Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "common.h" |
| 11 | #include <Eigen/LU> |
| 12 | |
| 13 | // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges |
| 14 | EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info)) |
| 15 | { |
| 16 | *info = 0; |
| 17 | if(*m<0) *info = -1; |
| 18 | else if(*n<0) *info = -2; |
| 19 | else if(*lda<std::max(1,*m)) *info = -4; |
| 20 | if(*info!=0) |
| 21 | { |
| 22 | int e = -*info; |
| 23 | return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6); |
| 24 | } |
| 25 | |
| 26 | if(*m==0 || *n==0) |
| 27 | return 0; |
| 28 | |
| 29 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 30 | int nb_transpositions; |
| 31 | int ret = int(Eigen::internal::partial_lu_impl<Scalar,ColMajor,int> |
| 32 | ::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions)); |
| 33 | |
| 34 | for(int i=0; i<std::min(*m,*n); ++i) |
| 35 | ipiv[i]++; |
| 36 | |
| 37 | if(ret>=0) |
| 38 | *info = ret+1; |
| 39 | |
| 40 | return 0; |
| 41 | } |
| 42 | |
| 43 | //GETRS solves a system of linear equations |
| 44 | // A * X = B or A' * X = B |
| 45 | // with a general N-by-N matrix A using the LU factorization computed by GETRF |
| 46 | EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info)) |
| 47 | { |
| 48 | *info = 0; |
| 49 | if(OP(*trans)==INVALID) *info = -1; |
| 50 | else if(*n<0) *info = -2; |
| 51 | else if(*nrhs<0) *info = -3; |
| 52 | else if(*lda<std::max(1,*n)) *info = -5; |
| 53 | else if(*ldb<std::max(1,*n)) *info = -8; |
| 54 | if(*info!=0) |
| 55 | { |
| 56 | int e = -*info; |
| 57 | return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6); |
| 58 | } |
| 59 | |
| 60 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 61 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 62 | MatrixType lu(a,*n,*n,*lda); |
| 63 | MatrixType B(b,*n,*nrhs,*ldb); |
| 64 | |
| 65 | for(int i=0; i<*n; ++i) |
| 66 | ipiv[i]--; |
| 67 | if(OP(*trans)==NOTR) |
| 68 | { |
| 69 | B = PivotsType(ipiv,*n) * B; |
| 70 | lu.triangularView<UnitLower>().solveInPlace(B); |
| 71 | lu.triangularView<Upper>().solveInPlace(B); |
| 72 | } |
| 73 | else if(OP(*trans)==TR) |
| 74 | { |
| 75 | lu.triangularView<Upper>().transpose().solveInPlace(B); |
| 76 | lu.triangularView<UnitLower>().transpose().solveInPlace(B); |
| 77 | B = PivotsType(ipiv,*n).transpose() * B; |
| 78 | } |
| 79 | else if(OP(*trans)==ADJ) |
| 80 | { |
| 81 | lu.triangularView<Upper>().adjoint().solveInPlace(B); |
| 82 | lu.triangularView<UnitLower>().adjoint().solveInPlace(B); |
| 83 | B = PivotsType(ipiv,*n).transpose() * B; |
| 84 | } |
| 85 | for(int i=0; i<*n; ++i) |
| 86 | ipiv[i]++; |
| 87 | |
| 88 | return 0; |
| 89 | } |