Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_HYPERPLANE_H |
| 12 | #define EIGEN_HYPERPLANE_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | /** \geometry_module \ingroup Geometry_Module |
| 17 | * |
| 18 | * \class Hyperplane |
| 19 | * |
| 20 | * \brief A hyperplane |
| 21 | * |
| 22 | * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. |
| 23 | * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. |
| 24 | * |
| 25 | * \param _Scalar the scalar type, i.e., the type of the coefficients |
| 26 | * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. |
| 27 | * Notice that the dimension of the hyperplane is _AmbientDim-1. |
| 28 | * |
| 29 | * This class represents an hyperplane as the zero set of the implicit equation |
| 30 | * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part) |
| 31 | * and \f$ d \f$ is the distance (offset) to the origin. |
| 32 | */ |
| 33 | template <typename _Scalar, int _AmbientDim, int _Options> |
| 34 | class Hyperplane |
| 35 | { |
| 36 | public: |
| 37 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1) |
| 38 | enum { |
| 39 | AmbientDimAtCompileTime = _AmbientDim, |
| 40 | Options = _Options |
| 41 | }; |
| 42 | typedef _Scalar Scalar; |
| 43 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 44 | typedef DenseIndex Index; |
| 45 | typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; |
| 46 | typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic |
| 47 | ? Dynamic |
| 48 | : Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients; |
| 49 | typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType; |
| 50 | typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType; |
| 51 | |
| 52 | /** Default constructor without initialization */ |
| 53 | inline Hyperplane() {} |
| 54 | |
| 55 | template<int OtherOptions> |
| 56 | Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other) |
| 57 | : m_coeffs(other.coeffs()) |
| 58 | {} |
| 59 | |
| 60 | /** Constructs a dynamic-size hyperplane with \a _dim the dimension |
| 61 | * of the ambient space */ |
| 62 | inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {} |
| 63 | |
| 64 | /** Construct a plane from its normal \a n and a point \a e onto the plane. |
| 65 | * \warning the vector normal is assumed to be normalized. |
| 66 | */ |
| 67 | inline Hyperplane(const VectorType& n, const VectorType& e) |
| 68 | : m_coeffs(n.size()+1) |
| 69 | { |
| 70 | normal() = n; |
| 71 | offset() = -n.dot(e); |
| 72 | } |
| 73 | |
| 74 | /** Constructs a plane from its normal \a n and distance to the origin \a d |
| 75 | * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$. |
| 76 | * \warning the vector normal is assumed to be normalized. |
| 77 | */ |
| 78 | inline Hyperplane(const VectorType& n, const Scalar& d) |
| 79 | : m_coeffs(n.size()+1) |
| 80 | { |
| 81 | normal() = n; |
| 82 | offset() = d; |
| 83 | } |
| 84 | |
| 85 | /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space |
| 86 | * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made. |
| 87 | */ |
| 88 | static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) |
| 89 | { |
| 90 | Hyperplane result(p0.size()); |
| 91 | result.normal() = (p1 - p0).unitOrthogonal(); |
| 92 | result.offset() = -p0.dot(result.normal()); |
| 93 | return result; |
| 94 | } |
| 95 | |
| 96 | /** Constructs a hyperplane passing through the three points. The dimension of the ambient space |
| 97 | * is required to be exactly 3. |
| 98 | */ |
| 99 | static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) |
| 100 | { |
| 101 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3) |
| 102 | Hyperplane result(p0.size()); |
| 103 | VectorType v0(p2 - p0), v1(p1 - p0); |
| 104 | result.normal() = v0.cross(v1); |
| 105 | RealScalar norm = result.normal().norm(); |
| 106 | if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon()) |
| 107 | { |
| 108 | Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose(); |
| 109 | JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV); |
| 110 | result.normal() = svd.matrixV().col(2); |
| 111 | } |
| 112 | else |
| 113 | result.normal() /= norm; |
| 114 | result.offset() = -p0.dot(result.normal()); |
| 115 | return result; |
| 116 | } |
| 117 | |
| 118 | /** Constructs a hyperplane passing through the parametrized line \a parametrized. |
| 119 | * If the dimension of the ambient space is greater than 2, then there isn't uniqueness, |
| 120 | * so an arbitrary choice is made. |
| 121 | */ |
| 122 | // FIXME to be consitent with the rest this could be implemented as a static Through function ?? |
| 123 | explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) |
| 124 | { |
| 125 | normal() = parametrized.direction().unitOrthogonal(); |
| 126 | offset() = -parametrized.origin().dot(normal()); |
| 127 | } |
| 128 | |
| 129 | ~Hyperplane() {} |
| 130 | |
| 131 | /** \returns the dimension in which the plane holds */ |
| 132 | inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); } |
| 133 | |
| 134 | /** normalizes \c *this */ |
| 135 | void normalize(void) |
| 136 | { |
| 137 | m_coeffs /= normal().norm(); |
| 138 | } |
| 139 | |
| 140 | /** \returns the signed distance between the plane \c *this and a point \a p. |
| 141 | * \sa absDistance() |
| 142 | */ |
| 143 | inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); } |
| 144 | |
| 145 | /** \returns the absolute distance between the plane \c *this and a point \a p. |
| 146 | * \sa signedDistance() |
| 147 | */ |
| 148 | inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); } |
| 149 | |
| 150 | /** \returns the projection of a point \a p onto the plane \c *this. |
