Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | namespace Eigen { |
| 2 | |
| 3 | /** \eigenManualPage QuickRefPage Quick reference guide |
| 4 | |
| 5 | \eigenAutoToc |
| 6 | |
| 7 | <hr> |
| 8 | |
| 9 | <a href="#" class="top">top</a> |
| 10 | \section QuickRef_Headers Modules and Header files |
| 11 | |
| 12 | The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. |
| 13 | |
| 14 | <table class="manual"> |
| 15 | <tr><th>Module</th><th>Header file</th><th>Contents</th></tr> |
| 16 | <tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> |
| 17 | <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> |
| 18 | <tr><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> |
| 19 | <tr><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> |
| 20 | <tr class="alt"><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> |
| 21 | <tr><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decomposition with least-squares solver (JacobiSVD)</td></tr> |
| 22 | <tr class="alt"><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> |
| 23 | <tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> |
| 24 | <tr class="alt"><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr> |
| 25 | <tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> |
| 26 | <tr class="alt"><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> |
| 27 | </table> |
| 28 | |
| 29 | <a href="#" class="top">top</a> |
| 30 | \section QuickRef_Types Array, matrix and vector types |
| 31 | |
| 32 | |
| 33 | \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: |
| 34 | \code |
| 35 | typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; |
| 36 | typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; |
| 37 | \endcode |
| 38 | |
| 39 | \li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). |
| 40 | \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. |
| 41 | \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) |
| 42 | |
| 43 | All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: |
| 44 | \code |
| 45 | Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) |
| 46 | Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation) |
| 47 | Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation) |
| 48 | Matrix<double, 13, 3> // Fully fixed (usually allocated on stack) |
| 49 | \endcode |
| 50 | |
| 51 | In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: |
| 52 | <table class="example"> |
| 53 | <tr><th>Matrices</th><th>Arrays</th></tr> |
| 54 | <tr><td>\code |
| 55 | Matrix<float,Dynamic,Dynamic> <=> MatrixXf |
| 56 | Matrix<double,Dynamic,1> <=> VectorXd |
| 57 | Matrix<int,1,Dynamic> <=> RowVectorXi |
| 58 | Matrix<float,3,3> <=> Matrix3f |
| 59 | Matrix<float,4,1> <=> Vector4f |
| 60 | \endcode</td><td>\code |
| 61 | Array<float,Dynamic,Dynamic> <=> ArrayXXf |
| 62 | Array<double,Dynamic,1> <=> ArrayXd |
| 63 | Array<int,1,Dynamic> <=> RowArrayXi |
| 64 | Array<float,3,3> <=> Array33f |
| 65 | Array<float,4,1> <=> Array4f |
| 66 | \endcode</td></tr> |
| 67 | </table> |
| 68 | |
| 69 | Conversion between the matrix and array worlds: |
| 70 | \code |
| 71 | Array44f a1, a1; |
| 72 | Matrix4f m1, m2; |
| 73 | m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix. |
| 74 | a1 = m1 * m2; // matrix product, implicit conversion from matrix to array. |
| 75 | a2 = a1 + m1.array(); // mixing array and matrix is forbidden |
| 76 | m2 = a1.matrix() + m1; // and explicit conversion is required. |
| 77 | ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients |
| 78 | MatrixWrapper<Array44f> a1m(a1); |
| 79 | \endcode |
| 80 | |
| 81 | In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: |
| 82 | \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only |
| 83 | \li <a name="arrayonly"></a>\arrayworld array objects only |
| 84 | |
| 85 | \subsection QuickRef_Basics Basic matrix manipulation |
| 86 | |
| 87 | <table class="manual"> |
