Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_QUATERNION_H |
| 12 | #define EIGEN_QUATERNION_H |
| 13 | namespace Eigen { |
| 14 | |
| 15 | |
| 16 | /*************************************************************************** |
| 17 | * Definition of QuaternionBase<Derived> |
| 18 | * The implementation is at the end of the file |
| 19 | ***************************************************************************/ |
| 20 | |
| 21 | namespace internal { |
| 22 | template<typename Other, |
| 23 | int OtherRows=Other::RowsAtCompileTime, |
| 24 | int OtherCols=Other::ColsAtCompileTime> |
| 25 | struct quaternionbase_assign_impl; |
| 26 | } |
| 27 | |
| 28 | /** \geometry_module \ingroup Geometry_Module |
| 29 | * \class QuaternionBase |
| 30 | * \brief Base class for quaternion expressions |
| 31 | * \tparam Derived derived type (CRTP) |
| 32 | * \sa class Quaternion |
| 33 | */ |
| 34 | template<class Derived> |
| 35 | class QuaternionBase : public RotationBase<Derived, 3> |
| 36 | { |
| 37 | typedef RotationBase<Derived, 3> Base; |
| 38 | public: |
| 39 | using Base::operator*; |
| 40 | using Base::derived; |
| 41 | |
| 42 | typedef typename internal::traits<Derived>::Scalar Scalar; |
| 43 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 44 | typedef typename internal::traits<Derived>::Coefficients Coefficients; |
| 45 | enum { |
| 46 | Flags = Eigen::internal::traits<Derived>::Flags |
| 47 | }; |
| 48 | |
| 49 | // typedef typename Matrix<Scalar,4,1> Coefficients; |
| 50 | /** the type of a 3D vector */ |
| 51 | typedef Matrix<Scalar,3,1> Vector3; |
| 52 | /** the equivalent rotation matrix type */ |
| 53 | typedef Matrix<Scalar,3,3> Matrix3; |
| 54 | /** the equivalent angle-axis type */ |
| 55 | typedef AngleAxis<Scalar> AngleAxisType; |
| 56 | |
| 57 | |
| 58 | |
| 59 | /** \returns the \c x coefficient */ |
| 60 | inline Scalar x() const { return this->derived().coeffs().coeff(0); } |
| 61 | /** \returns the \c y coefficient */ |
| 62 | inline Scalar y() const { return this->derived().coeffs().coeff(1); } |
| 63 | /** \returns the \c z coefficient */ |
| 64 | inline Scalar z() const { return this->derived().coeffs().coeff(2); } |
| 65 | /** \returns the \c w coefficient */ |
| 66 | inline Scalar w() const { return this->derived().coeffs().coeff(3); } |
| 67 | |
| 68 | /** \returns a reference to the \c x coefficient */ |
| 69 | inline Scalar& x() { return this->derived().coeffs().coeffRef(0); } |
| 70 | /** \returns a reference to the \c y coefficient */ |
| 71 | inline Scalar& y() { return this->derived().coeffs().coeffRef(1); } |
| 72 | /** \returns a reference to the \c z coefficient */ |
| 73 | inline Scalar& z() { return this->derived().coeffs().coeffRef(2); } |
| 74 | /** \returns a reference to the \c w coefficient */ |
| 75 | inline Scalar& w() { return this->derived().coeffs().coeffRef(3); } |
| 76 | |
| 77 | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ |
| 78 | inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); } |
| 79 | |
| 80 | /** \returns a vector expression of the imaginary part (x,y,z) */ |
| 81 | inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); } |
| 82 | |
| 83 | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ |
| 84 | inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); } |
| 85 | |
| 86 | /** \returns a vector expression of the coefficients (x,y,z,w) */ |
| 87 | inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } |
| 88 | |
| 89 | EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); |
| 90 | template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); |
| 91 | |
| 92 | // disabled this copy operator as it is giving very strange compilation errors when compiling |
| 93 | // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's |
| 94 | // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase |
| 95 | // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. |
| 96 | // Derived& operator=(const QuaternionBase& other) |
