Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_TRIDIAGONALIZATION_H |
| 12 | #define EIGEN_TRIDIAGONALIZATION_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | |
| 18 | template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; |
| 19 | template<typename MatrixType> |
| 20 | struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > |
| 21 | { |
| 22 | typedef typename MatrixType::PlainObject ReturnType; |
| 23 | }; |
| 24 | |
| 25 | template<typename MatrixType, typename CoeffVectorType> |
| 26 | void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); |
| 27 | } |
| 28 | |
| 29 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
| 30 | * |
| 31 | * |
| 32 | * \class Tridiagonalization |
| 33 | * |
| 34 | * \brief Tridiagonal decomposition of a selfadjoint matrix |
| 35 | * |
| 36 | * \tparam _MatrixType the type of the matrix of which we are computing the |
| 37 | * tridiagonal decomposition; this is expected to be an instantiation of the |
| 38 | * Matrix class template. |
| 39 | * |
| 40 | * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: |
| 41 | * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. |
| 42 | * |
| 43 | * A tridiagonal matrix is a matrix which has nonzero elements only on the |
| 44 | * main diagonal and the first diagonal below and above it. The Hessenberg |
| 45 | * decomposition of a selfadjoint matrix is in fact a tridiagonal |
| 46 | * decomposition. This class is used in SelfAdjointEigenSolver to compute the |
| 47 | * eigenvalues and eigenvectors of a selfadjoint matrix. |
| 48 | * |
| 49 | * Call the function compute() to compute the tridiagonal decomposition of a |
| 50 | * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) |
| 51 | * constructor which computes the tridiagonal Schur decomposition at |
| 52 | * construction time. Once the decomposition is computed, you can use the |
| 53 | * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the |
| 54 | * decomposition. |
| 55 | * |
| 56 | * The documentation of Tridiagonalization(const MatrixType&) contains an |
| 57 | * example of the typical use of this class. |
| 58 | * |
| 59 | * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver |
| 60 | */ |
| 61 | template<typename _MatrixType> class Tridiagonalization |
| 62 | { |
| 63 | public: |
| 64 | |
| 65 | /** \brief Synonym for the template parameter \p _MatrixType. */ |
| 66 | typedef _MatrixType MatrixType; |
| 67 | |
| 68 | typedef typename MatrixType::Scalar Scalar; |
| 69 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 70 | typedef typename MatrixType::Index Index; |
| 71 | |
| 72 | enum { |
| 73 | Size = MatrixType::RowsAtCompileTime, |
| 74 | SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), |
| 75 | Options = MatrixType::Options, |
| 76 | MaxSize = MatrixType::MaxRowsAtCompileTime, |
| 77 | MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) |
| 78 | }; |
| 79 | |
| 80 | typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; |
| 81 | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; |
| 82 | typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; |
| 83 | typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; |
| 84 | typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; |
| 85 | |
| 86 | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| 87 | typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, |
| 88 | const Diagonal<const MatrixType> |
| 89 | >::type DiagonalReturnType; |
| 90 | |
| 91 | typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| 92 | typename internal::add_const_on_value_type<typename Diagonal< |
| 93 | Block<const MatrixType,SizeMinusOne,SizeMinusOne> >::RealReturnType>::type, |
| 94 | const Diagonal< |
| 95 | Block<const MatrixType,SizeMinusOne,SizeMinusOne> > |
| 96 | >::type SubDiagonalReturnType; |
| 97 | |
| 98 | /** \brief Return type of matrixQ() */ |
| 99 | typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; |
| 100 | |
| 101 | /** \brief Default constructor. |
| 102 | * |
| 103 | * \param [in] size Positive integer, size of the matrix whose tridiagonal |
| 104 | * decomposition will be computed. |
| 105 | * |
| 106 | * The default constructor is useful in cases in which the user intends to |
| 107 | * perform decompositions via compute(). The \p size parameter is only |
| 108 | * used as a hint. It is not an error to give a wrong \p size, but it may |
| 109 | * impair performance. |
| 110 | * |
| 111 | * \sa compute() for an example. |
| 112 | */ |
| 113 | Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) |
| 114 | : m_matrix(size,size), |
| 115 | m_hCoeffs(size > 1 ? size-1 : 1), |
| 116 | m_isInitialized(false) |
| 117 | {} |
| 118 | |
| 119 | /** \brief Constructor; computes tridiagonal decomposition of given matrix. |
