Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | #include <typeinfo> |
| 2 | #include <iostream> |
| 3 | #include <Eigen/Core> |
| 4 | #include "BenchTimer.h" |
| 5 | using namespace Eigen; |
| 6 | using namespace std; |
| 7 | |
| 8 | template<typename T> |
| 9 | EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v) |
| 10 | { |
| 11 | return v.norm(); |
| 12 | } |
| 13 | |
| 14 | template<typename T> |
| 15 | EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v) |
| 16 | { |
| 17 | return v.hypotNorm(); |
| 18 | } |
| 19 | |
| 20 | template<typename T> |
| 21 | EIGEN_DONT_INLINE typename T::Scalar blueNorm(const T& v) |
| 22 | { |
| 23 | return v.blueNorm(); |
| 24 | } |
| 25 | |
| 26 | template<typename T> |
| 27 | EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) |
| 28 | { |
| 29 | typedef typename T::Scalar Scalar; |
| 30 | int n = v.size(); |
| 31 | Scalar scale = 0; |
| 32 | Scalar ssq = 1; |
| 33 | for (int i=0;i<n;++i) |
| 34 | { |
| 35 | Scalar ax = internal::abs(v.coeff(i)); |
| 36 | if (scale >= ax) |
| 37 | { |
| 38 | ssq += internal::abs2(ax/scale); |
| 39 | } |
| 40 | else |
| 41 | { |
| 42 | ssq = Scalar(1) + ssq * internal::abs2(scale/ax); |
| 43 | scale = ax; |
| 44 | } |
| 45 | } |
| 46 | return scale * internal::sqrt(ssq); |
| 47 | } |
| 48 | |
| 49 | template<typename T> |
| 50 | EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) |
| 51 | { |
| 52 | typedef typename T::Scalar Scalar; |
| 53 | Scalar s = v.cwise().abs().maxCoeff(); |
| 54 | return s*(v/s).norm(); |
| 55 | } |
| 56 | |
| 57 | template<typename T> |
| 58 | EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) |
| 59 | { |
| 60 | return v.stableNorm(); |
| 61 | } |
| 62 | |
| 63 | template<typename T> |
| 64 | EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) |
| 65 | { |
| 66 | int n =v.size() / 2; |
| 67 | for (int i=0;i<n;++i) |
| 68 | v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1); |
| 69 | n = n/2; |
| 70 | while (n>0) |
| 71 | { |
| 72 | for (int i=0;i<n;++i) |
| 73 | v(i) = v(2*i) + v(2*i+1); |
| 74 | n = n/2; |
| 75 | } |
| 76 | return internal::sqrt(v(0)); |
| 77 | } |
| 78 | |
| 79 | #ifdef EIGEN_VECTORIZE |
| 80 | Packet4f internal::plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); } |
| 81 | Packet2d internal::plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); } |
| 82 | |
| 83 | Packet4f internal::pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); } |
| 84 | Packet2d internal::pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); } |
| 85 | #endif |
| 86 | |
| 87 | template<typename T> |
| 88 | EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) |
| 89 | { |
| 90 | #ifndef EIGEN_VECTORIZE |
| 91 | return v.blueNorm(); |
| 92 | #else |
| 93 | typedef typename T::Scalar Scalar; |
| 94 | |
| 95 | static int nmax = 0; |
| 96 | static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; |
| 97 | int n; |
| 98 | |
| 99 | if(nmax <= 0) |
| 100 | { |
| 101 | int nbig, ibeta, it, iemin, iemax, iexp; |
| 102 | Scalar abig, eps; |
| 103 | |
| 104 | nbig = std::numeric_limits<int>::max(); // largest integer |
| 105 | ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers |
| 106 | it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa |
| 107 | iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent |
| 108 | iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent |
| 109 | rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number |
| 110 | |
| 111 | // Check the basic machine-dependent constants. |
| 112 | if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) |
| 113 | || (it<=4 && ibeta <= 3 ) || it<2) |
| 114 | { |
| 115 | eigen_assert(false && "the algorithm cannot be guaranteed on this computer"); |
| 116 | } |
| 117 | iexp = -((1-iemin)/2); |
| 118 | b1 = std::pow(ibeta, iexp); // lower boundary of midrange |
| 119 | iexp = (iemax + 1 - it)/2; |
| 120 | b2 = std::pow(ibeta,iexp); // upper boundary of midrange |
| 121 | |
| 122 | iexp = (2-iemin)/2; |
| 123 | s1m = std::pow(ibeta,iexp); // scaling factor for lower range |
| 124 | iexp = - ((iemax+it)/2); |
| 125 | s2m = std::pow(ibeta,iexp); // scaling factor for upper range |
