Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | /* |
| 11 | |
| 12 | * NOTE: This file is the modified version of xpivotL.c file in SuperLU |
| 13 | |
| 14 | * -- SuperLU routine (version 3.0) -- |
| 15 | * Univ. of California Berkeley, Xerox Palo Alto Research Center, |
| 16 | * and Lawrence Berkeley National Lab. |
| 17 | * October 15, 2003 |
| 18 | * |
| 19 | * Copyright (c) 1994 by Xerox Corporation. All rights reserved. |
| 20 | * |
| 21 | * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY |
| 22 | * EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK. |
| 23 | * |
| 24 | * Permission is hereby granted to use or copy this program for any |
| 25 | * purpose, provided the above notices are retained on all copies. |
| 26 | * Permission to modify the code and to distribute modified code is |
| 27 | * granted, provided the above notices are retained, and a notice that |
| 28 | * the code was modified is included with the above copyright notice. |
| 29 | */ |
| 30 | #ifndef SPARSELU_PIVOTL_H |
| 31 | #define SPARSELU_PIVOTL_H |
| 32 | |
| 33 | namespace Eigen { |
| 34 | namespace internal { |
| 35 | |
| 36 | /** |
| 37 | * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation. |
| 38 | * |
| 39 | * Pivot policy : |
| 40 | * (1) Compute thresh = u * max_(i>=j) abs(A_ij); |
| 41 | * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN |
| 42 | * pivot row = k; |
| 43 | * ELSE IF abs(A_jj) >= thresh THEN |
| 44 | * pivot row = j; |
| 45 | * ELSE |
| 46 | * pivot row = m; |
| 47 | * |
| 48 | * Note: If you absolutely want to use a given pivot order, then set u=0.0. |
| 49 | * |
| 50 | * \param jcol The current column of L |
| 51 | * \param diagpivotthresh diagonal pivoting threshold |
| 52 | * \param[in,out] perm_r Row permutation (threshold pivoting) |
| 53 | * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc' |
| 54 | * \param[out] pivrow The pivot row |
| 55 | * \param glu Global LU data |
| 56 | * \return 0 if success, i > 0 if U(i,i) is exactly zero |
| 57 | * |
| 58 | */ |
| 59 | template <typename Scalar, typename Index> |
| 60 | Index SparseLUImpl<Scalar,Index>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu) |
| 61 | { |
| 62 | |
| 63 | Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol |
| 64 | Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0 |
| 65 | Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion |
| 66 | Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode |
| 67 | Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension |
| 68 | Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode |
| 69 | Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode |
| 70 | Index* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode |
| 71 | |
| 72 | // Determine the largest abs numerical value for partial pivoting |
| 73 | Index diagind = iperm_c(jcol); // diagonal index |
| 74 | RealScalar pivmax = 0.0; |
| 75 | Index pivptr = nsupc; |
| 76 | Index diag = emptyIdxLU; |
| 77 | RealScalar rtemp; |
| 78 | Index isub, icol, itemp, k; |
| 79 | for (isub = nsupc; isub < nsupr; ++isub) { |
| 80 | using std::abs; |
| 81 | rtemp = abs(lu_col_ptr[isub]); |
| 82 | if (rtemp > pivmax) { |
| 83 | pivmax = rtemp; |
| 84 | pivptr = isub; |
| 85 | } |
| 86 | if (lsub_ptr[isub] == diagind) diag = isub; |
| 87 | } |
| 88 | |
| 89 | // Test for singularity |
| 90 | if ( pivmax == 0.0 ) { |
| 91 | pivrow = lsub_ptr[pivptr]; |
| 92 | perm_r(pivrow) = jcol; |
| 93 | return (jcol+1); |
| 94 | } |
| 95 | |
| 96 | RealScalar thresh = diagpivotthresh * pivmax; |
| 97 | |
| 98 | // Choose appropriate pivotal element |
| 99 | |
| 100 | { |
| 101 | // Test if the diagonal element can be used as a pivot (given the threshold value) |
| 102 | if (diag >= 0 ) |
| 103 | { |
| 104 | // Diagonal element exists |
| 105 | using std::abs; |
| 106 | rtemp = abs(lu_col_ptr[diag]); |
| 107 | if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag; |
| 108 | } |
| 109 | pivrow = lsub_ptr[pivptr]; |
| 110 | } |
| 111 | |
| 112 | // Record pivot row |
| 113 | perm_r(pivrow) = jcol; |
| 114 | // Interchange row subscripts |
| 115 | if (pivptr != nsupc ) |
| 116 | { |
| 117 | std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] ); |
| 118 | // Interchange numerical values as well, for the two rows in the whole snode |
| 119 | // such that L is indexed the same way as A |
| 120 | for (icol = 0; icol <= nsupc; icol++) |
| 121 | { |
| 122 | itemp = pivptr + icol * lda; |
| 123 | std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]); |
| 124 | } |
| 125 | } |
| 126 | // cdiv operations |
| 127 | Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc]; |
| 128 | for (k = nsupc+1; k < nsupr; k++) |
| 129 | lu_col_ptr[k] *= temp; |
| 130 | return 0; |
| 131 | } |
| 132 | |
| 133 | } // end namespace internal |
| 134 | } // end namespace Eigen |
| 135 | |
| 136 | #endif // SPARSELU_PIVOTL_H |