| 88 | <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> |
| 89 | <tr><td>Constructors</td> |
| 90 | <td>\code |
| 91 | Vector4d v4; |
| 92 | Vector2f v1(x, y); |
| 93 | Array3i v2(x, y, z); |
| 94 | Vector4d v3(x, y, z, w); |
| 95 | |
| 96 | VectorXf v5; // empty object |
| 97 | ArrayXf v6(size); |
| 98 | \endcode</td><td>\code |
| 99 | Matrix4f m1; |
| 100 | |
| 101 | |
| 102 | |
| 103 | |
| 104 | MatrixXf m5; // empty object |
| 105 | MatrixXf m6(nb_rows, nb_columns); |
| 106 | \endcode</td><td class="note"> |
| 107 | By default, the coefficients \n are left uninitialized</td></tr> |
| 108 | <tr class="alt"><td>Comma initializer</td> |
| 109 | <td>\code |
| 110 | Vector3f v1; v1 << x, y, z; |
| 111 | ArrayXf v2(4); v2 << 1, 2, 3, 4; |
| 112 | |
| 113 | \endcode</td><td>\code |
| 114 | Matrix3f m1; m1 << 1, 2, 3, |
| 115 | 4, 5, 6, |
| 116 | 7, 8, 9; |
| 117 | \endcode</td><td></td></tr> |
| 118 | |
| 119 | <tr><td>Comma initializer (bis)</td> |
| 120 | <td colspan="2"> |
| 121 | \include Tutorial_commainit_02.cpp |
| 122 | </td> |
| 123 | <td> |
| 124 | output: |
| 125 | \verbinclude Tutorial_commainit_02.out |
| 126 | </td> |
| 127 | </tr> |
| 128 | |
| 129 | <tr class="alt"><td>Runtime info</td> |
| 130 | <td>\code |
| 131 | vector.size(); |
| 132 | |
| 133 | vector.innerStride(); |
| 134 | vector.data(); |
| 135 | \endcode</td><td>\code |
| 136 | matrix.rows(); matrix.cols(); |
| 137 | matrix.innerSize(); matrix.outerSize(); |
| 138 | matrix.innerStride(); matrix.outerStride(); |
| 139 | matrix.data(); |
| 140 | \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> |
| 141 | <tr><td>Compile-time info</td> |
| 142 | <td colspan="2">\code |
| 143 | ObjectType::Scalar ObjectType::RowsAtCompileTime |
| 144 | ObjectType::RealScalar ObjectType::ColsAtCompileTime |
| 145 | ObjectType::Index ObjectType::SizeAtCompileTime |
| 146 | \endcode</td><td></td></tr> |
| 147 | <tr class="alt"><td>Resizing</td> |
| 148 | <td>\code |
| 149 | vector.resize(size); |
| 150 | |
| 151 | |
| 152 | vector.resizeLike(other_vector); |
| 153 | vector.conservativeResize(size); |
| 154 | \endcode</td><td>\code |
| 155 | matrix.resize(nb_rows, nb_cols); |
| 156 | matrix.resize(Eigen::NoChange, nb_cols); |
| 157 | matrix.resize(nb_rows, Eigen::NoChange); |
| 158 | matrix.resizeLike(other_matrix); |
| 159 | matrix.conservativeResize(nb_rows, nb_cols); |
| 160 | \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> |
| 161 | |
| 162 | <tr><td>Coeff access with \n range checking</td> |
| 163 | <td>\code |
| 164 | vector(i) vector.x() |
| 165 | vector[i] vector.y() |
| 166 | vector.z() |
| 167 | vector.w() |
| 168 | \endcode</td><td>\code |
| 169 | matrix(i,j) |
| 170 | \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> |
| 171 | |
| 172 | <tr class="alt"><td>Coeff access without \n range checking</td> |
| 173 | <td>\code |
| 174 | vector.coeff(i) |
| 175 | vector.coeffRef(i) |
| 176 | \endcode</td><td>\code |
| 177 | matrix.coeff(i,j) |
| 178 | matrix.coeffRef(i,j) |
| 179 | \endcode</td><td></td></tr> |
| 180 | |
| 181 | <tr><td>Assignment/copy</td> |
| 182 | <td colspan="2">\code |
| 183 | object = expression; |
| 184 | object_of_float = expression_of_double.cast<float>(); |
| 185 | \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> |
| 186 | |
| 187 | </table> |
| 188 | |
| 189 | \subsection QuickRef_PredefMat Predefined Matrices |
| 190 | |
| 191 | <table class="manual"> |
| 192 | <tr> |
| 193 | <th>Fixed-size matrix or vector</th> |
| 194 | <th>Dynamic-size matrix</th> |
| 195 | <th>Dynamic-size vector</th> |
| 196 | </tr> |
| 197 | <tr style="border-bottom-style: none;"> |
| 198 | <td> |
| 199 | \code |
| 200 | typedef {Matrix3f|Array33f} FixedXD; |
| 201 | FixedXD x; |
| 202 | |
| 203 | x = FixedXD::Zero(); |
| 204 | x = FixedXD::Ones(); |
| 205 | x = FixedXD::Constant(value); |
| 206 | x = FixedXD::Random(); |
| 207 | x = FixedXD::LinSpaced(size, low, high); |