| 97 | // { return operator=<Derived>(other); } |
| 98 | |
| 99 | Derived& operator=(const AngleAxisType& aa); |
| 100 | template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m); |
| 101 | |
| 102 | /** \returns a quaternion representing an identity rotation |
| 103 | * \sa MatrixBase::Identity() |
| 104 | */ |
| 105 | static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); } |
| 106 | |
| 107 | /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() |
| 108 | */ |
| 109 | inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; } |
| 110 | |
| 111 | /** \returns the squared norm of the quaternion's coefficients |
| 112 | * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() |
| 113 | */ |
| 114 | inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } |
| 115 | |
| 116 | /** \returns the norm of the quaternion's coefficients |
| 117 | * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() |
| 118 | */ |
| 119 | inline Scalar norm() const { return coeffs().norm(); } |
| 120 | |
| 121 | /** Normalizes the quaternion \c *this |
| 122 | * \sa normalized(), MatrixBase::normalize() */ |
| 123 | inline void normalize() { coeffs().normalize(); } |
| 124 | /** \returns a normalized copy of \c *this |
| 125 | * \sa normalize(), MatrixBase::normalized() */ |
| 126 | inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } |
| 127 | |
| 128 | /** \returns the dot product of \c *this and \a other |
| 129 | * Geometrically speaking, the dot product of two unit quaternions |
| 130 | * corresponds to the cosine of half the angle between the two rotations. |
| 131 | * \sa angularDistance() |
| 132 | */ |
| 133 | template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); } |
| 134 | |
| 135 | template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; |
| 136 | |
| 137 | /** \returns an equivalent 3x3 rotation matrix */ |
| 138 | Matrix3 toRotationMatrix() const; |
| 139 | |
| 140 | /** \returns the quaternion which transform \a a into \a b through a rotation */ |
| 141 | template<typename Derived1, typename Derived2> |
| 142 | Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| 143 | |
| 144 | template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const; |
| 145 | template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q); |
| 146 | |
| 147 | /** \returns the quaternion describing the inverse rotation */ |
| 148 | Quaternion<Scalar> inverse() const; |
| 149 | |
| 150 | /** \returns the conjugated quaternion */ |
| 151 | Quaternion<Scalar> conjugate() const; |
| 152 | |
| 153 | template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; |
| 154 | |
| 155 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 156 | * determined by \a prec. |
| 157 | * |
| 158 | * \sa MatrixBase::isApprox() */ |
| 159 | template<class OtherDerived> |
| 160 | bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const |
| 161 | { return coeffs().isApprox(other.coeffs(), prec); } |
| 162 | |
| 163 | /** return the result vector of \a v through the rotation*/ |
| 164 | EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; |
| 165 | |
| 166 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 167 | * |
| 168 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 169 | * then this function smartly returns a const reference to \c *this. |
| 170 | */ |
| 171 | template<typename NewScalarType> |
| 172 | inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const |
| 173 | { |
| 174 | return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived()); |
| 175 | } |
| 176 | |
| 177 | #ifdef EIGEN_QUATERNIONBASE_PLUGIN |
| 178 | # include EIGEN_QUATERNIONBASE_PLUGIN |
| 179 | #endif |
| 180 | }; |
| 181 | |
| 182 | /*************************************************************************** |
| 183 | * Definition/implementation of Quaternion<Scalar> |
| 184 | ***************************************************************************/ |
| 185 | |