| 120 | * |
| 121 | * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
| 122 | * is to be computed. |
| 123 | * |
| 124 | * This constructor calls compute() to compute the tridiagonal decomposition. |
| 125 | * |
| 126 | * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp |
| 127 | * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out |
| 128 | */ |
| 129 | Tridiagonalization(const MatrixType& matrix) |
| 130 | : m_matrix(matrix), |
| 131 | m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), |
| 132 | m_isInitialized(false) |
| 133 | { |
| 134 | internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); |
| 135 | m_isInitialized = true; |
| 136 | } |
| 137 | |
| 138 | /** \brief Computes tridiagonal decomposition of given matrix. |
| 139 | * |
| 140 | * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
| 141 | * is to be computed. |
| 142 | * \returns Reference to \c *this |
| 143 | * |
| 144 | * The tridiagonal decomposition is computed by bringing the columns of |
| 145 | * the matrix successively in the required form using Householder |
| 146 | * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes |
| 147 | * the size of the given matrix. |
| 148 | * |
| 149 | * This method reuses of the allocated data in the Tridiagonalization |
| 150 | * object, if the size of the matrix does not change. |
| 151 | * |
| 152 | * Example: \include Tridiagonalization_compute.cpp |
| 153 | * Output: \verbinclude Tridiagonalization_compute.out |
| 154 | */ |
| 155 | Tridiagonalization& compute(const MatrixType& matrix) |
| 156 | { |
| 157 | m_matrix = matrix; |
| 158 | m_hCoeffs.resize(matrix.rows()-1, 1); |
| 159 | internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); |
| 160 | m_isInitialized = true; |
| 161 | return *this; |
| 162 | } |
| 163 | |
| 164 | /** \brief Returns the Householder coefficients. |
| 165 | * |
| 166 | * \returns a const reference to the vector of Householder coefficients |
| 167 | * |
| 168 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| 169 | * the member function compute(const MatrixType&) has been called before |
| 170 | * to compute the tridiagonal decomposition of a matrix. |
| 171 | * |
| 172 | * The Householder coefficients allow the reconstruction of the matrix |
| 173 | * \f$ Q \f$ in the tridiagonal decomposition from the packed data. |
| 174 | * |
| 175 | * Example: \include Tridiagonalization_householderCoefficients.cpp |
| 176 | * Output: \verbinclude Tridiagonalization_householderCoefficients.out |
| 177 | * |
| 178 | * \sa packedMatrix(), \ref Householder_Module "Householder module" |
| 179 | */ |
| 180 | inline CoeffVectorType householderCoefficients() const |
| 181 | { |
| 182 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| 183 | return m_hCoeffs; |
| 184 | } |
| 185 | |
| 186 | /** \brief Returns the internal representation of the decomposition |
| 187 | * |
| 188 | * \returns a const reference to a matrix with the internal representation |
| 189 | * of the decomposition. |
| 190 | * |
| 191 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| 192 | * the member function compute(const MatrixType&) has been called before |
| 193 | * to compute the tridiagonal decomposition of a matrix. |
| 194 | * |
| 195 | * The returned matrix contains the following information: |
| 196 | * - the strict upper triangular part is equal to the input matrix A. |
| 197 | * - the diagonal and lower sub-diagonal represent the real tridiagonal |
| 198 | * symmetric matrix T. |
| 199 | * - the rest of the lower part contains the Householder vectors that, |
| 200 | * combined with Householder coefficients returned by |
| 201 | * householderCoefficients(), allows to reconstruct the matrix Q as |
| 202 | * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
| 203 | * Here, the matrices \f$ H_i \f$ are the Householder transformations |
| 204 | * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
| 205 | * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and |
| 206 | * \f$ v_i \f$ is the Householder vector defined by |
| 207 | * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ |
| 208 | * with M the matrix returned by this function. |
| 209 | * |
| 210 | * See LAPACK for further details on this packed storage. |
| 211 | * |
| 212 | * Example: \include Tridiagonalization_packedMatrix.cpp |
| 213 | * Output: \verbinclude Tridiagonalization_packedMatrix.out |
| 214 | * |
| 215 | * \sa householderCoefficients() |
| 216 | */ |
| 217 | inline const MatrixType& packedMatrix() const |
| 218 | { |
| 219 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| 220 | return m_matrix; |
| 221 | } |
| 222 | |
| 223 | /** \brief Returns the unitary matrix Q in the decomposition |
| 224 | * |
