Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2001 Intel Corporation |
| 5 | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 7 | // |
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 11 | |
| 12 | // The SSE code for the 4x4 float and double matrix inverse in this file |
| 13 | // comes from the following Intel's library: |
| 14 | // http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/ |
| 15 | // |
| 16 | // Here is the respective copyright and license statement: |
| 17 | // |
| 18 | // Copyright (c) 2001 Intel Corporation. |
| 19 | // |
| 20 | // Permition is granted to use, copy, distribute and prepare derivative works |
| 21 | // of this library for any purpose and without fee, provided, that the above |
| 22 | // copyright notice and this statement appear in all copies. |
| 23 | // Intel makes no representations about the suitability of this software for |
| 24 | // any purpose, and specifically disclaims all warranties. |
| 25 | // See LEGAL.TXT for all the legal information. |
| 26 | |
| 27 | #ifndef EIGEN_INVERSE_SSE_H |
| 28 | #define EIGEN_INVERSE_SSE_H |
| 29 | |
| 30 | namespace Eigen { |
| 31 | |
| 32 | namespace internal { |
| 33 | |
| 34 | template<typename MatrixType, typename ResultType> |
| 35 | struct compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType> |
| 36 | { |
| 37 | enum { |
| 38 | MatrixAlignment = bool(MatrixType::Flags&AlignedBit), |
| 39 | ResultAlignment = bool(ResultType::Flags&AlignedBit), |
| 40 | StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) |
| 41 | }; |
| 42 | |
| 43 | static void run(const MatrixType& matrix, ResultType& result) |
| 44 | { |
| 45 | EIGEN_ALIGN16 const unsigned int _Sign_PNNP[4] = { 0x00000000, 0x80000000, 0x80000000, 0x00000000 }; |
| 46 | |
| 47 | // Load the full matrix into registers |
| 48 | __m128 _L1 = matrix.template packet<MatrixAlignment>( 0); |
| 49 | __m128 _L2 = matrix.template packet<MatrixAlignment>( 4); |
| 50 | __m128 _L3 = matrix.template packet<MatrixAlignment>( 8); |
| 51 | __m128 _L4 = matrix.template packet<MatrixAlignment>(12); |
| 52 | |
| 53 | // The inverse is calculated using "Divide and Conquer" technique. The |
| 54 | // original matrix is divide into four 2x2 sub-matrices. Since each |
| 55 | // register holds four matrix element, the smaller matrices are |
| 56 | // represented as a registers. Hence we get a better locality of the |
| 57 | // calculations. |
| 58 | |
| 59 | __m128 A, B, C, D; // the four sub-matrices |
| 60 | if(!StorageOrdersMatch) |
| 61 | { |
| 62 | A = _mm_unpacklo_ps(_L1, _L2); |
| 63 | B = _mm_unpacklo_ps(_L3, _L4); |
| 64 | C = _mm_unpackhi_ps(_L1, _L2); |
| 65 | D = _mm_unpackhi_ps(_L3, _L4); |
| 66 | } |
| 67 | else |
| 68 | { |
| 69 | A = _mm_movelh_ps(_L1, _L2); |
| 70 | B = _mm_movehl_ps(_L2, _L1); |
| 71 | C = _mm_movelh_ps(_L3, _L4); |
| 72 | D = _mm_movehl_ps(_L4, _L3); |
| 73 | } |
| 74 | |
| 75 | __m128 iA, iB, iC, iD, // partial inverse of the sub-matrices |
| 76 | DC, AB; |
| 77 | __m128 dA, dB, dC, dD; // determinant of the sub-matrices |
| 78 | __m128 det, d, d1, d2; |
| 79 | __m128 rd; // reciprocal of the determinant |
| 80 | |
| 81 | // AB = A# * B |
| 82 | AB = _mm_mul_ps(_mm_shuffle_ps(A,A,0x0F), B); |
| 83 | AB = _mm_sub_ps(AB,_mm_mul_ps(_mm_shuffle_ps(A,A,0xA5), _mm_shuffle_ps(B,B,0x4E))); |
| 84 | // DC = D# * C |
| 85 | DC = _mm_mul_ps(_mm_shuffle_ps(D,D,0x0F), C); |
| 86 | DC = _mm_sub_ps(DC,_mm_mul_ps(_mm_shuffle_ps(D,D,0xA5), _mm_shuffle_ps(C,C,0x4E))); |
| 87 | |
| 88 | // dA = |A| |
| 89 | dA = _mm_mul_ps(_mm_shuffle_ps(A, A, 0x5F),A); |
| 90 | dA = _mm_sub_ss(dA, _mm_movehl_ps(dA,dA)); |
| 91 | // dB = |B| |
| 92 | dB = _mm_mul_ps(_mm_shuffle_ps(B, B, 0x5F),B); |
