Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2012, 2014 Kolja Brix <brix@igpm.rwth-aaachen.de> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_GMRES_H |
| 12 | #define EIGEN_GMRES_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | |
| 18 | /** |
| 19 | * Generalized Minimal Residual Algorithm based on the |
| 20 | * Arnoldi algorithm implemented with Householder reflections. |
| 21 | * |
| 22 | * Parameters: |
| 23 | * \param mat matrix of linear system of equations |
| 24 | * \param Rhs right hand side vector of linear system of equations |
| 25 | * \param x on input: initial guess, on output: solution |
| 26 | * \param precond preconditioner used |
| 27 | * \param iters on input: maximum number of iterations to perform |
| 28 | * on output: number of iterations performed |
| 29 | * \param restart number of iterations for a restart |
| 30 | * \param tol_error on input: residual tolerance |
| 31 | * on output: residuum achieved |
| 32 | * |
| 33 | * \sa IterativeMethods::bicgstab() |
| 34 | * |
| 35 | * |
| 36 | * For references, please see: |
| 37 | * |
| 38 | * Saad, Y. and Schultz, M. H. |
| 39 | * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. |
| 40 | * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. |
| 41 | * |
| 42 | * Saad, Y. |
| 43 | * Iterative Methods for Sparse Linear Systems. |
| 44 | * Society for Industrial and Applied Mathematics, Philadelphia, 2003. |
| 45 | * |
| 46 | * Walker, H. F. |
| 47 | * Implementations of the GMRES method. |
| 48 | * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. |
| 49 | * |
| 50 | * Walker, H. F. |
| 51 | * Implementation of the GMRES Method using Householder Transformations. |
| 52 | * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. |
| 53 | * |
| 54 | */ |
| 55 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| 56 | bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, |
| 57 | int &iters, const int &restart, typename Dest::RealScalar & tol_error) { |
| 58 | |
| 59 | using std::sqrt; |
| 60 | using std::abs; |
| 61 | |
| 62 | typedef typename Dest::RealScalar RealScalar; |
| 63 | typedef typename Dest::Scalar Scalar; |
| 64 | typedef Matrix < Scalar, Dynamic, 1 > VectorType; |
| 65 | typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType; |
| 66 | |
| 67 | RealScalar tol = tol_error; |
| 68 | const int maxIters = iters; |
| 69 | iters = 0; |
| 70 | |
| 71 | const int m = mat.rows(); |
| 72 | |
| 73 | VectorType p0 = rhs - mat*x; |
| 74 | VectorType r0 = precond.solve(p0); |
| 75 | |
| 76 | // is initial guess already good enough? |
| 77 | if(abs(r0.norm()) < tol) { |
| 78 | return true; |
| 79 | } |
| 80 | |
| 81 | VectorType w = VectorType::Zero(restart + 1); |
| 82 | |
| 83 | FMatrixType H = FMatrixType::Zero(m, restart + 1); // Hessenberg matrix |
| 84 | VectorType tau = VectorType::Zero(restart + 1); |
| 85 | std::vector < JacobiRotation < Scalar > > G(restart); |
| 86 | |
| 87 | // generate first Householder vector |
| 88 | VectorType e(m-1); |
| 89 | RealScalar beta; |
| 90 | r0.makeHouseholder(e, tau.coeffRef(0), beta); |
| 91 | w(0)=(Scalar) beta; |
| 92 | H.bottomLeftCorner(m - 1, 1) = e; |
| 93 | |
| 94 | for (int k = 1; k <= restart; ++k) { |
| 95 | |
| 96 | ++iters; |
| 97 | |
| 98 | VectorType v = VectorType::Unit(m, k - 1), workspace(m); |
| 99 | |
| 100 | // apply Householder reflections H_{1} ... H_{k-1} to v |
| 101 | for (int i = k - 1; i >= 0; --i) { |
| 102 | v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| 103 | } |
| 104 | |
| 105 | // apply matrix M to v: v = mat * v; |
| 106 | VectorType t=mat*v; |
| 107 | v=precond.solve(t); |
| 108 | |
| 109 | // apply Householder reflections H_{k-1} ... H_{1} to v |
| 110 | for (int i = 0; i < k; ++i) { |
| 111 | v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| 112 | } |
| 113 | |
| 114 | if (v.tail(m - k).norm() != 0.0) { |
| 115 | |
| 116 | if (k <= restart) { |
| 117 | |
| 118 | // generate new Householder vector |
| 119 | VectorType e(m - k - 1); |
| 120 | RealScalar beta; |
| 121 | v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta); |
| 122 | H.col(k).tail(m - k - 1) = e; |
| 123 | |
| 124 | // apply Householder reflection H_{k} to v |
| 125 | v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data()); |