| 186 | /** \geometry_module \ingroup Geometry_Module |
| 187 | * |
| 188 | * \class Quaternion |
| 189 | * |
| 190 | * \brief The quaternion class used to represent 3D orientations and rotations |
| 191 | * |
| 192 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients |
| 193 | * \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. |
| 194 | * |
| 195 | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of |
| 196 | * orientations and rotations of objects in three dimensions. Compared to other representations |
| 197 | * like Euler angles or 3x3 matrices, quaternions offer the following advantages: |
| 198 | * \li \b compact storage (4 scalars) |
| 199 | * \li \b efficient to compose (28 flops), |
| 200 | * \li \b stable spherical interpolation |
| 201 | * |
| 202 | * The following two typedefs are provided for convenience: |
| 203 | * \li \c Quaternionf for \c float |
| 204 | * \li \c Quaterniond for \c double |
| 205 | * |
| 206 | * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized. |
| 207 | * |
| 208 | * \sa class AngleAxis, class Transform |
| 209 | */ |
| 210 | |
| 211 | namespace internal { |
| 212 | template<typename _Scalar,int _Options> |
| 213 | struct traits<Quaternion<_Scalar,_Options> > |
| 214 | { |
| 215 | typedef Quaternion<_Scalar,_Options> PlainObject; |
| 216 | typedef _Scalar Scalar; |
| 217 | typedef Matrix<_Scalar,4,1,_Options> Coefficients; |
| 218 | enum{ |
| 219 | IsAligned = internal::traits<Coefficients>::Flags & AlignedBit, |
| 220 | Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit |
| 221 | }; |
| 222 | }; |
| 223 | } |
| 224 | |
| 225 | template<typename _Scalar, int _Options> |
| 226 | class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> > |
| 227 | { |
| 228 | typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base; |
| 229 | enum { IsAligned = internal::traits<Quaternion>::IsAligned }; |
| 230 | |
| 231 | public: |
| 232 | typedef _Scalar Scalar; |
| 233 | |
| 234 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) |
| 235 | using Base::operator*=; |
| 236 | |
| 237 | typedef typename internal::traits<Quaternion>::Coefficients Coefficients; |
| 238 | typedef typename Base::AngleAxisType AngleAxisType; |
| 239 | |
| 240 | /** Default constructor leaving the quaternion uninitialized. */ |
| 241 | inline Quaternion() {} |
| 242 | |
| 243 | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from |
| 244 | * its four coefficients \a w, \a x, \a y and \a z. |
| 245 | * |
| 246 | * \warning Note the order of the arguments: the real \a w coefficient first, |
| 247 | * while internally the coefficients are stored in the following order: |
| 248 | * [\c x, \c y, \c z, \c w] |
| 249 | */ |
| 250 | inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){} |
| 251 | |
| 252 | /** Constructs and initialize a quaternion from the array data */ |
| 253 | inline Quaternion(const Scalar* data) : m_coeffs(data) {} |
| 254 | |
| 255 | /** Copy constructor */ |
| 256 | template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); } |
| 257 | |
| 258 | /** Constructs and initializes a quaternion from the angle-axis \a aa */ |
| 259 | explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } |
| 260 | |
| 261 | /** Constructs and initializes a quaternion from either: |
| 262 | * - a rotation matrix expression, |
| 263 | * - a 4D vector expression representing quaternion coefficients. |
| 264 | */ |
| 265 | template<typename Derived> |
| 266 | explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } |
| 267 | |
| 268 | /** Explicit copy constructor with scalar conversion */ |
| 269 | template<typename OtherScalar, int OtherOptions> |
| 270 | explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) |
| 271 | { m_coeffs = other.coeffs().template cast<Scalar>(); } |
| 272 | |
| 273 | template<typename Derived1, typename Derived2> |
| 274 | static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| 275 | |
| 276 | inline Coefficients& coeffs() { return m_coeffs;} |