| 93 | dB = _mm_sub_ss(dB, _mm_movehl_ps(dB,dB)); |
| 94 | |
| 95 | // dC = |C| |
| 96 | dC = _mm_mul_ps(_mm_shuffle_ps(C, C, 0x5F),C); |
| 97 | dC = _mm_sub_ss(dC, _mm_movehl_ps(dC,dC)); |
| 98 | // dD = |D| |
| 99 | dD = _mm_mul_ps(_mm_shuffle_ps(D, D, 0x5F),D); |
| 100 | dD = _mm_sub_ss(dD, _mm_movehl_ps(dD,dD)); |
| 101 | |
| 102 | // d = trace(AB*DC) = trace(A#*B*D#*C) |
| 103 | d = _mm_mul_ps(_mm_shuffle_ps(DC,DC,0xD8),AB); |
| 104 | |
| 105 | // iD = C*A#*B |
| 106 | iD = _mm_mul_ps(_mm_shuffle_ps(C,C,0xA0), _mm_movelh_ps(AB,AB)); |
| 107 | iD = _mm_add_ps(iD,_mm_mul_ps(_mm_shuffle_ps(C,C,0xF5), _mm_movehl_ps(AB,AB))); |
| 108 | // iA = B*D#*C |
| 109 | iA = _mm_mul_ps(_mm_shuffle_ps(B,B,0xA0), _mm_movelh_ps(DC,DC)); |
| 110 | iA = _mm_add_ps(iA,_mm_mul_ps(_mm_shuffle_ps(B,B,0xF5), _mm_movehl_ps(DC,DC))); |
| 111 | |
| 112 | // d = trace(AB*DC) = trace(A#*B*D#*C) [continue] |
| 113 | d = _mm_add_ps(d, _mm_movehl_ps(d, d)); |
| 114 | d = _mm_add_ss(d, _mm_shuffle_ps(d, d, 1)); |
| 115 | d1 = _mm_mul_ss(dA,dD); |
| 116 | d2 = _mm_mul_ss(dB,dC); |
| 117 | |
| 118 | // iD = D*|A| - C*A#*B |
| 119 | iD = _mm_sub_ps(_mm_mul_ps(D,_mm_shuffle_ps(dA,dA,0)), iD); |
| 120 | |
| 121 | // iA = A*|D| - B*D#*C; |
| 122 | iA = _mm_sub_ps(_mm_mul_ps(A,_mm_shuffle_ps(dD,dD,0)), iA); |
| 123 | |
| 124 | // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) |
| 125 | det = _mm_sub_ss(_mm_add_ss(d1,d2),d); |
| 126 | rd = _mm_div_ss(_mm_set_ss(1.0f), det); |
| 127 | |
| 128 | // #ifdef ZERO_SINGULAR |
| 129 | // rd = _mm_and_ps(_mm_cmpneq_ss(det,_mm_setzero_ps()), rd); |
| 130 | // #endif |
| 131 | |
| 132 | // iB = D * (A#B)# = D*B#*A |
| 133 | iB = _mm_mul_ps(D, _mm_shuffle_ps(AB,AB,0x33)); |
| 134 | iB = _mm_sub_ps(iB, _mm_mul_ps(_mm_shuffle_ps(D,D,0xB1), _mm_shuffle_ps(AB,AB,0x66))); |
| 135 | // iC = A * (D#C)# = A*C#*D |
| 136 | iC = _mm_mul_ps(A, _mm_shuffle_ps(DC,DC,0x33)); |
| 137 | iC = _mm_sub_ps(iC, _mm_mul_ps(_mm_shuffle_ps(A,A,0xB1), _mm_shuffle_ps(DC,DC,0x66))); |
| 138 | |
| 139 | rd = _mm_shuffle_ps(rd,rd,0); |
| 140 | rd = _mm_xor_ps(rd, _mm_load_ps((float*)_Sign_PNNP)); |
| 141 | |
| 142 | // iB = C*|B| - D*B#*A |
| 143 | iB = _mm_sub_ps(_mm_mul_ps(C,_mm_shuffle_ps(dB,dB,0)), iB); |
| 144 | |
| 145 | // iC = B*|C| - A*C#*D; |
| 146 | iC = _mm_sub_ps(_mm_mul_ps(B,_mm_shuffle_ps(dC,dC,0)), iC); |
| 147 | |
| 148 | // iX = iX / det |
| 149 | iA = _mm_mul_ps(rd,iA); |
| 150 | iB = _mm_mul_ps(rd,iB); |
| 151 | iC = _mm_mul_ps(rd,iC); |
| 152 | iD = _mm_mul_ps(rd,iD); |
| 153 | |
| 154 | result.template writePacket<ResultAlignment>( 0, _mm_shuffle_ps(iA,iB,0x77)); |
| 155 | result.template writePacket<ResultAlignment>( 4, _mm_shuffle_ps(iA,iB,0x22)); |
| 156 | result.template writePacket<ResultAlignment>( 8, _mm_shuffle_ps(iC,iD,0x77)); |
| 157 | result.template writePacket<ResultAlignment>(12, _mm_shuffle_ps(iC,iD,0x22)); |
| 158 | } |
| 159 | |
| 160 | }; |
| 161 | |
| 162 | template<typename MatrixType, typename ResultType> |
| 163 | struct compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType> |
| 164 | { |
| 165 | enum { |
| 166 | MatrixAlignment = bool(MatrixType::Flags&AlignedBit), |
| 167 | ResultAlignment = bool(ResultType::Flags&AlignedBit), |
| 168 | StorageOrdersMatch = (MatrixType::Flags&RowMajorBit) == (ResultType::Flags&RowMajorBit) |
| 169 | }; |
| 170 | static void run(const MatrixType& matrix, ResultType& result) |
| 171 | { |
| 172 | const __m128d _Sign_NP = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0)); |
| 173 | const __m128d _Sign_PN = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0)); |
| 174 | |
| 175 | // The inverse is calculated using "Divide and Conquer" technique. The |