| 126 | |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | if (k > 1) { |
| 131 | for (int i = 0; i < k - 1; ++i) { |
| 132 | // apply old Givens rotations to v |
| 133 | v.applyOnTheLeft(i, i + 1, G[i].adjoint()); |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | if (k<m && v(k) != (Scalar) 0) { |
| 138 | // determine next Givens rotation |
| 139 | G[k - 1].makeGivens(v(k - 1), v(k)); |
| 140 | |
| 141 | // apply Givens rotation to v and w |
| 142 | v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); |
| 143 | w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); |
| 144 | |
| 145 | } |
| 146 | |
| 147 | // insert coefficients into upper matrix triangle |
| 148 | H.col(k - 1).head(k) = v.head(k); |
| 149 | |
| 150 | bool stop=(k==m || abs(w(k)) < tol || iters == maxIters); |
| 151 | |
| 152 | if (stop || k == restart) { |
| 153 | |
| 154 | // solve upper triangular system |
| 155 | VectorType y = w.head(k); |
| 156 | H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y); |
| 157 | |
| 158 | // use Horner-like scheme to calculate solution vector |
| 159 | VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1); |
| 160 | |
| 161 | // apply Householder reflection H_{k} to x_new |
| 162 | x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data()); |
| 163 | |
| 164 | for (int i = k - 2; i >= 0; --i) { |
| 165 | x_new += y(i) * VectorType::Unit(m, i); |
| 166 | // apply Householder reflection H_{i} to x_new |
| 167 | x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| 168 | } |
| 169 | |
| 170 | x += x_new; |
| 171 | |
| 172 | if (stop) { |
| 173 | return true; |
| 174 | } else { |
| 175 | k=0; |
| 176 | |
| 177 | // reset data for a restart r0 = rhs - mat * x; |
| 178 | VectorType p0=mat*x; |
| 179 | VectorType p1=precond.solve(p0); |
| 180 | r0 = rhs - p1; |
| 181 | // r0_sqnorm = r0.squaredNorm(); |
| 182 | w = VectorType::Zero(restart + 1); |
| 183 | H = FMatrixType::Zero(m, restart + 1); |
| 184 | tau = VectorType::Zero(restart + 1); |
| 185 | |
| 186 | // generate first Householder vector |
| 187 | RealScalar beta; |
| 188 | r0.makeHouseholder(e, tau.coeffRef(0), beta); |
| 189 | w(0)=(Scalar) beta; |
| 190 | H.bottomLeftCorner(m - 1, 1) = e; |
| 191 | |
| 192 | } |
| 193 | |
| 194 | } |
| 195 | |
| 196 | |
| 197 | |
| 198 | } |
| 199 | |
| 200 | return false; |
| 201 | |
| 202 | } |
| 203 | |
| 204 | } |
| 205 | |
| 206 | template< typename _MatrixType, |
| 207 | typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
| 208 | class GMRES; |
| 209 | |
| 210 | namespace internal { |
| 211 | |
| 212 | template< typename _MatrixType, typename _Preconditioner> |
| 213 | struct traits<GMRES<_MatrixType,_Preconditioner> > |
| 214 | { |
| 215 | typedef _MatrixType MatrixType; |
| 216 | typedef _Preconditioner Preconditioner; |
| 217 | }; |
| 218 | |
| 219 | } |
| 220 | |
| 221 | /** \ingroup IterativeLinearSolvers_Module |
| 222 | * \brief A GMRES solver for sparse square problems |
| 223 | * |
| 224 | * This class allows to solve for A.x = b sparse linear problems using a generalized minimal |
| 225 | * residual method. The vectors x and b can be either dense or sparse. |
| 226 | * |
| 227 | * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
| 228 | * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
| 229 | * |
| 230 | * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| 231 | * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| 232 | * and NumTraits<Scalar>::epsilon() for the tolerance. |
| 233 | * |
| 234 | * This class can be used as the direct solver classes. Here is a typical usage example: |
| 235 | * \code |
| 236 | * int n = 10000; |
| 237 | * VectorXd x(n), b(n); |
| 238 | * SparseMatrix<double> A(n,n); |
| 239 | * // fill A and b |
| 240 | * GMRES<SparseMatrix<double> > solver(A); |
| 241 | * x = solver.solve(b); |
| 242 | * std::cout << "#iterations: " << solver.iterations() << std::endl; |
| 243 | * std::cout << "estimated error: " << solver.error() << std::endl; |
| 244 | * // update b, and solve again |
| 245 | * x = solver.solve(b); |
| 246 | * \endcode |
| 247 | * |
| 248 | * By default the iterations start with x=0 as an initial guess of the solution. |
| 249 | * One can control the start using the solveWithGuess() method. |
| 250 | * |
