Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| 7 | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| 8 | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| 9 | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| 10 | // |
| 11 | // This Source Code Form is subject to the terms of the Mozilla |
| 12 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 13 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 14 | |
| 15 | #ifndef EIGEN_SVD_H |
| 16 | #define EIGEN_SVD_H |
| 17 | |
| 18 | namespace Eigen { |
| 19 | /** \ingroup SVD_Module |
| 20 | * |
| 21 | * |
| 22 | * \class SVDBase |
| 23 | * |
| 24 | * \brief Mother class of SVD classes algorithms |
| 25 | * |
| 26 | * \param MatrixType the type of the matrix of which we are computing the SVD decomposition |
| 27 | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
| 28 | * \f[ A = U S V^* \f] |
| 29 | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
| 30 | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
| 31 | * and right \em singular \em vectors of \a A respectively. |
| 32 | * |
| 33 | * Singular values are always sorted in decreasing order. |
| 34 | * |
| 35 | * |
| 36 | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
| 37 | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
| 38 | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
| 39 | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
| 40 | * |
| 41 | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to |
| 42 | * terminate in finite (and reasonable) time. |
| 43 | * \sa MatrixBase::genericSvd() |
| 44 | */ |
| 45 | template<typename _MatrixType> |
| 46 | class SVDBase |
| 47 | { |
| 48 | |
| 49 | public: |
| 50 | typedef _MatrixType MatrixType; |
| 51 | typedef typename MatrixType::Scalar Scalar; |
| 52 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 53 | typedef typename MatrixType::Index Index; |
| 54 | enum { |
| 55 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 56 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 57 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
| 58 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 59 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 60 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
| 61 | MatrixOptions = MatrixType::Options |
| 62 | }; |
| 63 | |
| 64 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, |
| 65 | MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> |
| 66 | MatrixUType; |
| 67 | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, |
| 68 | MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> |
| 69 | MatrixVType; |
| 70 | typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; |
| 71 | typedef typename internal::plain_row_type<MatrixType>::type RowType; |
| 72 | typedef typename internal::plain_col_type<MatrixType>::type ColType; |
| 73 | typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, |
| 74 | MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> |
| 75 | WorkMatrixType; |
| 76 | |
| 77 | |
| 78 | |
| 79 | |
| 80 | /** \brief Method performing the decomposition of given matrix using custom options. |
| 81 | * |
| 82 | * \param matrix the matrix to decompose |
| 83 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 84 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 85 | * #ComputeFullV, #ComputeThinV. |
| 86 | * |
| 87 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 88 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
| 89 | */ |
| 90 | SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions); |
| 91 | |
| 92 | /** \brief Method performing the decomposition of given matrix using current options. |
| 93 | * |
| 94 | * \param matrix the matrix to decompose |
| 95 | * |
| 96 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
| 97 | */ |
| 98 | //virtual SVDBase& compute(const MatrixType& matrix) = 0; |
| 99 | SVDBase& compute(const MatrixType& matrix); |
| 100 | |
| 101 | /** \returns the \a U matrix. |
| 102 | * |
| 103 | * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
| 104 | * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU. |
| 105 | * |
| 106 | * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. |
| 107 | * |
| 108 | * This method asserts that you asked for \a U to be computed. |
| 109 | */ |
| 110 | const MatrixUType& matrixU() const |
| 111 | { |