| 225 | * \returns object representing the matrix Q |
| 226 | * |
| 227 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| 228 | * the member function compute(const MatrixType&) has been called before |
| 229 | * to compute the tridiagonal decomposition of a matrix. |
| 230 | * |
| 231 | * This function returns a light-weight object of template class |
| 232 | * HouseholderSequence. You can either apply it directly to a matrix or |
| 233 | * you can convert it to a matrix of type #MatrixType. |
| 234 | * |
| 235 | * \sa Tridiagonalization(const MatrixType&) for an example, |
| 236 | * matrixT(), class HouseholderSequence |
| 237 | */ |
| 238 | HouseholderSequenceType matrixQ() const |
| 239 | { |
| 240 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| 241 | return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) |
| 242 | .setLength(m_matrix.rows() - 1) |
| 243 | .setShift(1); |
| 244 | } |
| 245 | |
| 246 | /** \brief Returns an expression of the tridiagonal matrix T in the decomposition |
| 247 | * |
| 248 | * \returns expression object representing the matrix T |
| 249 | * |
| 250 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| 251 | * the member function compute(const MatrixType&) has been called before |
| 252 | * to compute the tridiagonal decomposition of a matrix. |
| 253 | * |
| 254 | * Currently, this function can be used to extract the matrix T from internal |
| 255 | * data and copy it to a dense matrix object. In most cases, it may be |
| 256 | * sufficient to directly use the packed matrix or the vector expressions |
| 257 | * returned by diagonal() and subDiagonal() instead of creating a new |
| 258 | * dense copy matrix with this function. |
| 259 | * |
| 260 | * \sa Tridiagonalization(const MatrixType&) for an example, |
| 261 | * matrixQ(), packedMatrix(), diagonal(), subDiagonal() |
| 262 | */ |
| 263 | MatrixTReturnType matrixT() const |
| 264 | { |
| 265 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| 266 | return MatrixTReturnType(m_matrix.real()); |
| 267 | } |
| 268 | |
| 269 | /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. |
| 270 | * |
| 271 | * \returns expression representing the diagonal of T |
| 272 | * |
| 273 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| 274 | * the member function compute(const MatrixType&) has been called before |
| 275 | * to compute the tridiagonal decomposition of a matrix. |
| 276 | * |
| 277 | * Example: \include Tridiagonalization_diagonal.cpp |
| 278 | * Output: \verbinclude Tridiagonalization_diagonal.out |
| 279 | * |
| 280 | * \sa matrixT(), subDiagonal() |
| 281 | */ |
| 282 | DiagonalReturnType diagonal() const; |
| 283 | |
| 284 | /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. |
| 285 | * |
| 286 | * \returns expression representing the subdiagonal of T |
| 287 | * |
| 288 | * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| 289 | * the member function compute(const MatrixType&) has been called before |
| 290 | * to compute the tridiagonal decomposition of a matrix. |
| 291 | * |
| 292 | * \sa diagonal() for an example, matrixT() |
| 293 | */ |
| 294 | SubDiagonalReturnType subDiagonal() const; |
| 295 | |
| 296 | protected: |
| 297 | |
| 298 | MatrixType m_matrix; |
| 299 | CoeffVectorType m_hCoeffs; |
| 300 | bool m_isInitialized; |
| 301 | }; |
| 302 | |
| 303 | template<typename MatrixType> |
| 304 | typename Tridiagonalization<MatrixType>::DiagonalReturnType |
| 305 | Tridiagonalization<MatrixType>::diagonal() const |
| 306 | { |
| 307 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| 308 | return m_matrix.diagonal(); |
| 309 | } |
| 310 | |
| 311 | template<typename MatrixType> |
| 312 | typename Tridiagonalization<MatrixType>::SubDiagonalReturnType |
| 313 | Tridiagonalization<MatrixType>::subDiagonal() const |
| 314 | { |
| 315 | eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| 316 | Index n = m_matrix.rows(); |
| 317 | return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal(); |
| 318 | } |
| 319 | |
| 320 | namespace internal { |
| 321 | |
| 322 | /** \internal |
| 323 | * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. |
| 324 | * |
| 325 | * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. |
| 326 | * On output, the strict upper part is left unchanged, and the lower triangular part |
| 327 | * represents the T and Q matrices in packed format has detailed below. |
| 328 | * \param[out] hCoeffs returned Householder coefficients (see below) |
| 329 | * |
| 330 | * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal |
| 331 | * and lower sub-diagonal of the matrix \a matA. |
| 332 | * The unitary matrix Q is represented in a compact way as a product of |
| 333 | * Householder reflectors \f$ H_i \f$ such that: |