| 251 | * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| 252 | */ |
| 253 | template< typename _MatrixType, typename _Preconditioner> |
| 254 | class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > |
| 255 | { |
| 256 | typedef IterativeSolverBase<GMRES> Base; |
| 257 | using Base::mp_matrix; |
| 258 | using Base::m_error; |
| 259 | using Base::m_iterations; |
| 260 | using Base::m_info; |
| 261 | using Base::m_isInitialized; |
| 262 | |
| 263 | private: |
| 264 | int m_restart; |
| 265 | |
| 266 | public: |
| 267 | typedef _MatrixType MatrixType; |
| 268 | typedef typename MatrixType::Scalar Scalar; |
| 269 | typedef typename MatrixType::Index Index; |
| 270 | typedef typename MatrixType::RealScalar RealScalar; |
| 271 | typedef _Preconditioner Preconditioner; |
| 272 | |
| 273 | public: |
| 274 | |
| 275 | /** Default constructor. */ |
| 276 | GMRES() : Base(), m_restart(30) {} |
| 277 | |
| 278 | /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| 279 | * |
| 280 | * This constructor is a shortcut for the default constructor followed |
| 281 | * by a call to compute(). |
| 282 | * |
| 283 | * \warning this class stores a reference to the matrix A as well as some |
| 284 | * precomputed values that depend on it. Therefore, if \a A is changed |
| 285 | * this class becomes invalid. Call compute() to update it with the new |
| 286 | * matrix A, or modify a copy of A. |
| 287 | */ |
| 288 | GMRES(const MatrixType& A) : Base(A), m_restart(30) {} |
| 289 | |
| 290 | ~GMRES() {} |
| 291 | |
| 292 | /** Get the number of iterations after that a restart is performed. |
| 293 | */ |
| 294 | int get_restart() { return m_restart; } |
| 295 | |
| 296 | /** Set the number of iterations after that a restart is performed. |
| 297 | * \param restart number of iterations for a restarti, default is 30. |
| 298 | */ |
| 299 | void set_restart(const int restart) { m_restart=restart; } |
| 300 | |
| 301 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
| 302 | * \a x0 as an initial solution. |
| 303 | * |
| 304 | * \sa compute() |
| 305 | */ |
| 306 | template<typename Rhs,typename Guess> |
| 307 | inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess> |
| 308 | solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
| 309 | { |
| 310 | eigen_assert(m_isInitialized && "GMRES is not initialized."); |
| 311 | eigen_assert(Base::rows()==b.rows() |
| 312 | && "GMRES::solve(): invalid number of rows of the right hand side matrix b"); |
| 313 | return internal::solve_retval_with_guess |
| 314 | <GMRES, Rhs, Guess>(*this, b.derived(), x0); |
| 315 | } |
| 316 | |
| 317 | /** \internal */ |
| 318 | template<typename Rhs,typename Dest> |
| 319 | void _solveWithGuess(const Rhs& b, Dest& x) const |
| 320 | { |
| 321 | bool failed = false; |
| 322 | for(int j=0; j<b.cols(); ++j) |
| 323 | { |
| 324 | m_iterations = Base::maxIterations(); |
| 325 | m_error = Base::m_tolerance; |
| 326 | |
| 327 | typename Dest::ColXpr xj(x,j); |
| 328 | if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error)) |
| 329 | failed = true; |
| 330 | } |
| 331 | m_info = failed ? NumericalIssue |
| 332 | : m_error <= Base::m_tolerance ? Success |
| 333 | : NoConvergence; |
| 334 | m_isInitialized = true; |
| 335 | } |
| 336 | |
| 337 | /** \internal */ |
| 338 | template<typename Rhs,typename Dest> |
| 339 | void _solve(const Rhs& b, Dest& x) const |
| 340 | { |
| 341 | x = b; |
| 342 | if(x.squaredNorm() == 0) return; // Check Zero right hand side |
| 343 | _solveWithGuess(b,x); |
| 344 | } |
| 345 | |
| 346 | protected: |
| 347 | |
| 348 | }; |
| 349 | |
| 350 | |
| 351 | namespace internal { |
| 352 | |
| 353 | template<typename _MatrixType, typename _Preconditioner, typename Rhs> |
| 354 | struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs> |
| 355 | : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs> |
| 356 | { |
| 357 | typedef GMRES<_MatrixType, _Preconditioner> Dec; |
| 358 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| 359 | |
| 360 | template<typename Dest> void evalTo(Dest& dst) const |
| 361 | { |
| 362 | dec()._solve(rhs(),dst); |
| 363 | } |
| 364 | }; |
| 365 | |
| 366 | } // end namespace internal |
| 367 | |
| 368 | } // end namespace Eigen |
| 369 | |
| 370 | #endif // EIGEN_GMRES_H |