Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "common.h" |
| 11 | |
| 12 | struct scalar_norm1_op { |
| 13 | typedef RealScalar result_type; |
| 14 | EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op) |
| 15 | inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); } |
| 16 | }; |
| 17 | namespace Eigen { |
| 18 | namespace internal { |
| 19 | template<> struct functor_traits<scalar_norm1_op > |
| 20 | { |
| 21 | enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 }; |
| 22 | }; |
| 23 | } |
| 24 | } |
| 25 | |
| 26 | // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum |
| 27 | // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n |
| 28 | RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx) |
| 29 | { |
| 30 | // std::cerr << "__asum " << *n << " " << *incx << "\n"; |
| 31 | Complex* x = reinterpret_cast<Complex*>(px); |
| 32 | |
| 33 | if(*n<=0) return 0; |
| 34 | |
| 35 | if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum(); |
| 36 | else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum(); |
| 37 | } |
| 38 | |
| 39 | // computes a dot product of a conjugated vector with another vector. |
| 40 | int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) |
| 41 | { |
| 42 | // std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n"; |
| 43 | |
| 44 | if(*n<=0) return 0; |
| 45 | |
| 46 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 47 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 48 | Scalar* res = reinterpret_cast<Scalar*>(pres); |
| 49 | |
| 50 | if(*incx==1 && *incy==1) *res = (vector(x,*n).dot(vector(y,*n))); |
| 51 | else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy))); |
| 52 | else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy))); |
| 53 | else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse())); |
| 54 | else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse())); |
| 55 | return 0; |
| 56 | } |
| 57 | |
| 58 | // computes a vector-vector dot product without complex conjugation. |
| 59 | int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres) |
| 60 | { |
| 61 | // std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n"; |
| 62 | |
| 63 | if(*n<=0) return 0; |
| 64 | |
| 65 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 66 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 67 | Scalar* res = reinterpret_cast<Scalar*>(pres); |
| 68 | |
| 69 | if(*incx==1 && *incy==1) *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum(); |
| 70 | else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum(); |
| 71 | else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum(); |
| 72 | else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); |
| 73 | else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); |
| 74 | return 0; |
| 75 | } |
| 76 | |
| 77 | RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx) |
| 78 | { |
| 79 | // std::cerr << "__nrm2 " << *n << " " << *incx << "\n"; |
| 80 | if(*n<=0) return 0; |
| 81 | |
| 82 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 83 | |
| 84 | if(*incx==1) |
| 85 | return vector(x,*n).stableNorm(); |
| 86 | |
| 87 | return vector(x,*n,*incx).stableNorm(); |
| 88 | } |
| 89 | |
| 90 | int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) |
| 91 | { |
| 92 | if(*n<=0) return 0; |
| 93 | |
| 94 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 95 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 96 | RealScalar c = *pc; |
| 97 | RealScalar s = *ps; |
| 98 | |
| 99 | StridedVectorType vx(vector(x,*n,std::abs(*incx))); |
| 100 | StridedVectorType vy(vector(y,*n,std::abs(*incy))); |
| 101 | |
| 102 | Reverse<StridedVectorType> rvx(vx); |
| 103 | Reverse<StridedVectorType> rvy(vy); |
| 104 | |
| 105 | // TODO implement mixed real-scalar rotations |
| 106 | if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s)); |
| 107 | else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s)); |
| 108 | else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s)); |
| 109 | |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx) |
| 114 | { |
| 115 | if(*n<=0) return 0; |
| 116 | |
| 117 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 118 | RealScalar alpha = *palpha; |
| 119 | |
| 120 | // std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n"; |
| 121 | |
| 122 | if(*incx==1) vector(x,*n) *= alpha; |
| 123 | else vector(x,*n,std::abs(*incx)) *= alpha; |
| 124 | |
| 125 | return 0; |
| 126 | } |
| 127 | |