438 | } |
| 1439 | |
| 1440 | extern "C" PERFTOOLS_DLL_DECL int tc_mallopt(int cmd, int value) __THROW { |
| 1441 | return do_mallopt(cmd, value); |
| 1442 | } |
| 1443 | |
| 1444 | #ifdef HAVE_STRUCT_MALLINFO |
| 1445 | extern "C" PERFTOOLS_DLL_DECL struct mallinfo tc_mallinfo(void) __THROW { |
| 1446 | return do_mallinfo(); |
| 1447 | } |
| 1448 | #endif |
| 1449 | |
| 1450 | extern "C" PERFTOOLS_DLL_DECL size_t tc_malloc_size(void* ptr) __THROW { |
| 1451 | return MallocExtension::instance()->GetAllocatedSize(ptr); |
| 1452 | } |
| 1453 | |
| 1454 | extern "C" PERFTOOLS_DLL_DECL void* tc_malloc_skip_new_handler(size_t size) __THROW { |
| 1455 | void* result = DebugAllocate(size, MallocBlock::kMallocType); |
| 1456 | MallocHook::InvokeNewHook(result, size); |
| 1457 | return result; |
| 1458 | } |