| 277 | inline const Coefficients& coeffs() const { return m_coeffs;} |
| 278 | |
| 279 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned) |
| 280 | |
| 281 | protected: |
| 282 | Coefficients m_coeffs; |
| 283 | |
| 284 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 285 | static EIGEN_STRONG_INLINE void _check_template_params() |
| 286 | { |
| 287 | EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, |
| 288 | INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| 289 | } |
| 290 | #endif |
| 291 | }; |
| 292 | |
| 293 | /** \ingroup Geometry_Module |
| 294 | * single precision quaternion type */ |
| 295 | typedef Quaternion<float> Quaternionf; |
| 296 | /** \ingroup Geometry_Module |
| 297 | * double precision quaternion type */ |
| 298 | typedef Quaternion<double> Quaterniond; |
| 299 | |
| 300 | /*************************************************************************** |
| 301 | * Specialization of Map<Quaternion<Scalar>> |
| 302 | ***************************************************************************/ |
| 303 | |
| 304 | namespace internal { |
| 305 | template<typename _Scalar, int _Options> |
| 306 | struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > |
| 307 | { |
| 308 | typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients; |
| 309 | }; |
| 310 | } |
| 311 | |
| 312 | namespace internal { |
| 313 | template<typename _Scalar, int _Options> |
| 314 | struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > |
| 315 | { |
| 316 | typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients; |
| 317 | typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase; |
| 318 | enum { |
| 319 | Flags = TraitsBase::Flags & ~LvalueBit |
| 320 | }; |
| 321 | }; |
| 322 | } |
| 323 | |
| 324 | /** \ingroup Geometry_Module |
| 325 | * \brief Quaternion expression mapping a constant memory buffer |
| 326 | * |
| 327 | * \tparam _Scalar the type of the Quaternion coefficients |
| 328 | * \tparam _Options see class Map |
| 329 | * |
| 330 | * This is a specialization of class Map for Quaternion. This class allows to view |
| 331 | * a 4 scalar memory buffer as an Eigen's Quaternion object. |
| 332 | * |
| 333 | * \sa class Map, class Quaternion, class QuaternionBase |
| 334 | */ |
| 335 | template<typename _Scalar, int _Options> |
| 336 | class Map<const Quaternion<_Scalar>, _Options > |
| 337 | : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > |
| 338 | { |
| 339 | typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base; |
| 340 | |
| 341 | public: |
| 342 | typedef _Scalar Scalar; |
| 343 | typedef typename internal::traits<Map>::Coefficients Coefficients; |
| 344 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) |
| 345 | using Base::operator*=; |
| 346 | |
| 347 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
| 348 | * |
| 349 | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: |
| 350 | * \code *coeffs == {x, y, z, w} \endcode |
| 351 | * |
| 352 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ |
| 353 | EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} |
| 354 | |
| 355 | inline const Coefficients& coeffs() const { return m_coeffs;} |
| 356 | |
| 357 | protected: |
| 358 | const Coefficients m_coeffs; |
| 359 | }; |
| 360 | |
| 361 | /** \ingroup Geometry_Module |
| 362 | * \brief Expression of a quaternion from a memory buffer |
| 363 | * |
| 364 | * \tparam _Scalar the type of the Quaternion coefficients |
| 365 | * \tparam _Options see class Map |
| 366 | * |
| 367 | * This is a specialization of class Map for Quaternion. This class allows to view |
| 368 | * a 4 scalar memory buffer as an Eigen's Quaternion object. |
| 369 | * |
| 370 | * \sa class Map, class Quaternion, class QuaternionBase |
| 371 | */ |
| 372 | template<typename _Scalar, int _Options> |
| 373 | class Map<Quaternion<_Scalar>, _Options > |
| 374 | : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> > |
| 375 | { |