| 208 | |
| 209 | x.setZero(); |
| 210 | x.setOnes(); |
| 211 | x.setConstant(value); |
| 212 | x.setRandom(); |
| 213 | x.setLinSpaced(size, low, high); |
| 214 | \endcode |
| 215 | </td> |
| 216 | <td> |
| 217 | \code |
| 218 | typedef {MatrixXf|ArrayXXf} Dynamic2D; |
| 219 | Dynamic2D x; |
| 220 | |
| 221 | x = Dynamic2D::Zero(rows, cols); |
| 222 | x = Dynamic2D::Ones(rows, cols); |
| 223 | x = Dynamic2D::Constant(rows, cols, value); |
| 224 | x = Dynamic2D::Random(rows, cols); |
| 225 | N/A |
| 226 | |
| 227 | x.setZero(rows, cols); |
| 228 | x.setOnes(rows, cols); |
| 229 | x.setConstant(rows, cols, value); |
| 230 | x.setRandom(rows, cols); |
| 231 | N/A |
| 232 | \endcode |
| 233 | </td> |
| 234 | <td> |
| 235 | \code |
| 236 | typedef {VectorXf|ArrayXf} Dynamic1D; |
| 237 | Dynamic1D x; |
| 238 | |
| 239 | x = Dynamic1D::Zero(size); |
| 240 | x = Dynamic1D::Ones(size); |
| 241 | x = Dynamic1D::Constant(size, value); |
| 242 | x = Dynamic1D::Random(size); |
| 243 | x = Dynamic1D::LinSpaced(size, low, high); |
| 244 | |
| 245 | x.setZero(size); |
| 246 | x.setOnes(size); |
| 247 | x.setConstant(size, value); |
| 248 | x.setRandom(size); |
| 249 | x.setLinSpaced(size, low, high); |
| 250 | \endcode |
| 251 | </td> |
| 252 | </tr> |
| 253 | |
| 254 | <tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> |
| 255 | <tr style="border-bottom-style: none;"> |
| 256 | <td> |
| 257 | \code |
| 258 | x = FixedXD::Identity(); |
| 259 | x.setIdentity(); |
| 260 | |
| 261 | Vector3f::UnitX() // 1 0 0 |
| 262 | Vector3f::UnitY() // 0 1 0 |
| 263 | Vector3f::UnitZ() // 0 0 1 |
| 264 | \endcode |
| 265 | </td> |
| 266 | <td> |
| 267 | \code |
| 268 | x = Dynamic2D::Identity(rows, cols); |
| 269 | x.setIdentity(rows, cols); |
| 270 | |
| 271 | |
| 272 | |
| 273 | N/A |
| 274 | \endcode |
| 275 | </td> |
| 276 | <td>\code |
| 277 | N/A |
| 278 | |
| 279 | |
| 280 | VectorXf::Unit(size,i) |
| 281 | VectorXf::Unit(4,1) == Vector4f(0,1,0,0) |
| 282 | == Vector4f::UnitY() |
| 283 | \endcode |
| 284 | </td> |
| 285 | </tr> |
| 286 | </table> |
| 287 | |
| 288 | |
| 289 | |
| 290 | \subsection QuickRef_Map Mapping external arrays |
| 291 | |
| 292 | <table class="manual"> |
| 293 | <tr> |
| 294 | <td>Contiguous \n memory</td> |
| 295 | <td>\code |
| 296 | float data[] = {1,2,3,4}; |
| 297 | Map<Vector3f> v1(data); // uses v1 as a Vector3f object |
| 298 | Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object |
| 299 | Map<Array22f> m1(data); // uses m1 as a Array22f object |
| 300 | Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object |
| 301 | \endcode</td> |
| 302 | </tr> |
| 303 | <tr> |
| 304 | <td>Typical usage \n of strides</td> |
| 305 | <td>\code |
| 306 | float data[] = {1,2,3,4,5,6,7,8,9}; |
| 307 | Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] |
| 308 | Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] |
| 309 | Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| |
| 310 | Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8| |
| 311 | \endcode</td> |
| 312 | </tr> |
| 313 | </table> |
| 314 | |
| 315 | |
| 316 | <a href="#" class="top">top</a> |
| 317 | \section QuickRef_ArithmeticOperators Arithmetic Operators |
| 318 | |
| 319 | <table class="manual"> |
| 320 | <tr><td> |
| 321 | add \n subtract</td><td>\code |
| 322 | mat3 = mat1 + mat2; mat3 += mat1; |
| 323 | mat3 = mat1 - mat2; mat3 -= mat1;\endcode |
| 324 | </td></tr> |
| 325 | <tr class="alt"><td> |
| 326 | scalar product</td><td>\code |
| 327 | mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; |
| 328 | mat3 = mat1 / s1; mat3 /= s1;\endcode |
| 329 | </td></tr> |
| 330 | <tr><td> |
| 331 | matrix/vector \n products \matrixworld</td><td>\code |
| 332 | col2 = mat1 * col1; |
| 333 | row2 = row1 * mat1; row1 *= mat1; |
| 334 | mat3 = mat1 * mat2; mat3 *= mat1; \endcode |
| 335 | </td></tr> |
| 336 | <tr class="alt"><td> |
| 337 | transposition \n adjoint \matrixworld</td><td>\code |