| 176 | // original matrix is divide into four 2x2 sub-matrices. Since each |
| 177 | // register of the matrix holds two element, the smaller matrices are |
| 178 | // consisted of two registers. Hence we get a better locality of the |
| 179 | // calculations. |
| 180 | |
| 181 | // the four sub-matrices |
| 182 | __m128d A1, A2, B1, B2, C1, C2, D1, D2; |
| 183 | |
| 184 | if(StorageOrdersMatch) |
| 185 | { |
| 186 | A1 = matrix.template packet<MatrixAlignment>( 0); B1 = matrix.template packet<MatrixAlignment>( 2); |
| 187 | A2 = matrix.template packet<MatrixAlignment>( 4); B2 = matrix.template packet<MatrixAlignment>( 6); |
| 188 | C1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10); |
| 189 | C2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14); |
| 190 | } |
| 191 | else |
| 192 | { |
| 193 | __m128d tmp; |
| 194 | A1 = matrix.template packet<MatrixAlignment>( 0); C1 = matrix.template packet<MatrixAlignment>( 2); |
| 195 | A2 = matrix.template packet<MatrixAlignment>( 4); C2 = matrix.template packet<MatrixAlignment>( 6); |
| 196 | tmp = A1; |
| 197 | A1 = _mm_unpacklo_pd(A1,A2); |
| 198 | A2 = _mm_unpackhi_pd(tmp,A2); |
| 199 | tmp = C1; |
| 200 | C1 = _mm_unpacklo_pd(C1,C2); |
| 201 | C2 = _mm_unpackhi_pd(tmp,C2); |
| 202 | |
| 203 | B1 = matrix.template packet<MatrixAlignment>( 8); D1 = matrix.template packet<MatrixAlignment>(10); |
| 204 | B2 = matrix.template packet<MatrixAlignment>(12); D2 = matrix.template packet<MatrixAlignment>(14); |
| 205 | tmp = B1; |
| 206 | B1 = _mm_unpacklo_pd(B1,B2); |
| 207 | B2 = _mm_unpackhi_pd(tmp,B2); |
| 208 | tmp = D1; |
| 209 | D1 = _mm_unpacklo_pd(D1,D2); |
| 210 | D2 = _mm_unpackhi_pd(tmp,D2); |
| 211 | } |
| 212 | |
| 213 | __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2, // partial invese of the sub-matrices |
| 214 | DC1, DC2, AB1, AB2; |
| 215 | __m128d dA, dB, dC, dD; // determinant of the sub-matrices |
| 216 | __m128d det, d1, d2, rd; |
| 217 | |
| 218 | // dA = |A| |
| 219 | dA = _mm_shuffle_pd(A2, A2, 1); |
| 220 | dA = _mm_mul_pd(A1, dA); |
| 221 | dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3)); |
| 222 | // dB = |B| |
| 223 | dB = _mm_shuffle_pd(B2, B2, 1); |
| 224 | dB = _mm_mul_pd(B1, dB); |
| 225 | dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3)); |
| 226 | |
| 227 | // AB = A# * B |
| 228 | AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3)); |
| 229 | AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0)); |
| 230 | AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3))); |
| 231 | AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0))); |
| 232 | |
| 233 | // dC = |C| |
| 234 | dC = _mm_shuffle_pd(C2, C2, 1); |
| 235 | dC = _mm_mul_pd(C1, dC); |
| 236 | dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3)); |
| 237 | // dD = |D| |
| 238 | dD = _mm_shuffle_pd(D2, D2, 1); |
| 239 | dD = _mm_mul_pd(D1, dD); |
| 240 | dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3)); |
| 241 | |
| 242 | // DC = D# * C |
| 243 | DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3)); |
| 244 | DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0)); |
| 245 | DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3))); |
| 246 | DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0))); |
| 247 | |
| 248 | // rd = trace(AB*DC) = trace(A#*B*D#*C) |
| 249 | d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0)); |
| 250 | d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3)); |
| 251 | rd = _mm_add_pd(d1, d2); |
| 252 | rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3)); |
| 253 | |
| 254 | // iD = C*A#*B |
| 255 | iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0)); |