| 376 | typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base; |
| 377 | |
| 378 | public: |
| 379 | typedef _Scalar Scalar; |
| 380 | typedef typename internal::traits<Map>::Coefficients Coefficients; |
| 381 | EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) |
| 382 | using Base::operator*=; |
| 383 | |
| 384 | /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
| 385 | * |
| 386 | * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: |
| 387 | * \code *coeffs == {x, y, z, w} \endcode |
| 388 | * |
| 389 | * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ |
| 390 | EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} |
| 391 | |
| 392 | inline Coefficients& coeffs() { return m_coeffs; } |
| 393 | inline const Coefficients& coeffs() const { return m_coeffs; } |
| 394 | |
| 395 | protected: |
| 396 | Coefficients m_coeffs; |
| 397 | }; |
| 398 | |
| 399 | /** \ingroup Geometry_Module |
| 400 | * Map an unaligned array of single precision scalars as a quaternion */ |
| 401 | typedef Map<Quaternion<float>, 0> QuaternionMapf; |
| 402 | /** \ingroup Geometry_Module |
| 403 | * Map an unaligned array of double precision scalars as a quaternion */ |
| 404 | typedef Map<Quaternion<double>, 0> QuaternionMapd; |
| 405 | /** \ingroup Geometry_Module |
| 406 | * Map a 16-byte aligned array of single precision scalars as a quaternion */ |
| 407 | typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; |
| 408 | /** \ingroup Geometry_Module |
| 409 | * Map a 16-byte aligned array of double precision scalars as a quaternion */ |
| 410 | typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; |
| 411 | |
| 412 | /*************************************************************************** |
| 413 | * Implementation of QuaternionBase methods |
| 414 | ***************************************************************************/ |
| 415 | |
| 416 | // Generic Quaternion * Quaternion product |
| 417 | // This product can be specialized for a given architecture via the Arch template argument. |
| 418 | namespace internal { |
| 419 | template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product |
| 420 | { |
| 421 | static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){ |
| 422 | return Quaternion<Scalar> |
| 423 | ( |
| 424 | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), |
| 425 | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), |
| 426 | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), |
| 427 | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() |
| 428 | ); |
| 429 | } |
| 430 | }; |
| 431 | } |
| 432 | |
| 433 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ |
| 434 | template <class Derived> |
| 435 | template <class OtherDerived> |
| 436 | EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> |
| 437 | QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const |
| 438 | { |
| 439 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), |
| 440 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| 441 | return internal::quat_product<Architecture::Target, Derived, OtherDerived, |
| 442 | typename internal::traits<Derived>::Scalar, |
| 443 | internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other); |
| 444 | } |
| 445 | |
| 446 | /** \sa operator*(Quaternion) */ |
| 447 | template <class Derived> |
| 448 | template <class OtherDerived> |
| 449 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other) |
| 450 | { |
| 451 | derived() = derived() * other.derived(); |
| 452 | return derived(); |
| 453 | } |
| 454 | |
| 455 | /** Rotation of a vector by a quaternion. |
| 456 | * \remarks If the quaternion is used to rotate several points (>1) |
| 457 | * then it is much more efficient to first convert it to a 3x3 Matrix. |
| 458 | * Comparison of the operation cost for n transformations: |
| 459 | * - Quaternion2: 30n |
| 460 | * - Via a Matrix3: 24 + 15n |
| 461 | */ |
| 462 | template <class Derived> |
