Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
| 2 | * .. Scalar Arguments .. |
| 3 | COMPLEX ALPHA,BETA |
| 4 | INTEGER INCX,INCY,K,LDA,N |
| 5 | CHARACTER UPLO |
| 6 | * .. |
| 7 | * .. Array Arguments .. |
| 8 | COMPLEX A(LDA,*),X(*),Y(*) |
| 9 | * .. |
| 10 | * |
| 11 | * Purpose |
| 12 | * ======= |
| 13 | * |
| 14 | * CHBMV performs the matrix-vector operation |
| 15 | * |
| 16 | * y := alpha*A*x + beta*y, |
| 17 | * |
| 18 | * where alpha and beta are scalars, x and y are n element vectors and |
| 19 | * A is an n by n hermitian band matrix, with k super-diagonals. |
| 20 | * |
| 21 | * Arguments |
| 22 | * ========== |
| 23 | * |
| 24 | * UPLO - CHARACTER*1. |
| 25 | * On entry, UPLO specifies whether the upper or lower |
| 26 | * triangular part of the band matrix A is being supplied as |
| 27 | * follows: |
| 28 | * |
| 29 | * UPLO = 'U' or 'u' The upper triangular part of A is |
| 30 | * being supplied. |
| 31 | * |
| 32 | * UPLO = 'L' or 'l' The lower triangular part of A is |
| 33 | * being supplied. |
| 34 | * |
| 35 | * Unchanged on exit. |
| 36 | * |
| 37 | * N - INTEGER. |
| 38 | * On entry, N specifies the order of the matrix A. |
| 39 | * N must be at least zero. |
| 40 | * Unchanged on exit. |
| 41 | * |
| 42 | * K - INTEGER. |
| 43 | * On entry, K specifies the number of super-diagonals of the |
| 44 | * matrix A. K must satisfy 0 .le. K. |
| 45 | * Unchanged on exit. |
| 46 | * |
| 47 | * ALPHA - COMPLEX . |
| 48 | * On entry, ALPHA specifies the scalar alpha. |
| 49 | * Unchanged on exit. |
| 50 | * |
| 51 | * A - COMPLEX array of DIMENSION ( LDA, n ). |
| 52 | * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) |
| 53 | * by n part of the array A must contain the upper triangular |
| 54 | * band part of the hermitian matrix, supplied column by |
| 55 | * column, with the leading diagonal of the matrix in row |
| 56 | * ( k + 1 ) of the array, the first super-diagonal starting at |
| 57 | * position 2 in row k, and so on. The top left k by k triangle |
| 58 | * of the array A is not referenced. |
| 59 | * The following program segment will transfer the upper |
| 60 | * triangular part of a hermitian band matrix from conventional |
| 61 | * full matrix storage to band storage: |
| 62 | * |
| 63 | * DO 20, J = 1, N |
| 64 | * M = K + 1 - J |
| 65 | * DO 10, I = MAX( 1, J - K ), J |
| 66 | * A( M + I, J ) = matrix( I, J ) |
| 67 | * 10 CONTINUE |
| 68 | * 20 CONTINUE |
| 69 | * |
| 70 | * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) |
| 71 | * by n part of the array A must contain the lower triangular |
| 72 | * band part of the hermitian matrix, supplied column by |
| 73 | * column, with the leading diagonal of the matrix in row 1 of |
| 74 | * the array, the first sub-diagonal starting at position 1 in |
| 75 | * row 2, and so on. The bottom right k by k triangle of the |
| 76 | * array A is not referenced. |
| 77 | * The following program segment will transfer the lower |
| 78 | * triangular part of a hermitian band matrix from conventional |
| 79 | * full matrix storage to band storage: |
| 80 | * |
| 81 | * DO 20, J = 1, N |
| 82 | * M = 1 - J |
| 83 | * DO 10, I = J, MIN( N, J + K ) |
| 84 | * A( M + I, J ) = matrix( I, J ) |
| 85 | * 10 CONTINUE |
| 86 | * 20 CONTINUE |
| 87 | * |
