blob: f49c305c1ca70cd55b4c8c0e7c8b2f3c74af8027 [file] [log] [blame]
James Kuszmaul4a4622b2013-03-02 16:28:29 -08001#!/usr/bin/python
2
3import control_loop
4import numpy
5import sys
6from matplotlib import pylab
7
8class AngleAdjust(control_loop.ControlLoop):
9 def __init__(self):
10 super(AngleAdjust, self).__init__("AngleAdjust")
11 # Stall Torque in N m
12 self.stall_torque = .428
13 # Stall Current in Amps
14 self.stall_current = 63.8
15 # Free Speed in RPM
Austin Schuh72e26772013-03-10 18:15:39 -070016 self.free_speed = 14900.0
James Kuszmaul4a4622b2013-03-02 16:28:29 -080017 # Free Current in Amps
18 self.free_current = 1.2
19 # Moment of inertia of the angle adjust about the shooter's pivot in kg m^2
Austin Schuh72e26772013-03-10 18:15:39 -070020 self.J = 9.4
James Kuszmaul4a4622b2013-03-02 16:28:29 -080021 # Resistance of the motor
22 self.R = 12.0 / self.stall_current
23 # Motor velocity constant
24 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
25 (12.0 - self.R * self.free_current))
26 # Torque constant
27 self.Kt = self.stall_torque / self.stall_current
28 # Gear ratio of the gearbox multiplied by the ratio of the radii of
29 # the output and the angle adjust curve, which is essentially another gear.
30 self.G = (1.0 / 50.0) * (0.01905 / 0.41964)
31 # Control loop time step
32 self.dt = 0.01
33
34 # State feedback matrices
35 self.A_continuous = numpy.matrix(
36 [[0, 1],
37 [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
38 self.B_continuous = numpy.matrix(
39 [[0],
40 [self.Kt / (self.J * self.G * self.R)]])
41 self.C = numpy.matrix([[1, 0]])
42 self.D = numpy.matrix([[0]])
43
44 self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
45 self.dt, self.C)
46
Austin Schuh72e26772013-03-10 18:15:39 -070047 self.PlaceControllerPoles([.5, .5])
James Kuszmaul4a4622b2013-03-02 16:28:29 -080048
49 self.rpl = .05
50 self.ipl = 0.008
51 self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
52 self.rpl - 1j * self.ipl])
53
54 self.U_max = numpy.matrix([[12.0]])
55 self.U_min = numpy.matrix([[-12.0]])
56
57def main(argv):
58 # Simulate the response of the system to a step input.
Austin Schuh72e26772013-03-10 18:15:39 -070059 angle_adjust_data = numpy.genfromtxt(
60 'angle_adjust/angle_adjust_data.csv', delimiter=',')
James Kuszmaul4a4622b2013-03-02 16:28:29 -080061 angle_adjust = AngleAdjust()
62 simulated_x = []
Austin Schuh72e26772013-03-10 18:15:39 -070063 real_x = []
64 initial_x = angle_adjust_data[0, 2]
65 for i in xrange(angle_adjust_data.shape[0]):
66 angle_adjust.Update(numpy.matrix([[angle_adjust_data[i, 1] - 0.7]]))
James Kuszmaul4a4622b2013-03-02 16:28:29 -080067 simulated_x.append(angle_adjust.X[0, 0])
Austin Schuh72e26772013-03-10 18:15:39 -070068 x_offset = angle_adjust_data[i, 2] - initial_x
69 real_x.append(x_offset)
James Kuszmaul4a4622b2013-03-02 16:28:29 -080070
Austin Schuh72e26772013-03-10 18:15:39 -070071 sim_delay = 2
72 pylab.plot(range(sim_delay, angle_adjust_data.shape[0] + sim_delay),
73 simulated_x, label='Simulation')
74 pylab.plot(range(angle_adjust_data.shape[0]), real_x, label='Reality')
75 pylab.legend()
James Kuszmaul4a4622b2013-03-02 16:28:29 -080076 pylab.show()
77
78 # Simulate the closed loop response of the system to a step input.
79 angle_adjust = AngleAdjust()
80 close_loop_x = []
81 R = numpy.matrix([[1.0], [0.0]])
82 for _ in xrange(100):
83 U = numpy.clip(angle_adjust.K * (R - angle_adjust.X_hat), angle_adjust.U_min, angle_adjust.U_max)
84 angle_adjust.UpdateObserver(U)
85 angle_adjust.Update(U)
86 close_loop_x.append(angle_adjust.X[0, 0])
87
88 pylab.plot(range(100), close_loop_x)
89 pylab.show()
90
91 # Write the generated constants out to a file.
92 if len(argv) != 3:
93 print "Expected .cc file name and .h file name"
94 else:
Austin Schuh72e26772013-03-10 18:15:39 -070095 if argv[1][-3:] == '.cc':
96 print '.cc file is second'
97 else:
98 angle_adjust.DumpHeaderFile(argv[1])
99 angle_adjust.DumpCppFile(argv[2], argv[1])
James Kuszmaul4a4622b2013-03-02 16:28:29 -0800100
101if __name__ == '__main__':
102 sys.exit(main(sys.argv))