| 463 | EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 |
| 464 | QuaternionBase<Derived>::_transformVector(const Vector3& v) const |
| 465 | { |
| 466 | // Note that this algorithm comes from the optimization by hand |
| 467 | // of the conversion to a Matrix followed by a Matrix/Vector product. |
| 468 | // It appears to be much faster than the common algorithm found |
| 469 | // in the literature (30 versus 39 flops). It also requires two |
| 470 | // Vector3 as temporaries. |
| 471 | Vector3 uv = this->vec().cross(v); |
| 472 | uv += uv; |
| 473 | return v + this->w() * uv + this->vec().cross(uv); |
| 474 | } |
| 475 | |
| 476 | template<class Derived> |
| 477 | EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other) |
| 478 | { |
| 479 | coeffs() = other.coeffs(); |
| 480 | return derived(); |
| 481 | } |
| 482 | |
| 483 | template<class Derived> |
| 484 | template<class OtherDerived> |
| 485 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other) |
| 486 | { |
| 487 | coeffs() = other.coeffs(); |
| 488 | return derived(); |
| 489 | } |
| 490 | |
| 491 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this |
| 492 | */ |
| 493 | template<class Derived> |
| 494 | EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) |
| 495 | { |
| 496 | using std::cos; |
| 497 | using std::sin; |
| 498 | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings |
| 499 | this->w() = cos(ha); |
| 500 | this->vec() = sin(ha) * aa.axis(); |
| 501 | return derived(); |
| 502 | } |
| 503 | |
| 504 | /** Set \c *this from the expression \a xpr: |
| 505 | * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion |
| 506 | * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
| 507 | * and \a xpr is converted to a quaternion |
| 508 | */ |
| 509 | |
| 510 | template<class Derived> |
| 511 | template<class MatrixDerived> |
| 512 | inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) |
| 513 | { |
| 514 | EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), |
| 515 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| 516 | internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); |
| 517 | return derived(); |
| 518 | } |
| 519 | |
| 520 | /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to |
| 521 | * be normalized, otherwise the result is undefined. |
| 522 | */ |
| 523 | template<class Derived> |
| 524 | inline typename QuaternionBase<Derived>::Matrix3 |
| 525 | QuaternionBase<Derived>::toRotationMatrix(void) const |
| 526 | { |
| 527 | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) |
| 528 | // if not inlined then the cost of the return by value is huge ~ +35%, |
| 529 | // however, not inlining this function is an order of magnitude slower, so |
| 530 | // it has to be inlined, and so the return by value is not an issue |
| 531 | Matrix3 res; |
| 532 | |
| 533 | const Scalar tx = Scalar(2)*this->x(); |
| 534 | const Scalar ty = Scalar(2)*this->y(); |
| 535 | const Scalar tz = Scalar(2)*this->z(); |
| 536 | const Scalar twx = tx*this->w(); |
| 537 | const Scalar twy = ty*this->w(); |
| 538 | const Scalar twz = tz*this->w(); |
| 539 | const Scalar txx = tx*this->x(); |
| 540 | const Scalar txy = ty*this->x(); |
| 541 | const Scalar txz = tz*this->x(); |
| 542 | const Scalar tyy = ty*this->y(); |
| 543 | const Scalar tyz = tz*this->y(); |
| 544 | const Scalar tzz = tz*this->z(); |
| 545 | |
| 546 | res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); |
| 547 | res.coeffRef(0,1) = txy-twz; |
| 548 | res.coeffRef(0,2) = txz+twy; |
| 549 | res.coeffRef(1,0) = txy+twz; |
| 550 | res.coeffRef(1,1) = Scalar(1)-(txx+tzz); |
| 551 | res.coeffRef(1,2) = tyz-twx; |
| 552 | res.coeffRef(2,0) = txz-twy; |
| 553 | res.coeffRef(2,1) = tyz+twx; |
| 554 | res.coeffRef(2,2) = Scalar(1)-(txx+tyy); |
| 555 | |
| 556 | return res; |
| 557 | } |
| 558 | |
| 559 | /** Sets \c *this to be a quaternion representing a rotation between |
| 560 | * the two arbitrary vectors \a a and \a b. In other words, the built |