| 126 | |
| 127 | overfl = rbig*s2m; // overfow boundary for abig |
| 128 | eps = std::pow(ibeta, 1-it); |
| 129 | relerr = internal::sqrt(eps); // tolerance for neglecting asml |
| 130 | abig = 1.0/eps - 1.0; |
| 131 | if (Scalar(nbig)>abig) nmax = abig; // largest safe n |
| 132 | else nmax = nbig; |
| 133 | } |
| 134 | |
| 135 | typedef typename internal::packet_traits<Scalar>::type Packet; |
| 136 | const int ps = internal::packet_traits<Scalar>::size; |
| 137 | Packet pasml = internal::pset1(Scalar(0)); |
| 138 | Packet pamed = internal::pset1(Scalar(0)); |
| 139 | Packet pabig = internal::pset1(Scalar(0)); |
| 140 | Packet ps2m = internal::pset1(s2m); |
| 141 | Packet ps1m = internal::pset1(s1m); |
| 142 | Packet pb2 = internal::pset1(b2); |
| 143 | Packet pb1 = internal::pset1(b1); |
| 144 | for(int j=0; j<v.size(); j+=ps) |
| 145 | { |
| 146 | Packet ax = internal::pabs(v.template packet<Aligned>(j)); |
| 147 | Packet ax_s2m = internal::pmul(ax,ps2m); |
| 148 | Packet ax_s1m = internal::pmul(ax,ps1m); |
| 149 | Packet maskBig = internal::plt(pb2,ax); |
| 150 | Packet maskSml = internal::plt(ax,pb1); |
| 151 | |
| 152 | // Packet maskMed = internal::pand(maskSml,maskBig); |
| 153 | // Packet scale = internal::pset1(Scalar(0)); |
| 154 | // scale = internal::por(scale, internal::pand(maskBig,ps2m)); |
| 155 | // scale = internal::por(scale, internal::pand(maskSml,ps1m)); |
| 156 | // scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed)); |
| 157 | // ax = internal::pmul(ax,scale); |
| 158 | // ax = internal::pmul(ax,ax); |
| 159 | // pabig = internal::padd(pabig, internal::pand(maskBig, ax)); |
| 160 | // pasml = internal::padd(pasml, internal::pand(maskSml, ax)); |
| 161 | // pamed = internal::padd(pamed, internal::pandnot(ax,maskMed)); |
| 162 | |
| 163 | |
| 164 | pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m,ax_s2m))); |
| 165 | pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m,ax_s1m))); |
| 166 | pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax,ax),internal::pand(maskSml,maskBig))); |
| 167 | } |
| 168 | Scalar abig = internal::predux(pabig); |
| 169 | Scalar asml = internal::predux(pasml); |
| 170 | Scalar amed = internal::predux(pamed); |
| 171 | if(abig > Scalar(0)) |
| 172 | { |
| 173 | abig = internal::sqrt(abig); |
| 174 | if(abig > overfl) |
| 175 | { |
| 176 | eigen_assert(false && "overflow"); |
| 177 | return rbig; |
| 178 | } |
| 179 | if(amed > Scalar(0)) |
| 180 | { |
| 181 | abig = abig/s2m; |
| 182 | amed = internal::sqrt(amed); |
| 183 | } |
| 184 | else |
| 185 | { |
| 186 | return abig/s2m; |
| 187 | } |
| 188 | |
| 189 | } |
| 190 | else if(asml > Scalar(0)) |
| 191 | { |
| 192 | if (amed > Scalar(0)) |
| 193 | { |
| 194 | abig = internal::sqrt(amed); |
| 195 | amed = internal::sqrt(asml) / s1m; |
| 196 | } |
| 197 | else |
| 198 | { |
| 199 | return internal::sqrt(asml)/s1m; |
| 200 | } |
| 201 | } |
| 202 | else |
| 203 | { |
| 204 | return internal::sqrt(amed); |
| 205 | } |
| 206 | asml = std::min(abig, amed); |
| 207 | abig = std::max(abig, amed); |
| 208 | if(asml <= abig*relerr) |
| 209 | return abig; |
| 210 | else |
| 211 | return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)); |
| 212 | #endif |
| 213 | } |
| 214 | |
| 215 | #define BENCH_PERF(NRM) { \ |
| 216 | Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\ |
| 217 | for (int k=0; k<tries; ++k) { \ |
| 218 | tf.start(); \ |
| 219 | for (int i=0; i<iters; ++i) NRM(vf); \ |
| 220 | tf.stop(); \ |
| 221 | } \ |
| 222 | for (int k=0; k<tries; ++k) { \ |
| 223 | td.start(); \ |
| 224 | for (int i=0; i<iters; ++i) NRM(vd); \ |
| 225 | td.stop(); \ |
| 226 | } \ |
| 227 | for (int k=0; k<std::max(1,tries/3); ++k) { \ |
| 228 | tcf.start(); \ |
| 229 | for (int i=0; i<iters; ++i) NRM(vcf); \ |
| 230 | tcf.stop(); \ |
| 231 | } \ |
| 232 | std::cout << #NRM << "\t" << tf.value() << " " << td.value() << " " << tcf.value() << "\n"; \ |
| 233 | } |
| 234 | |
| 235 | void check_accuracy(double basef, double based, int s) |
| 236 | { |
| 237 | double yf = basef * internal::abs(internal::random<double>()); |
| 238 | double yd = based * internal::abs(internal::random<double>()); |