| 151 | */ |
| 152 | inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); } |
| 153 | |
| 154 | /** \returns a constant reference to the unit normal vector of the plane, which corresponds |
| 155 | * to the linear part of the implicit equation. |
| 156 | */ |
| 157 | inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); } |
| 158 | |
| 159 | /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds |
| 160 | * to the linear part of the implicit equation. |
| 161 | */ |
| 162 | inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); } |
| 163 | |
| 164 | /** \returns the distance to the origin, which is also the "constant term" of the implicit equation |
| 165 | * \warning the vector normal is assumed to be normalized. |
| 166 | */ |
| 167 | inline const Scalar& offset() const { return m_coeffs.coeff(dim()); } |
| 168 | |
| 169 | /** \returns a non-constant reference to the distance to the origin, which is also the constant part |
| 170 | * of the implicit equation */ |
| 171 | inline Scalar& offset() { return m_coeffs(dim()); } |
| 172 | |
| 173 | /** \returns a constant reference to the coefficients c_i of the plane equation: |
| 174 | * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ |
| 175 | */ |
| 176 | inline const Coefficients& coeffs() const { return m_coeffs; } |
| 177 | |
| 178 | /** \returns a non-constant reference to the coefficients c_i of the plane equation: |
| 179 | * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$ |
| 180 | */ |
| 181 | inline Coefficients& coeffs() { return m_coeffs; } |
| 182 | |
| 183 | /** \returns the intersection of *this with \a other. |
| 184 | * |
| 185 | * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines. |
| 186 | * |
| 187 | * \note If \a other is approximately parallel to *this, this method will return any point on *this. |
| 188 | */ |
| 189 | VectorType intersection(const Hyperplane& other) const |
| 190 | { |
| 191 | using std::abs; |
| 192 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) |
| 193 | Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0); |
| 194 | // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests |
| 195 | // whether the two lines are approximately parallel. |
| 196 | if(internal::isMuchSmallerThan(det, Scalar(1))) |
| 197 | { // special case where the two lines are approximately parallel. Pick any point on the first line. |
| 198 | if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0))) |
| 199 | return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0)); |
| 200 | else |
| 201 | return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0)); |
| 202 | } |
| 203 | else |
| 204 | { // general case |
| 205 | Scalar invdet = Scalar(1) / det; |
| 206 | return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)), |
| 207 | invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2))); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this. |
| 212 | * |
| 213 | * \param mat the Dim x Dim transformation matrix |
| 214 | * \param traits specifies whether the matrix \a mat represents an #Isometry |
| 215 | * or a more generic #Affine transformation. The default is #Affine. |
| 216 | */ |
| 217 | template<typename XprType> |
| 218 | inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) |
| 219 | { |
| 220 | if (traits==Affine) |
| 221 | normal() = mat.inverse().transpose() * normal(); |
| 222 | else if (traits==Isometry) |
| 223 | normal() = mat * normal(); |
| 224 | else |
| 225 | { |
| 226 | eigen_assert(0 && "invalid traits value in Hyperplane::transform()"); |
| 227 | } |
| 228 | return *this; |
| 229 | } |
| 230 | |
| 231 | /** Applies the transformation \a t to \c *this and returns a reference to \c *this. |
| 232 | * |
| 233 | * \param t the transformation of dimension Dim |
| 234 | * \param traits specifies whether the transformation \a t represents an #Isometry |
| 235 | * or a more generic #Affine transformation. The default is #Affine. |
| 236 | * Other kind of transformations are not supported. |
| 237 | */ |
| 238 | template<int TrOptions> |
| 239 | inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t, |
| 240 | TransformTraits traits = Affine) |
| 241 | { |
| 242 | transform(t.linear(), traits); |
| 243 | offset() -= normal().dot(t.translation()); |
| 244 | return *this; |
| 245 | } |
| 246 | |
| 247 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 248 | * |
| 249 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 250 | * then this function smartly returns a const reference to \c *this. |
| 251 | */ |
| 252 | template<typename NewScalarType> |
| 253 | inline typename internal::cast_return_type<Hyperplane, |
| 254 | Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const |
| 255 | { |
| 256 | return typename internal::cast_return_type<Hyperplane, |
| 257 | Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this); |
| 258 | } |
| 259 | |
| 260 | /** Copy constructor with scalar type conversion */ |
| 261 | template<typename OtherScalarType,int OtherOptions> |
| 262 | inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other) |
| 263 | { m_coeffs = other.coeffs().template cast<Scalar>(); } |
| 264 | |
| 265 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 266 | * determined by \a prec. |
| 267 | * |
| 268 | * \sa MatrixBase::isApprox() */ |
| 269 | template<int OtherOptions> |
| 270 | bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
| 271 | { return m_coeffs.isApprox(other.m_coeffs, prec); } |
| 272 | |
| 273 | protected: |
| 274 | |
| 275 | Coefficients m_coeffs; |
| 276 | }; |
| 277 | |
| 278 | } // end namespace Eigen |
| 279 | |
| 280 | #endif // EIGEN_HYPERPLANE_H |