| 112 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 113 | eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); |
| 114 | return m_matrixU; |
| 115 | } |
| 116 | |
| 117 | /** \returns the \a V matrix. |
| 118 | * |
| 119 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
| 120 | * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV. |
| 121 | * |
| 122 | * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. |
| 123 | * |
| 124 | * This method asserts that you asked for \a V to be computed. |
| 125 | */ |
| 126 | const MatrixVType& matrixV() const |
| 127 | { |
| 128 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 129 | eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); |
| 130 | return m_matrixV; |
| 131 | } |
| 132 | |
| 133 | /** \returns the vector of singular values. |
| 134 | * |
| 135 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the |
| 136 | * returned vector has size \a m. Singular values are always sorted in decreasing order. |
| 137 | */ |
| 138 | const SingularValuesType& singularValues() const |
| 139 | { |
| 140 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 141 | return m_singularValues; |
| 142 | } |
| 143 | |
| 144 | |
| 145 | |
| 146 | /** \returns the number of singular values that are not exactly 0 */ |
| 147 | Index nonzeroSingularValues() const |
| 148 | { |
| 149 | eigen_assert(m_isInitialized && "SVD is not initialized."); |
| 150 | return m_nonzeroSingularValues; |
| 151 | } |
| 152 | |
| 153 | |
| 154 | /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ |
| 155 | inline bool computeU() const { return m_computeFullU || m_computeThinU; } |
| 156 | /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ |
| 157 | inline bool computeV() const { return m_computeFullV || m_computeThinV; } |
| 158 | |
| 159 | |
| 160 | inline Index rows() const { return m_rows; } |
| 161 | inline Index cols() const { return m_cols; } |
| 162 | |
| 163 | |
| 164 | protected: |
| 165 | // return true if already allocated |
| 166 | bool allocate(Index rows, Index cols, unsigned int computationOptions) ; |
| 167 | |
| 168 | MatrixUType m_matrixU; |
| 169 | MatrixVType m_matrixV; |
| 170 | SingularValuesType m_singularValues; |
| 171 | bool m_isInitialized, m_isAllocated; |
| 172 | bool m_computeFullU, m_computeThinU; |
| 173 | bool m_computeFullV, m_computeThinV; |
| 174 | unsigned int m_computationOptions; |
| 175 | Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; |
| 176 | |
| 177 | |
| 178 | /** \brief Default Constructor. |
| 179 | * |
| 180 | * Default constructor of SVDBase |
| 181 | */ |
| 182 | SVDBase() |
| 183 | : m_isInitialized(false), |
| 184 | m_isAllocated(false), |
| 185 | m_computationOptions(0), |
| 186 | m_rows(-1), m_cols(-1) |
| 187 | {} |
| 188 | |
| 189 | |
| 190 | }; |
| 191 | |
| 192 | |
| 193 | template<typename MatrixType> |
| 194 | bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) |
| 195 | { |
| 196 | eigen_assert(rows >= 0 && cols >= 0); |
| 197 | |
| 198 | if (m_isAllocated && |
| 199 | rows == m_rows && |
| 200 | cols == m_cols && |
| 201 | computationOptions == m_computationOptions) |
| 202 | { |
| 203 | return true; |
| 204 | } |
| 205 | |
| 206 | m_rows = rows; |
| 207 | m_cols = cols; |
| 208 | m_isInitialized = false; |
| 209 | m_isAllocated = true; |
| 210 | m_computationOptions = computationOptions; |
| 211 | m_computeFullU = (computationOptions & ComputeFullU) != 0; |
| 212 | m_computeThinU = (computationOptions & ComputeThinU) != 0; |
| 213 | m_computeFullV = (computationOptions & ComputeFullV) != 0; |
| 214 | m_computeThinV = (computationOptions & ComputeThinV) != 0; |
| 215 | eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); |
| 216 | eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); |
| 217 | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
| 218 | "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); |
| 219 | |
| 220 | m_diagSize = (std::min)(m_rows, m_cols); |
| 221 | m_singularValues.resize(m_diagSize); |
| 222 | if(RowsAtCompileTime==Dynamic) |
| 223 | m_matrixU.resize(m_rows, m_computeFullU ? m_rows |
| 224 | : m_computeThinU ? m_diagSize |
| 225 | : 0); |
| 226 | if(ColsAtCompileTime==Dynamic) |
| 227 | m_matrixV.resize(m_cols, m_computeFullV ? m_cols |
| 228 | : m_computeThinV ? m_diagSize |
| 229 | : 0); |
| 230 | |
| 231 | return false; |
| 232 | } |
| 233 | |
| 234 | }// end namespace |
| 235 | |
| 236 | #endif // EIGEN_SVD_H |