| 338 | mat1 = mat2.transpose(); mat1.transposeInPlace(); |
| 339 | mat1 = mat2.adjoint(); mat1.adjointInPlace(); |
| 340 | \endcode |
| 341 | </td></tr> |
| 342 | <tr><td> |
| 343 | \link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code |
| 344 | scalar = vec1.dot(vec2); |
| 345 | scalar = col1.adjoint() * col2; |
| 346 | scalar = (col1.adjoint() * col2).value();\endcode |
| 347 | </td></tr> |
| 348 | <tr class="alt"><td> |
| 349 | outer product \matrixworld</td><td>\code |
| 350 | mat = col1 * col2.transpose();\endcode |
| 351 | </td></tr> |
| 352 | |
| 353 | <tr><td> |
| 354 | \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code |
| 355 | scalar = vec1.norm(); scalar = vec1.squaredNorm() |
| 356 | vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode |
| 357 | </td></tr> |
| 358 | |
| 359 | <tr class="alt"><td> |
| 360 | \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code |
| 361 | #include <Eigen/Geometry> |
| 362 | vec3 = vec1.cross(vec2);\endcode</td></tr> |
| 363 | </table> |
| 364 | |
| 365 | <a href="#" class="top">top</a> |
| 366 | \section QuickRef_Coeffwise Coefficient-wise \& Array operators |
| 367 | Coefficient-wise operators for matrices and vectors: |
| 368 | <table class="manual"> |
| 369 | <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> |
| 370 | <tr><td>\code |
| 371 | mat1.cwiseMin(mat2) |
| 372 | mat1.cwiseMax(mat2) |
| 373 | mat1.cwiseAbs2() |
| 374 | mat1.cwiseAbs() |
| 375 | mat1.cwiseSqrt() |
| 376 | mat1.cwiseProduct(mat2) |
| 377 | mat1.cwiseQuotient(mat2)\endcode |
| 378 | </td><td>\code |
| 379 | mat1.array().min(mat2.array()) |
| 380 | mat1.array().max(mat2.array()) |
| 381 | mat1.array().abs2() |
| 382 | mat1.array().abs() |
| 383 | mat1.array().sqrt() |
| 384 | mat1.array() * mat2.array() |
| 385 | mat1.array() / mat2.array() |
| 386 | \endcode</td></tr> |
| 387 | </table> |
| 388 | |
| 389 | It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with std::ptr_fun: |
| 390 | \code mat1.unaryExpr(std::ptr_fun(foo))\endcode |
| 391 | |
| 392 | Array operators:\arrayworld |
| 393 | |
| 394 | <table class="manual"> |
| 395 | <tr><td>Arithmetic operators</td><td>\code |
| 396 | array1 * array2 array1 / array2 array1 *= array2 array1 /= array2 |
| 397 | array1 + scalar array1 - scalar array1 += scalar array1 -= scalar |
| 398 | \endcode</td></tr> |
| 399 | <tr><td>Comparisons</td><td>\code |
| 400 | array1 < array2 array1 > array2 array1 < scalar array1 > scalar |
| 401 | array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar |
| 402 | array1 == array2 array1 != array2 array1 == scalar array1 != scalar |
| 403 | \endcode</td></tr> |
| 404 | <tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code |
| 405 | array1.min(array2) |
| 406 | array1.max(array2) |
| 407 | array1.abs2() |
| 408 | array1.abs() abs(array1) |
| 409 | array1.sqrt() sqrt(array1) |
| 410 | array1.log() log(array1) |
| 411 | array1.exp() exp(array1) |
| 412 | array1.pow(exponent) pow(array1,exponent) |
| 413 | array1.square() |
| 414 | array1.cube() |
| 415 | array1.inverse() |
| 416 | array1.sin() sin(array1) |
| 417 | array1.cos() cos(array1) |
| 418 | array1.tan() tan(array1) |
| 419 | array1.asin() asin(array1) |
| 420 | array1.acos() acos(array1) |
| 421 | \endcode |
| 422 | </td></tr> |
| 423 | </table> |
| 424 | |
| 425 | <a href="#" class="top">top</a> |
| 426 | \section QuickRef_Reductions Reductions |
| 427 | |
| 428 | Eigen provides several reduction methods such as: |
| 429 | \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, |
| 430 | \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, |
| 431 | \link MatrixBase::trace() trace() \endlink \matrixworld, |
| 432 | \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, |
| 433 | \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. |
| 434 | All reduction operations can be done matrix-wise, |
