Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_MATRIX_FUNCTION_ATOMIC |
| 11 | #define EIGEN_MATRIX_FUNCTION_ATOMIC |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \ingroup MatrixFunctions_Module |
| 16 | * \class MatrixFunctionAtomic |
| 17 | * \brief Helper class for computing matrix functions of atomic matrices. |
| 18 | * |
| 19 | * \internal |
| 20 | * Here, an atomic matrix is a triangular matrix whose diagonal |
| 21 | * entries are close to each other. |
| 22 | */ |
| 23 | template <typename MatrixType> |
| 24 | class MatrixFunctionAtomic |
| 25 | { |
| 26 | public: |
| 27 | |
| 28 | typedef typename MatrixType::Scalar Scalar; |
| 29 | typedef typename MatrixType::Index Index; |
| 30 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 31 | typedef typename internal::stem_function<Scalar>::type StemFunction; |
| 32 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| 33 | |
| 34 | /** \brief Constructor |
| 35 | * \param[in] f matrix function to compute. |
| 36 | */ |
| 37 | MatrixFunctionAtomic(StemFunction f) : m_f(f) { } |
| 38 | |
| 39 | /** \brief Compute matrix function of atomic matrix |
| 40 | * \param[in] A argument of matrix function, should be upper triangular and atomic |
| 41 | * \returns f(A), the matrix function evaluated at the given matrix |
| 42 | */ |
| 43 | MatrixType compute(const MatrixType& A); |
| 44 | |
| 45 | private: |
| 46 | |
| 47 | // Prevent copying |
| 48 | MatrixFunctionAtomic(const MatrixFunctionAtomic&); |
| 49 | MatrixFunctionAtomic& operator=(const MatrixFunctionAtomic&); |
| 50 | |
| 51 | void computeMu(); |
| 52 | bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P); |
| 53 | |
| 54 | /** \brief Pointer to scalar function */ |
| 55 | StemFunction* m_f; |
| 56 | |
| 57 | /** \brief Size of matrix function */ |
| 58 | Index m_Arows; |
| 59 | |
| 60 | /** \brief Mean of eigenvalues */ |
| 61 | Scalar m_avgEival; |
| 62 | |
| 63 | /** \brief Argument shifted by mean of eigenvalues */ |
| 64 | MatrixType m_Ashifted; |
| 65 | |
| 66 | /** \brief Constant used to determine whether Taylor series has converged */ |
| 67 | RealScalar m_mu; |
| 68 | }; |
| 69 | |
| 70 | template <typename MatrixType> |
| 71 | MatrixType MatrixFunctionAtomic<MatrixType>::compute(const MatrixType& A) |
| 72 | { |
| 73 | // TODO: Use that A is upper triangular |
| 74 | m_Arows = A.rows(); |
| 75 | m_avgEival = A.trace() / Scalar(RealScalar(m_Arows)); |
| 76 | m_Ashifted = A - m_avgEival * MatrixType::Identity(m_Arows, m_Arows); |
| 77 | computeMu(); |
| 78 | MatrixType F = m_f(m_avgEival, 0) * MatrixType::Identity(m_Arows, m_Arows); |
| 79 | MatrixType P = m_Ashifted; |
| 80 | MatrixType Fincr; |
| 81 | for (Index s = 1; s < 1.1 * m_Arows + 10; s++) { // upper limit is fairly arbitrary |
| 82 | Fincr = m_f(m_avgEival, static_cast<int>(s)) * P; |
| 83 | F += Fincr; |
| 84 | P = Scalar(RealScalar(1.0/(s + 1))) * P * m_Ashifted; |
| 85 | if (taylorConverged(s, F, Fincr, P)) { |
| 86 | return F; |
| 87 | } |
| 88 | } |
| 89 | eigen_assert("Taylor series does not converge" && 0); |
| 90 | return F; |
| 91 | } |
| 92 | |
| 93 | /** \brief Compute \c m_mu. */ |
| 94 | template <typename MatrixType> |
| 95 | void MatrixFunctionAtomic<MatrixType>::computeMu() |
| 96 | { |
| 97 | const MatrixType N = MatrixType::Identity(m_Arows, m_Arows) - m_Ashifted; |
| 98 | VectorType e = VectorType::Ones(m_Arows); |
| 99 | N.template triangularView<Upper>().solveInPlace(e); |
| 100 | m_mu = e.cwiseAbs().maxCoeff(); |
| 101 | } |
| 102 | |
| 103 | /** \brief Determine whether Taylor series has converged */ |
| 104 | template <typename MatrixType> |
| 105 | bool MatrixFunctionAtomic<MatrixType>::taylorConverged(Index s, const MatrixType& F, |
| 106 | const MatrixType& Fincr, const MatrixType& P) |
| 107 | { |
| 108 | const Index n = F.rows(); |
| 109 | const RealScalar F_norm = F.cwiseAbs().rowwise().sum().maxCoeff(); |
| 110 | const RealScalar Fincr_norm = Fincr.cwiseAbs().rowwise().sum().maxCoeff(); |
| 111 | if (Fincr_norm < NumTraits<Scalar>::epsilon() * F_norm) { |
| 112 | RealScalar delta = 0; |
| 113 | RealScalar rfactorial = 1; |
| 114 | for (Index r = 0; r < n; r++) { |
| 115 | RealScalar mx = 0; |
| 116 | for (Index i = 0; i < n; i++) |
| 117 | mx = (std::max)(mx, std::abs(m_f(m_Ashifted(i, i) + m_avgEival, static_cast<int>(s+r)))); |
| 118 | if (r != 0) |
| 119 | rfactorial *= RealScalar(r); |
| 120 | delta = (std::max)(delta, mx / rfactorial); |
| 121 | } |
| 122 | const RealScalar P_norm = P.cwiseAbs().rowwise().sum().maxCoeff(); |
| 123 | if (m_mu * delta * P_norm < NumTraits<Scalar>::epsilon() * F_norm) |
| 124 | return true; |
| 125 | } |
| 126 | return false; |
| 127 | } |
| 128 | |
| 129 | } // end namespace Eigen |
| 130 | |
| 131 | #endif // EIGEN_MATRIX_FUNCTION_ATOMIC |