| 561 | * rotation represent a rotation sending the line of direction \a a |
| 562 | * to the line of direction \a b, both lines passing through the origin. |
| 563 | * |
| 564 | * \returns a reference to \c *this. |
| 565 | * |
| 566 | * Note that the two input vectors do \b not have to be normalized, and |
| 567 | * do not need to have the same norm. |
| 568 | */ |
| 569 | template<class Derived> |
| 570 | template<typename Derived1, typename Derived2> |
| 571 | inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
| 572 | { |
| 573 | using std::max; |
| 574 | using std::sqrt; |
| 575 | Vector3 v0 = a.normalized(); |
| 576 | Vector3 v1 = b.normalized(); |
| 577 | Scalar c = v1.dot(v0); |
| 578 | |
| 579 | // if dot == -1, vectors are nearly opposites |
| 580 | // => accurately compute the rotation axis by computing the |
| 581 | // intersection of the two planes. This is done by solving: |
| 582 | // x^T v0 = 0 |
| 583 | // x^T v1 = 0 |
| 584 | // under the constraint: |
| 585 | // ||x|| = 1 |
| 586 | // which yields a singular value problem |
| 587 | if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision()) |
| 588 | { |
| 589 | c = (max)(c,Scalar(-1)); |
| 590 | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); |
| 591 | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); |
| 592 | Vector3 axis = svd.matrixV().col(2); |
| 593 | |
| 594 | Scalar w2 = (Scalar(1)+c)*Scalar(0.5); |
| 595 | this->w() = sqrt(w2); |
| 596 | this->vec() = axis * sqrt(Scalar(1) - w2); |
| 597 | return derived(); |
| 598 | } |
| 599 | Vector3 axis = v0.cross(v1); |
| 600 | Scalar s = sqrt((Scalar(1)+c)*Scalar(2)); |
| 601 | Scalar invs = Scalar(1)/s; |
| 602 | this->vec() = axis * invs; |
| 603 | this->w() = s * Scalar(0.5); |
| 604 | |
| 605 | return derived(); |
| 606 | } |
| 607 | |
| 608 | |
| 609 | /** Returns a quaternion representing a rotation between |
| 610 | * the two arbitrary vectors \a a and \a b. In other words, the built |
| 611 | * rotation represent a rotation sending the line of direction \a a |
| 612 | * to the line of direction \a b, both lines passing through the origin. |
| 613 | * |
| 614 | * \returns resulting quaternion |
| 615 | * |
| 616 | * Note that the two input vectors do \b not have to be normalized, and |
| 617 | * do not need to have the same norm. |
| 618 | */ |
| 619 | template<typename Scalar, int Options> |
| 620 | template<typename Derived1, typename Derived2> |
| 621 | Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
| 622 | { |
| 623 | Quaternion quat; |
| 624 | quat.setFromTwoVectors(a, b); |
| 625 | return quat; |
| 626 | } |
| 627 | |
| 628 | |
| 629 | /** \returns the multiplicative inverse of \c *this |
| 630 | * Note that in most cases, i.e., if you simply want the opposite rotation, |
| 631 | * and/or the quaternion is normalized, then it is enough to use the conjugate. |
| 632 | * |
| 633 | * \sa QuaternionBase::conjugate() |
| 634 | */ |
| 635 | template <class Derived> |
| 636 | inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const |
| 637 | { |
| 638 | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? |
| 639 | Scalar n2 = this->squaredNorm(); |
| 640 | if (n2 > Scalar(0)) |
| 641 | return Quaternion<Scalar>(conjugate().coeffs() / n2); |
| 642 | else |
| 643 | { |
| 644 | // return an invalid result to flag the error |
| 645 | return Quaternion<Scalar>(Coefficients::Zero()); |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse |
| 650 | * if the quaternion is normalized. |
| 651 | * The conjugate of a quaternion represents the opposite rotation. |
| 652 | * |
| 653 | * \sa Quaternion2::inverse() |
| 654 | */ |
| 655 | template <class Derived> |
| 656 | inline Quaternion<typename internal::traits<Derived>::Scalar> |
| 657 | QuaternionBase<Derived>::conjugate() const |
| 658 | { |
| 659 | return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z()); |
| 660 | } |
| 661 | |