| 435 | \link DenseBase::colwise() column-wise \endlink or |
| 436 | \link DenseBase::rowwise() row-wise \endlink. Usage example: |
| 437 | <table class="manual"> |
| 438 | <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code |
| 439 | 5 3 1 |
| 440 | mat = 2 7 8 |
| 441 | 9 4 6 \endcode |
| 442 | </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> |
| 443 | <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> |
| 444 | <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code |
| 445 | 1 |
| 446 | 2 |
| 447 | 4 |
| 448 | \endcode</td></tr> |
| 449 | </table> |
| 450 | |
| 451 | Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: |
| 452 | \code |
| 453 | int i, j; |
| 454 | s = vector.minCoeff(&i); // s == vector[i] |
| 455 | s = matrix.maxCoeff(&i, &j); // s == matrix(i,j) |
| 456 | \endcode |
| 457 | Typical use cases of all() and any(): |
| 458 | \code |
| 459 | if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... |
| 460 | if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... |
| 461 | \endcode |
| 462 | |
| 463 | |
| 464 | <a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices |
| 465 | |
| 466 | Read-write access to a \link DenseBase::col(Index) column \endlink |
| 467 | or a \link DenseBase::row(Index) row \endlink of a matrix (or array): |
| 468 | \code |
| 469 | mat1.row(i) = mat2.col(j); |
| 470 | mat1.col(j1).swap(mat1.col(j2)); |
| 471 | \endcode |
| 472 | |
| 473 | Read-write access to sub-vectors: |
| 474 | <table class="manual"> |
| 475 | <tr> |
| 476 | <th>Default versions</th> |
| 477 | <th>Optimized versions when the size \n is known at compile time</th></tr> |
| 478 | <th></th> |
| 479 | |
| 480 | <tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> |
| 481 | <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> |
| 482 | <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> |
| 483 | <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> |
| 484 | <tr class="alt"><td colspan="3"> |
| 485 | |
| 486 | Read-write access to sub-matrices:</td></tr> |
| 487 | <tr> |
| 488 | <td>\code mat1.block(i,j,rows,cols)\endcode |
| 489 | \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> |
| 490 | <td>\code mat1.block<rows,cols>(i,j)\endcode |
| 491 | \link DenseBase::block(Index,Index) (more) \endlink</td> |
| 492 | <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> |
| 493 | <tr><td>\code |
| 494 | mat1.topLeftCorner(rows,cols) |
| 495 | mat1.topRightCorner(rows,cols) |
| 496 | mat1.bottomLeftCorner(rows,cols) |
| 497 | mat1.bottomRightCorner(rows,cols)\endcode |
| 498 | <td>\code |
| 499 | mat1.topLeftCorner<rows,cols>() |
| 500 | mat1.topRightCorner<rows,cols>() |
| 501 | mat1.bottomLeftCorner<rows,cols>() |
| 502 | mat1.bottomRightCorner<rows,cols>()\endcode |
| 503 | <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> |
| 504 | <tr><td>\code |
| 505 | mat1.topRows(rows) |
| 506 | mat1.bottomRows(rows) |
| 507 | mat1.leftCols(cols) |
| 508 | mat1.rightCols(cols)\endcode |
| 509 | <td>\code |
| 510 | mat1.topRows<rows>() |
| 511 | mat1.bottomRows<rows>() |
| 512 | mat1.leftCols<cols>() |
| 513 | mat1.rightCols<cols>()\endcode |
| 514 | <td>specialized versions of block() \n when the block fit two corners</td></tr> |
| 515 | </table> |
| 516 | |
| 517 | |
| 518 | |
| 519 | <a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations |
| 520 | |
| 521 | \subsection QuickRef_Reverse Reverse |
| 522 | Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). |
| 523 | \code |
| 524 | vec.reverse() mat.colwise().reverse() mat.rowwise().reverse() |
| 525 | vec.reverseInPlace() |
| 526 | \endcode |
| 527 | |
| 528 | \subsection QuickRef_Replicate Replicate |
| 529 | Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) |
| 530 | \code |
| 531 | vec.replicate(times) vec.replicate<Times> |
| 532 | mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>() |
| 533 | mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>() |
