Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_ANGLEAXIS_H |
| 11 | #define EIGEN_ANGLEAXIS_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \geometry_module \ingroup Geometry_Module |
| 16 | * |
| 17 | * \class AngleAxis |
| 18 | * |
| 19 | * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis |
| 20 | * |
| 21 | * \param _Scalar the scalar type, i.e., the type of the coefficients. |
| 22 | * |
| 23 | * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. |
| 24 | * |
| 25 | * The following two typedefs are provided for convenience: |
| 26 | * \li \c AngleAxisf for \c float |
| 27 | * \li \c AngleAxisd for \c double |
| 28 | * |
| 29 | * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily |
| 30 | * mimic Euler-angles. Here is an example: |
| 31 | * \include AngleAxis_mimic_euler.cpp |
| 32 | * Output: \verbinclude AngleAxis_mimic_euler.out |
| 33 | * |
| 34 | * \note This class is not aimed to be used to store a rotation transformation, |
| 35 | * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) |
| 36 | * and transformation objects. |
| 37 | * |
| 38 | * \sa class Quaternion, class Transform, MatrixBase::UnitX() |
| 39 | */ |
| 40 | |
| 41 | namespace internal { |
| 42 | template<typename _Scalar> struct traits<AngleAxis<_Scalar> > |
| 43 | { |
| 44 | typedef _Scalar Scalar; |
| 45 | }; |
| 46 | } |
| 47 | |
| 48 | template<typename _Scalar> |
| 49 | class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> |
| 50 | { |
| 51 | typedef RotationBase<AngleAxis<_Scalar>,3> Base; |
| 52 | |
| 53 | public: |
| 54 | |
| 55 | using Base::operator*; |
| 56 | |
| 57 | enum { Dim = 3 }; |
| 58 | /** the scalar type of the coefficients */ |
| 59 | typedef _Scalar Scalar; |
| 60 | typedef Matrix<Scalar,3,3> Matrix3; |
| 61 | typedef Matrix<Scalar,3,1> Vector3; |
| 62 | typedef Quaternion<Scalar> QuaternionType; |
| 63 | |
| 64 | protected: |
| 65 | |
| 66 | Vector3 m_axis; |
| 67 | Scalar m_angle; |
| 68 | |
| 69 | public: |
| 70 | |
| 71 | /** Default constructor without initialization. */ |
| 72 | AngleAxis() {} |
| 73 | /** Constructs and initialize the angle-axis rotation from an \a angle in radian |
| 74 | * and an \a axis which \b must \b be \b normalized. |
| 75 | * |
| 76 | * \warning If the \a axis vector is not normalized, then the angle-axis object |
| 77 | * represents an invalid rotation. */ |
| 78 | template<typename Derived> |
| 79 | inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} |
| 80 | /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ |
| 81 | template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } |
| 82 | /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ |
| 83 | template<typename Derived> |
| 84 | inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } |
| 85 | |
| 86 | Scalar angle() const { return m_angle; } |
| 87 | Scalar& angle() { return m_angle; } |
| 88 | |
| 89 | const Vector3& axis() const { return m_axis; } |
| 90 | Vector3& axis() { return m_axis; } |
| 91 | |
| 92 | /** Concatenates two rotations */ |
| 93 | inline QuaternionType operator* (const AngleAxis& other) const |
| 94 | { return QuaternionType(*this) * QuaternionType(other); } |
| 95 | |
| 96 | /** Concatenates two rotations */ |
| 97 | inline QuaternionType operator* (const QuaternionType& other) const |
| 98 | { return QuaternionType(*this) * other; } |
| 99 | |
| 100 | /** Concatenates two rotations */ |
| 101 | friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) |
| 102 | { return a * QuaternionType(b); } |
| 103 | |
| 104 | /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ |
| 105 | AngleAxis inverse() const |
| 106 | { return AngleAxis(-m_angle, m_axis); } |
| 107 | |
| 108 | template<class QuatDerived> |
| 109 | AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); |
| 110 | template<typename Derived> |
| 111 | AngleAxis& operator=(const MatrixBase<Derived>& m); |
| 112 | |
| 113 | template<typename Derived> |
| 114 | AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); |
| 115 | Matrix3 toRotationMatrix(void) const; |
| 116 | |
| 117 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 118 | * |
