Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include <iostream> |
| 11 | |
| 12 | #include <bench/BenchUtil.h> |
| 13 | #include <complex> |
| 14 | #include <vector> |
| 15 | #include <Eigen/Core> |
| 16 | |
| 17 | #include <unsupported/Eigen/FFT> |
| 18 | |
| 19 | using namespace Eigen; |
| 20 | using namespace std; |
| 21 | |
| 22 | |
| 23 | template <typename T> |
| 24 | string nameof(); |
| 25 | |
| 26 | template <> string nameof<float>() {return "float";} |
| 27 | template <> string nameof<double>() {return "double";} |
| 28 | template <> string nameof<long double>() {return "long double";} |
| 29 | |
| 30 | #ifndef TYPE |
| 31 | #define TYPE float |
| 32 | #endif |
| 33 | |
| 34 | #ifndef NFFT |
| 35 | #define NFFT 1024 |
| 36 | #endif |
| 37 | #ifndef NDATA |
| 38 | #define NDATA 1000000 |
| 39 | #endif |
| 40 | |
| 41 | using namespace Eigen; |
| 42 | |
| 43 | template <typename T> |
| 44 | void bench(int nfft,bool fwd,bool unscaled=false, bool halfspec=false) |
| 45 | { |
| 46 | typedef typename NumTraits<T>::Real Scalar; |
| 47 | typedef typename std::complex<Scalar> Complex; |
| 48 | int nits = NDATA/nfft; |
| 49 | vector<T> inbuf(nfft); |
| 50 | vector<Complex > outbuf(nfft); |
| 51 | FFT< Scalar > fft; |
| 52 | |
| 53 | if (unscaled) { |
| 54 | fft.SetFlag(fft.Unscaled); |
| 55 | cout << "unscaled "; |
| 56 | } |
| 57 | if (halfspec) { |
| 58 | fft.SetFlag(fft.HalfSpectrum); |
| 59 | cout << "halfspec "; |
| 60 | } |
| 61 | |
| 62 | |
| 63 | std::fill(inbuf.begin(),inbuf.end(),0); |
| 64 | fft.fwd( outbuf , inbuf); |
| 65 | |
| 66 | BenchTimer timer; |
| 67 | timer.reset(); |
| 68 | for (int k=0;k<8;++k) { |
| 69 | timer.start(); |
| 70 | if (fwd) |
| 71 | for(int i = 0; i < nits; i++) |
| 72 | fft.fwd( outbuf , inbuf); |
| 73 | else |
| 74 | for(int i = 0; i < nits; i++) |
| 75 | fft.inv(inbuf,outbuf); |
| 76 | timer.stop(); |
| 77 | } |
| 78 | |
| 79 | cout << nameof<Scalar>() << " "; |
| 80 | double mflops = 5.*nfft*log2((double)nfft) / (1e6 * timer.value() / (double)nits ); |
| 81 | if ( NumTraits<T>::IsComplex ) { |
| 82 | cout << "complex"; |
| 83 | }else{ |
| 84 | cout << "real "; |
| 85 | mflops /= 2; |
| 86 | } |
| 87 | |
| 88 | |
| 89 | if (fwd) |
| 90 | cout << " fwd"; |
| 91 | else |
| 92 | cout << " inv"; |
| 93 | |
| 94 | cout << " NFFT=" << nfft << " " << (double(1e-6*nfft*nits)/timer.value()) << " MS/s " << mflops << "MFLOPS\n"; |
| 95 | } |
| 96 | |
| 97 | int main(int argc,char ** argv) |
| 98 | { |
| 99 | bench<complex<float> >(NFFT,true); |
| 100 | bench<complex<float> >(NFFT,false); |
| 101 | bench<float>(NFFT,true); |
| 102 | bench<float>(NFFT,false); |
| 103 | bench<float>(NFFT,false,true); |
| 104 | bench<float>(NFFT,false,true,true); |
| 105 | |
| 106 | bench<complex<double> >(NFFT,true); |
| 107 | bench<complex<double> >(NFFT,false); |
| 108 | bench<double>(NFFT,true); |
| 109 | bench<double>(NFFT,false); |
| 110 | bench<complex<long double> >(NFFT,true); |
| 111 | bench<complex<long double> >(NFFT,false); |
| 112 | bench<long double>(NFFT,true); |
| 113 | bench<long double>(NFFT,false); |
| 114 | return 0; |
| 115 | } |