| 534 | mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() |
| 535 | \endcode |
| 536 | |
| 537 | |
| 538 | <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices |
| 539 | (matrix world \matrixworld) |
| 540 | |
| 541 | \subsection QuickRef_Diagonal Diagonal matrices |
| 542 | |
| 543 | <table class="example"> |
| 544 | <tr><th>Operation</th><th>Code</th></tr> |
| 545 | <tr><td> |
| 546 | view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code |
| 547 | mat1 = vec1.asDiagonal();\endcode |
| 548 | </td></tr> |
| 549 | <tr><td> |
| 550 | Declare a diagonal matrix</td><td>\code |
| 551 | DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); |
| 552 | diag1.diagonal() = vector;\endcode |
| 553 | </td></tr> |
| 554 | <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> |
| 555 | <td>\code |
| 556 | vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal |
| 557 | vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal |
| 558 | vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal |
| 559 | vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal |
| 560 | vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal |
| 561 | \endcode</td> |
| 562 | </tr> |
| 563 | |
| 564 | <tr><td>Optimized products and inverse</td> |
| 565 | <td>\code |
| 566 | mat3 = scalar * diag1 * mat1; |
| 567 | mat3 += scalar * mat1 * vec1.asDiagonal(); |
| 568 | mat3 = vec1.asDiagonal().inverse() * mat1 |
| 569 | mat3 = mat1 * diag1.inverse() |
| 570 | \endcode</td> |
| 571 | </tr> |
| 572 | |
| 573 | </table> |
| 574 | |
| 575 | \subsection QuickRef_TriangularView Triangular views |
| 576 | |
| 577 | TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. |
| 578 | |
| 579 | \note The .triangularView() template member function requires the \c template keyword if it is used on an |
| 580 | object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. |
| 581 | |
| 582 | <table class="example"> |
| 583 | <tr><th>Operation</th><th>Code</th></tr> |
| 584 | <tr><td> |
| 585 | Reference to a triangular with optional \n |
| 586 | unit or null diagonal (read/write): |
| 587 | </td><td>\code |
| 588 | m.triangularView<Xxx>() |
| 589 | \endcode \n |
| 590 | \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower |
| 591 | </td></tr> |
| 592 | <tr><td> |
| 593 | Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) |
| 594 | </td><td>\code |
| 595 | m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode |
| 596 | </td></tr> |
| 597 | <tr><td> |
| 598 | Conversion to a dense matrix setting the opposite triangular part to zero: |
| 599 | </td><td>\code |
| 600 | m2 = m1.triangularView<Eigen::UnitUpper>()\endcode |
| 601 | </td></tr> |
| 602 | <tr><td> |
| 603 | Products: |
| 604 | </td><td>\code |
| 605 | m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 |
| 606 | m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode |
| 607 | </td></tr> |
| 608 | <tr><td> |
| 609 | Solving linear equations:\n |
| 610 | \f$ M_2 := L_1^{-1} M_2 \f$ \n |
| 611 | \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n |
| 612 | \f$ M_4 := M_4 U_1^{-1} \f$ |
| 613 | </td><td>\n \code |
| 614 | L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) |
| 615 | L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) |
| 616 | U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode |
| 617 | </td></tr> |
| 618 | </table> |
| 619 | |
| 620 | \subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views |
| 621 | |
| 622 | Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint |
| 623 | matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be |
| 624 | used to store other information. |
| 625 | |
| 626 | \note The .selfadjointView() template member function requires the \c template keyword if it is used on an |
| 627 | object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. |
| 628 | |
| 629 | <table class="example"> |
| 630 | <tr><th>Operation</th><th>Code</th></tr> |