| 256 | iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0)); |
| 257 | iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3))); |
| 258 | iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3))); |
| 259 | |
| 260 | // iA = B*D#*C |
| 261 | iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0)); |
| 262 | iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0)); |
| 263 | iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3))); |
| 264 | iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3))); |
| 265 | |
| 266 | // iD = D*|A| - C*A#*B |
| 267 | dA = _mm_shuffle_pd(dA,dA,0); |
| 268 | iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1); |
| 269 | iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2); |
| 270 | |
| 271 | // iA = A*|D| - B*D#*C; |
| 272 | dD = _mm_shuffle_pd(dD,dD,0); |
| 273 | iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1); |
| 274 | iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2); |
| 275 | |
| 276 | d1 = _mm_mul_sd(dA, dD); |
| 277 | d2 = _mm_mul_sd(dB, dC); |
| 278 | |
| 279 | // iB = D * (A#B)# = D*B#*A |
| 280 | iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1)); |
| 281 | iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1)); |
| 282 | iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2))); |
| 283 | iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2))); |
| 284 | |
| 285 | // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C) |
| 286 | det = _mm_add_sd(d1, d2); |
| 287 | det = _mm_sub_sd(det, rd); |
| 288 | |
| 289 | // iC = A * (D#C)# = A*C#*D |
| 290 | iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1)); |
| 291 | iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1)); |
| 292 | iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2))); |
| 293 | iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2))); |
| 294 | |
| 295 | rd = _mm_div_sd(_mm_set_sd(1.0), det); |
| 296 | // #ifdef ZERO_SINGULAR |
| 297 | // rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd); |
| 298 | // #endif |
| 299 | rd = _mm_shuffle_pd(rd,rd,0); |
| 300 | |
| 301 | // iB = C*|B| - D*B#*A |
| 302 | dB = _mm_shuffle_pd(dB,dB,0); |
| 303 | iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1); |
| 304 | iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2); |
| 305 | |
| 306 | d1 = _mm_xor_pd(rd, _Sign_PN); |
| 307 | d2 = _mm_xor_pd(rd, _Sign_NP); |
| 308 | |
| 309 | // iC = B*|C| - A*C#*D; |
| 310 | dC = _mm_shuffle_pd(dC,dC,0); |
| 311 | iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1); |
| 312 | iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2); |
| 313 | |
| 314 | result.template writePacket<ResultAlignment>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det |
| 315 | result.template writePacket<ResultAlignment>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2)); |
| 316 | result.template writePacket<ResultAlignment>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det |
| 317 | result.template writePacket<ResultAlignment>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2)); |
| 318 | result.template writePacket<ResultAlignment>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det |
| 319 | result.template writePacket<ResultAlignment>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2)); |
| 320 | result.template writePacket<ResultAlignment>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det |
| 321 | result.template writePacket<ResultAlignment>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2)); |
| 322 | } |
| 323 | }; |
| 324 | |
| 325 | } // end namespace internal |
| 326 | |
| 327 | } // end namespace Eigen |
| 328 | |
| 329 | #endif // EIGEN_INVERSE_SSE_H |