| 239 | VectorXf vf = VectorXf::Ones(s) * yf; |
| 240 | VectorXd vd = VectorXd::Ones(s) * yd; |
| 241 | |
| 242 | std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; |
| 243 | std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; |
| 244 | std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; |
| 245 | std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; |
| 246 | std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; |
| 247 | std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; |
| 248 | std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; |
| 249 | std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; |
| 250 | } |
| 251 | |
| 252 | void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) |
| 253 | { |
| 254 | VectorXf vf(s); |
| 255 | VectorXd vd(s); |
| 256 | for (int i=0; i<s; ++i) |
| 257 | { |
| 258 | vf[i] = internal::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0,ef1)); |
| 259 | vd[i] = internal::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0,ed1)); |
| 260 | } |
| 261 | |
| 262 | //std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; |
| 263 | std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; |
| 264 | std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; |
| 265 | std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; |
| 266 | std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; |
| 267 | std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; |
| 268 | std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; |
| 269 | // std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; |
| 270 | } |
| 271 | |
| 272 | int main(int argc, char** argv) |
| 273 | { |
| 274 | int tries = 10; |
| 275 | int iters = 100000; |
| 276 | double y = 1.1345743233455785456788e12 * internal::random<double>(); |
| 277 | VectorXf v = VectorXf::Ones(1024) * y; |
| 278 | |
| 279 | // return 0; |
| 280 | int s = 10000; |
| 281 | double basef_ok = 1.1345743233455785456788e15; |
| 282 | double based_ok = 1.1345743233455785456788e95; |
| 283 | |
| 284 | double basef_under = 1.1345743233455785456788e-27; |
| 285 | double based_under = 1.1345743233455785456788e-303; |
| 286 | |
| 287 | double basef_over = 1.1345743233455785456788e+27; |
| 288 | double based_over = 1.1345743233455785456788e+302; |
| 289 | |
| 290 | std::cout.precision(20); |
| 291 | |
| 292 | std::cerr << "\nNo under/overflow:\n"; |
| 293 | check_accuracy(basef_ok, based_ok, s); |
| 294 | |
| 295 | std::cerr << "\nUnderflow:\n"; |
| 296 | check_accuracy(basef_under, based_under, s); |
| 297 | |
| 298 | std::cerr << "\nOverflow:\n"; |
| 299 | check_accuracy(basef_over, based_over, s); |
| 300 | |
| 301 | std::cerr << "\nVarying (over):\n"; |
| 302 | for (int k=0; k<1; ++k) |
| 303 | { |
| 304 | check_accuracy_var(20,27,190,302,s); |
| 305 | std::cout << "\n"; |
| 306 | } |
| 307 | |
| 308 | std::cerr << "\nVarying (under):\n"; |
| 309 | for (int k=0; k<1; ++k) |
| 310 | { |
| 311 | check_accuracy_var(-27,20,-302,-190,s); |
| 312 | std::cout << "\n"; |
| 313 | } |
| 314 | |
| 315 | std::cout.precision(4); |
| 316 | std::cerr << "Performance (out of cache):\n"; |
| 317 | { |
| 318 | int iters = 1; |
| 319 | VectorXf vf = VectorXf::Random(1024*1024*32) * y; |
| 320 | VectorXd vd = VectorXd::Random(1024*1024*32) * y; |
| 321 | VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y; |
| 322 | BENCH_PERF(sqsumNorm); |
| 323 | BENCH_PERF(blueNorm); |
| 324 | // BENCH_PERF(pblueNorm); |
| 325 | // BENCH_PERF(lapackNorm); |
| 326 | // BENCH_PERF(hypotNorm); |
| 327 | // BENCH_PERF(twopassNorm); |
| 328 | BENCH_PERF(bl2passNorm); |
| 329 | } |
| 330 | |
| 331 | std::cerr << "\nPerformance (in cache):\n"; |
| 332 | { |
| 333 | int iters = 100000; |
| 334 | VectorXf vf = VectorXf::Random(512) * y; |
| 335 | VectorXd vd = VectorXd::Random(512) * y; |
| 336 | VectorXcf vcf = VectorXcf::Random(512) * y; |
| 337 | BENCH_PERF(sqsumNorm); |
| 338 | BENCH_PERF(blueNorm); |
| 339 | // BENCH_PERF(pblueNorm); |
| 340 | // BENCH_PERF(lapackNorm); |
| 341 | // BENCH_PERF(hypotNorm); |
| 342 | // BENCH_PERF(twopassNorm); |
| 343 | BENCH_PERF(bl2passNorm); |
| 344 | } |
| 345 | } |