| 631 | <tr><td> |
| 632 | Conversion to a dense matrix: |
| 633 | </td><td>\code |
| 634 | m2 = m.selfadjointView<Eigen::Lower>();\endcode |
| 635 | </td></tr> |
| 636 | <tr><td> |
| 637 | Product with another general matrix or vector: |
| 638 | </td><td>\code |
| 639 | m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; |
| 640 | m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode |
| 641 | </td></tr> |
| 642 | <tr><td> |
| 643 | Rank 1 and rank K update: \n |
| 644 | \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n |
| 645 | \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ |
| 646 | </td><td>\n \code |
| 647 | M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); |
| 648 | M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode |
| 649 | </td></tr> |
| 650 | <tr><td> |
| 651 | Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) |
| 652 | </td><td>\code |
| 653 | M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); |
| 654 | \endcode |
| 655 | </td></tr> |
| 656 | <tr><td> |
| 657 | Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) |
| 658 | </td><td>\code |
| 659 | // via a standard Cholesky factorization |
| 660 | m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); |
| 661 | // via a Cholesky factorization with pivoting |
| 662 | m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); |
| 663 | \endcode |
| 664 | </td></tr> |
| 665 | </table> |
| 666 | |
| 667 | */ |
| 668 | |
| 669 | /* |
| 670 | <table class="tutorial_code"> |
| 671 | <tr><td> |
| 672 | \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code |
| 673 | mat1 = vec1.asDiagonal();\endcode |
| 674 | </td></tr> |
| 675 | <tr><td> |
| 676 | Declare a diagonal matrix</td><td>\code |
| 677 | DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); |
| 678 | diag1.diagonal() = vector;\endcode |
| 679 | </td></tr> |
| 680 | <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> |
| 681 | <td>\code |
| 682 | vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal |
| 683 | vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal |
| 684 | vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal |
| 685 | vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal |
| 686 | vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal |
| 687 | \endcode</td> |
| 688 | </tr> |
| 689 | |
| 690 | <tr><td>View on a triangular part of a matrix (read/write)</td> |
| 691 | <td>\code |
| 692 | mat2 = mat1.triangularView<Xxx>(); |
| 693 | // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower |
| 694 | mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced |
| 695 | \endcode</td></tr> |
| 696 | |
| 697 | <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> |
| 698 | <td>\code |
| 699 | mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower |
| 700 | mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only |
| 701 | \endcode</td></tr> |
| 702 | |
| 703 | </table> |
| 704 | |
| 705 | Optimized products: |
| 706 | \code |
| 707 | mat3 += scalar * vec1.asDiagonal() * mat1 |
| 708 | mat3 += scalar * mat1 * vec1.asDiagonal() |
| 709 | mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 |
| 710 | mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() |
| 711 | mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 |
| 712 | mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() |
| 713 | mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); |
| 714 | mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); |
| 715 | \endcode |
| 716 | |
| 717 | Inverse products: (all are optimized) |
| 718 | \code |
| 719 | mat3 = vec1.asDiagonal().inverse() * mat1 |
| 720 | mat3 = mat1 * diag1.inverse() |
| 721 | mat1.triangularView<Xxx>().solveInPlace(mat2) |
| 722 | mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) |
| 723 | mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) |
| 724 | \endcode |
| 725 | |
| 726 | */ |
| 727 | } |