| 662 | /** \returns the angle (in radian) between two rotations |
| 663 | * \sa dot() |
| 664 | */ |
| 665 | template <class Derived> |
| 666 | template <class OtherDerived> |
| 667 | inline typename internal::traits<Derived>::Scalar |
| 668 | QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const |
| 669 | { |
| 670 | using std::atan2; |
| 671 | using std::abs; |
| 672 | Quaternion<Scalar> d = (*this) * other.conjugate(); |
| 673 | return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) ); |
| 674 | } |
| 675 | |
| 676 | |
| 677 | |
| 678 | /** \returns the spherical linear interpolation between the two quaternions |
| 679 | * \c *this and \a other at the parameter \a t in [0;1]. |
| 680 | * |
| 681 | * This represents an interpolation for a constant motion between \c *this and \a other, |
| 682 | * see also http://en.wikipedia.org/wiki/Slerp. |
| 683 | */ |
| 684 | template <class Derived> |
| 685 | template <class OtherDerived> |
| 686 | Quaternion<typename internal::traits<Derived>::Scalar> |
| 687 | QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const |
| 688 | { |
| 689 | using std::acos; |
| 690 | using std::sin; |
| 691 | using std::abs; |
| 692 | static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); |
| 693 | Scalar d = this->dot(other); |
| 694 | Scalar absD = abs(d); |
| 695 | |
| 696 | Scalar scale0; |
| 697 | Scalar scale1; |
| 698 | |
| 699 | if(absD>=one) |
| 700 | { |
| 701 | scale0 = Scalar(1) - t; |
| 702 | scale1 = t; |
| 703 | } |
| 704 | else |
| 705 | { |
| 706 | // theta is the angle between the 2 quaternions |
| 707 | Scalar theta = acos(absD); |
| 708 | Scalar sinTheta = sin(theta); |
| 709 | |
| 710 | scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta; |
| 711 | scale1 = sin( ( t * theta) ) / sinTheta; |
| 712 | } |
| 713 | if(d<Scalar(0)) scale1 = -scale1; |
| 714 | |
| 715 | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); |
| 716 | } |
| 717 | |
| 718 | namespace internal { |
| 719 | |
| 720 | // set from a rotation matrix |
| 721 | template<typename Other> |
| 722 | struct quaternionbase_assign_impl<Other,3,3> |
| 723 | { |
| 724 | typedef typename Other::Scalar Scalar; |
| 725 | typedef DenseIndex Index; |
| 726 | template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat) |
| 727 | { |
| 728 | using std::sqrt; |
| 729 | // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| 730 | // Ken Shoemake, 1987 SIGGRAPH course notes |
| 731 | Scalar t = mat.trace(); |
| 732 | if (t > Scalar(0)) |
| 733 | { |
| 734 | t = sqrt(t + Scalar(1.0)); |
| 735 | q.w() = Scalar(0.5)*t; |
| 736 | t = Scalar(0.5)/t; |
| 737 | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; |
| 738 | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; |
| 739 | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; |
| 740 | } |
| 741 | else |
| 742 | { |
| 743 | DenseIndex i = 0; |
| 744 | if (mat.coeff(1,1) > mat.coeff(0,0)) |
| 745 | i = 1; |
| 746 | if (mat.coeff(2,2) > mat.coeff(i,i)) |
| 747 | i = 2; |
| 748 | DenseIndex j = (i+1)%3; |
| 749 | DenseIndex k = (j+1)%3; |
| 750 | |
| 751 | t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); |
| 752 | q.coeffs().coeffRef(i) = Scalar(0.5) * t; |
| 753 | t = Scalar(0.5)/t; |
| 754 | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; |
| 755 | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; |
| 756 | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; |
| 757 | } |
| 758 | } |
| 759 | }; |
| 760 | |
| 761 | // set from a vector of coefficients assumed to be a quaternion |
| 762 | template<typename Other> |
| 763 | struct quaternionbase_assign_impl<Other,4,1> |
| 764 | { |
| 765 | typedef typename Other::Scalar Scalar; |
| 766 | template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec) |
| 767 | { |
| 768 | q.coeffs() = vec; |
| 769 | } |
| 770 | }; |
| 771 | |
| 772 | } // end namespace internal |
| 773 | |
| 774 | } // end namespace Eigen |
| 775 | |
| 776 | #endif // EIGEN_QUATERNION_H |