| 88 | * Note that the imaginary parts of the diagonal elements need |
| 89 | * not be set and are assumed to be zero. |
| 90 | * Unchanged on exit. |
| 91 | * |
| 92 | * LDA - INTEGER. |
| 93 | * On entry, LDA specifies the first dimension of A as declared |
| 94 | * in the calling (sub) program. LDA must be at least |
| 95 | * ( k + 1 ). |
| 96 | * Unchanged on exit. |
| 97 | * |
| 98 | * X - COMPLEX array of DIMENSION at least |
| 99 | * ( 1 + ( n - 1 )*abs( INCX ) ). |
| 100 | * Before entry, the incremented array X must contain the |
| 101 | * vector x. |
| 102 | * Unchanged on exit. |
| 103 | * |
| 104 | * INCX - INTEGER. |
| 105 | * On entry, INCX specifies the increment for the elements of |
| 106 | * X. INCX must not be zero. |
| 107 | * Unchanged on exit. |
| 108 | * |
| 109 | * BETA - COMPLEX . |
| 110 | * On entry, BETA specifies the scalar beta. |
| 111 | * Unchanged on exit. |
| 112 | * |
| 113 | * Y - COMPLEX array of DIMENSION at least |
| 114 | * ( 1 + ( n - 1 )*abs( INCY ) ). |
| 115 | * Before entry, the incremented array Y must contain the |
| 116 | * vector y. On exit, Y is overwritten by the updated vector y. |
| 117 | * |
| 118 | * INCY - INTEGER. |
| 119 | * On entry, INCY specifies the increment for the elements of |
| 120 | * Y. INCY must not be zero. |
| 121 | * Unchanged on exit. |
| 122 | * |
| 123 | * Further Details |
| 124 | * =============== |
| 125 | * |
| 126 | * Level 2 Blas routine. |
| 127 | * |
| 128 | * -- Written on 22-October-1986. |
| 129 | * Jack Dongarra, Argonne National Lab. |
| 130 | * Jeremy Du Croz, Nag Central Office. |
| 131 | * Sven Hammarling, Nag Central Office. |
| 132 | * Richard Hanson, Sandia National Labs. |
| 133 | * |
| 134 | * ===================================================================== |
| 135 | * |
| 136 | * .. Parameters .. |
| 137 | COMPLEX ONE |
| 138 | PARAMETER (ONE= (1.0E+0,0.0E+0)) |
| 139 | COMPLEX ZERO |
| 140 | PARAMETER (ZERO= (0.0E+0,0.0E+0)) |
| 141 | * .. |
| 142 | * .. Local Scalars .. |
| 143 | COMPLEX TEMP1,TEMP2 |
| 144 | INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L |
| 145 | * .. |
| 146 | * .. External Functions .. |
| 147 | LOGICAL LSAME |
| 148 | EXTERNAL LSAME |
| 149 | * .. |
| 150 | * .. External Subroutines .. |
| 151 | EXTERNAL XERBLA |
| 152 | * .. |
| 153 | * .. Intrinsic Functions .. |
| 154 | INTRINSIC CONJG,MAX,MIN,REAL |
| 155 | * .. |
| 156 | * |
| 157 | * Test the input parameters. |
| 158 | * |
| 159 | INFO = 0 |
| 160 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN |
| 161 | INFO = 1 |
| 162 | ELSE IF (N.LT.0) THEN |
| 163 | INFO = 2 |
| 164 | ELSE IF (K.LT.0) THEN |
| 165 | INFO = 3 |
| 166 | ELSE IF (LDA.LT. (K+1)) THEN |
| 167 | INFO = 6 |
| 168 | ELSE IF (INCX.EQ.0) THEN |
| 169 | INFO = 8 |
| 170 | ELSE IF (INCY.EQ.0) THEN |
| 171 | INFO = 11 |
| 172 | END IF |
| 173 | IF (INFO.NE.0) THEN |
| 174 | CALL XERBLA('CHBMV ',INFO) |
| 175 | RETURN |
| 176 | END IF |
| 177 | * |
| 178 | * Quick return if possible. |
| 179 | * |
| 180 | IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
| 181 | * |
| 182 | * Set up the start points in X and Y. |
| 183 | * |
| 184 | IF (INCX.GT.0) THEN |
| 185 | KX = 1 |
| 186 | ELSE |
| 187 | KX = 1 - (N-1)*INCX |
| 188 | END IF |
| 189 | IF (INCY.GT.0) THEN |
| 190 | KY = 1 |
| 191 | ELSE |