| 119 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 120 | * then this function smartly returns a const reference to \c *this. |
| 121 | */ |
| 122 | template<typename NewScalarType> |
| 123 | inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const |
| 124 | { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } |
| 125 | |
| 126 | /** Copy constructor with scalar type conversion */ |
| 127 | template<typename OtherScalarType> |
| 128 | inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) |
| 129 | { |
| 130 | m_axis = other.axis().template cast<Scalar>(); |
| 131 | m_angle = Scalar(other.angle()); |
| 132 | } |
| 133 | |
| 134 | static inline const AngleAxis Identity() { return AngleAxis(0, Vector3::UnitX()); } |
| 135 | |
| 136 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 137 | * determined by \a prec. |
| 138 | * |
| 139 | * \sa MatrixBase::isApprox() */ |
| 140 | bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
| 141 | { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } |
| 142 | }; |
| 143 | |
| 144 | /** \ingroup Geometry_Module |
| 145 | * single precision angle-axis type */ |
| 146 | typedef AngleAxis<float> AngleAxisf; |
| 147 | /** \ingroup Geometry_Module |
| 148 | * double precision angle-axis type */ |
| 149 | typedef AngleAxis<double> AngleAxisd; |
| 150 | |
| 151 | /** Set \c *this from a \b unit quaternion. |
| 152 | * The axis is normalized. |
| 153 | * |
| 154 | * \warning As any other method dealing with quaternion, if the input quaternion |
| 155 | * is not normalized then the result is undefined. |
| 156 | */ |
| 157 | template<typename Scalar> |
| 158 | template<typename QuatDerived> |
| 159 | AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) |
| 160 | { |
| 161 | using std::acos; |
| 162 | using std::min; |
| 163 | using std::max; |
| 164 | using std::sqrt; |
| 165 | Scalar n2 = q.vec().squaredNorm(); |
| 166 | if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision()) |
| 167 | { |
| 168 | m_angle = 0; |
| 169 | m_axis << 1, 0, 0; |
| 170 | } |
| 171 | else |
| 172 | { |
| 173 | m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1))); |
| 174 | m_axis = q.vec() / sqrt(n2); |
| 175 | } |
| 176 | return *this; |
| 177 | } |
| 178 | |
| 179 | /** Set \c *this from a 3x3 rotation matrix \a mat. |
| 180 | */ |
| 181 | template<typename Scalar> |
| 182 | template<typename Derived> |
| 183 | AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) |
| 184 | { |
| 185 | // Since a direct conversion would not be really faster, |
| 186 | // let's use the robust Quaternion implementation: |
| 187 | return *this = QuaternionType(mat); |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * \brief Sets \c *this from a 3x3 rotation matrix. |
| 192 | **/ |
| 193 | template<typename Scalar> |
| 194 | template<typename Derived> |
| 195 | AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
| 196 | { |
| 197 | return *this = QuaternionType(mat); |
| 198 | } |
| 199 | |
| 200 | /** Constructs and \returns an equivalent 3x3 rotation matrix. |
| 201 | */ |
| 202 | template<typename Scalar> |
| 203 | typename AngleAxis<Scalar>::Matrix3 |
| 204 | AngleAxis<Scalar>::toRotationMatrix(void) const |
| 205 | { |
| 206 | using std::sin; |
| 207 | using std::cos; |
| 208 | Matrix3 res; |
| 209 | Vector3 sin_axis = sin(m_angle) * m_axis; |
| 210 | Scalar c = cos(m_angle); |
| 211 | Vector3 cos1_axis = (Scalar(1)-c) * m_axis; |
| 212 | |
| 213 | Scalar tmp; |
| 214 | tmp = cos1_axis.x() * m_axis.y(); |
| 215 | res.coeffRef(0,1) = tmp - sin_axis.z(); |
| 216 | res.coeffRef(1,0) = tmp + sin_axis.z(); |
| 217 | |
| 218 | tmp = cos1_axis.x() * m_axis.z(); |
| 219 | res.coeffRef(0,2) = tmp + sin_axis.y(); |
| 220 | res.coeffRef(2,0) = tmp - sin_axis.y(); |
| 221 | |
| 222 | tmp = cos1_axis.y() * m_axis.z(); |
| 223 | res.coeffRef(1,2) = tmp - sin_axis.x(); |
| 224 | res.coeffRef(2,1) = tmp + sin_axis.x(); |
| 225 | |
| 226 | res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; |
| 227 | |
| 228 | return res; |
| 229 | } |
| 230 | |
| 231 | } // end namespace Eigen |
| 232 | |
| 233 | #endif // EIGEN_ANGLEAXIS_H |