| 192 | KY = 1 - (N-1)*INCY |
| 193 | END IF |
| 194 | * |
| 195 | * Start the operations. In this version the elements of the array A |
| 196 | * are accessed sequentially with one pass through A. |
| 197 | * |
| 198 | * First form y := beta*y. |
| 199 | * |
| 200 | IF (BETA.NE.ONE) THEN |
| 201 | IF (INCY.EQ.1) THEN |
| 202 | IF (BETA.EQ.ZERO) THEN |
| 203 | DO 10 I = 1,N |
| 204 | Y(I) = ZERO |
| 205 | 10 CONTINUE |
| 206 | ELSE |
| 207 | DO 20 I = 1,N |
| 208 | Y(I) = BETA*Y(I) |
| 209 | 20 CONTINUE |
| 210 | END IF |
| 211 | ELSE |
| 212 | IY = KY |
| 213 | IF (BETA.EQ.ZERO) THEN |
| 214 | DO 30 I = 1,N |
| 215 | Y(IY) = ZERO |
| 216 | IY = IY + INCY |
| 217 | 30 CONTINUE |
| 218 | ELSE |
| 219 | DO 40 I = 1,N |
| 220 | Y(IY) = BETA*Y(IY) |
| 221 | IY = IY + INCY |
| 222 | 40 CONTINUE |
| 223 | END IF |
| 224 | END IF |
| 225 | END IF |
| 226 | IF (ALPHA.EQ.ZERO) RETURN |
| 227 | IF (LSAME(UPLO,'U')) THEN |
| 228 | * |
| 229 | * Form y when upper triangle of A is stored. |
| 230 | * |
| 231 | KPLUS1 = K + 1 |
| 232 | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
| 233 | DO 60 J = 1,N |
| 234 | TEMP1 = ALPHA*X(J) |
| 235 | TEMP2 = ZERO |
| 236 | L = KPLUS1 - J |
| 237 | DO 50 I = MAX(1,J-K),J - 1 |
| 238 | Y(I) = Y(I) + TEMP1*A(L+I,J) |
| 239 | TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I) |
| 240 | 50 CONTINUE |
| 241 | Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2 |
| 242 | 60 CONTINUE |
| 243 | ELSE |
| 244 | JX = KX |
| 245 | JY = KY |
| 246 | DO 80 J = 1,N |
| 247 | TEMP1 = ALPHA*X(JX) |
| 248 | TEMP2 = ZERO |
| 249 | IX = KX |
| 250 | IY = KY |
| 251 | L = KPLUS1 - J |
| 252 | DO 70 I = MAX(1,J-K),J - 1 |
| 253 | Y(IY) = Y(IY) + TEMP1*A(L+I,J) |
| 254 | TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX) |
| 255 | IX = IX + INCX |
| 256 | IY = IY + INCY |
| 257 | 70 CONTINUE |
| 258 | Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2 |
| 259 | JX = JX + INCX |
| 260 | JY = JY + INCY |
| 261 | IF (J.GT.K) THEN |
| 262 | KX = KX + INCX |
| 263 | KY = KY + INCY |
| 264 | END IF |
| 265 | 80 CONTINUE |
| 266 | END IF |
| 267 | ELSE |
| 268 | * |
| 269 | * Form y when lower triangle of A is stored. |
| 270 | * |
| 271 | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN |
| 272 | DO 100 J = 1,N |
| 273 | TEMP1 = ALPHA*X(J) |
| 274 | TEMP2 = ZERO |
| 275 | Y(J) = Y(J) + TEMP1*REAL(A(1,J)) |
| 276 | L = 1 - J |
| 277 | DO 90 I = J + 1,MIN(N,J+K) |
| 278 | Y(I) = Y(I) + TEMP1*A(L+I,J) |
| 279 | TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I) |
| 280 | 90 CONTINUE |
| 281 | Y(J) = Y(J) + ALPHA*TEMP2 |
| 282 | 100 CONTINUE |
| 283 | ELSE |
| 284 | JX = KX |
| 285 | JY = KY |
| 286 | DO 120 J = 1,N |
| 287 | TEMP1 = ALPHA*X(JX) |
| 288 | TEMP2 = ZERO |
| 289 | Y(JY) = Y(JY) + TEMP1*REAL(A(1,J)) |
| 290 | L = 1 - J |
| 291 | IX = JX |
| 292 | IY = JY |
| 293 | DO 110 I = J + 1,MIN(N,J+K) |
| 294 | IX = IX + INCX |
| 295 | IY = IY + INCY |
| 296 | Y(IY) = Y(IY) + TEMP1*A(L+I,J) |
| 297 | TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX) |
| 298 | 110 CONTINUE |
| 299 | Y(JY) = Y(JY) + ALPHA*TEMP2 |
| 300 | JX = JX + INCX |
| 301 | JY = JY + INCY |
| 302 | 120 CONTINUE |
| 303 | END IF |
| 304 | END IF |
| 305 | * |
| 306 | RETURN |
| 307 | * |
| 308 | * End of CHBMV . |
| 309 | * |
| 310 | END |