| 334 | * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
| 335 | * The Householder reflectors are defined as |
| 336 | * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
| 337 | * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and |
| 338 | * \f$ v_i \f$ is the Householder vector defined by |
| 339 | * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. |
| 340 | * |
| 341 | * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. |
| 342 | * |
| 343 | * \sa Tridiagonalization::packedMatrix() |
| 344 | */ |
| 345 | template<typename MatrixType, typename CoeffVectorType> |
| 346 | void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) |
| 347 | { |
| 348 | using numext::conj; |
| 349 | typedef typename MatrixType::Index Index; |
| 350 | typedef typename MatrixType::Scalar Scalar; |
| 351 | typedef typename MatrixType::RealScalar RealScalar; |
| 352 | Index n = matA.rows(); |
| 353 | eigen_assert(n==matA.cols()); |
| 354 | eigen_assert(n==hCoeffs.size()+1 || n==1); |
| 355 | |
| 356 | for (Index i = 0; i<n-1; ++i) |
| 357 | { |
| 358 | Index remainingSize = n-i-1; |
| 359 | RealScalar beta; |
| 360 | Scalar h; |
| 361 | matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); |
| 362 | |
| 363 | // Apply similarity transformation to remaining columns, |
| 364 | // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) |
| 365 | matA.col(i).coeffRef(i+1) = 1; |
| 366 | |
| 367 | hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() |
| 368 | * (conj(h) * matA.col(i).tail(remainingSize))); |
| 369 | |
| 370 | hCoeffs.tail(n-i-1) += (conj(h)*Scalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); |
| 371 | |
| 372 | matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() |
| 373 | .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), -1); |
| 374 | |
| 375 | matA.col(i).coeffRef(i+1) = beta; |
| 376 | hCoeffs.coeffRef(i) = h; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // forward declaration, implementation at the end of this file |
| 381 | template<typename MatrixType, |
| 382 | int Size=MatrixType::ColsAtCompileTime, |
| 383 | bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> |
| 384 | struct tridiagonalization_inplace_selector; |
| 385 | |
| 386 | /** \brief Performs a full tridiagonalization in place |
| 387 | * |
| 388 | * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal |
| 389 | * decomposition is to be computed. Only the lower triangular part referenced. |
| 390 | * The rest is left unchanged. On output, the orthogonal matrix Q |
| 391 | * in the decomposition if \p extractQ is true. |
| 392 | * \param[out] diag The diagonal of the tridiagonal matrix T in the |
| 393 | * decomposition. |
| 394 | * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in |
| 395 | * the decomposition. |
| 396 | * \param[in] extractQ If true, the orthogonal matrix Q in the |
| 397 | * decomposition is computed and stored in \p mat. |
| 398 | * |
| 399 | * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place |
| 400 | * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real |
| 401 | * symmetric tridiagonal matrix. |
| 402 | * |
| 403 | * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If |
| 404 | * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower |
| 405 | * part of the matrix \p mat is destroyed. |
| 406 | * |
| 407 | * The vectors \p diag and \p subdiag are not resized. The function |
| 408 | * assumes that they are already of the correct size. The length of the |
| 409 | * vector \p diag should equal the number of rows in \p mat, and the |
| 410 | * length of the vector \p subdiag should be one left. |
| 411 | * |
| 412 | * This implementation contains an optimized path for 3-by-3 matrices |
| 413 | * which is especially useful for plane fitting. |
| 414 | * |
| 415 | * \note Currently, it requires two temporary vectors to hold the intermediate |
| 416 | * Householder coefficients, and to reconstruct the matrix Q from the Householder |
| 417 | * reflectors. |
| 418 | * |
| 419 | * Example (this uses the same matrix as the example in |
| 420 | * Tridiagonalization::Tridiagonalization(const MatrixType&)): |
| 421 | * \include Tridiagonalization_decomposeInPlace.cpp |
| 422 | * Output: \verbinclude Tridiagonalization_decomposeInPlace.out |
| 423 | * |
| 424 | * \sa class Tridiagonalization |
| 425 | */ |
| 426 | template<typename MatrixType, typename DiagonalType, typename SubDiagonalType> |
| 427 | void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| 428 | { |
| 429 | eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); |
| 430 | tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ); |
| 431 | } |
| 432 | |
| 433 | /** \internal |
| 434 | * General full tridiagonalization |
| 435 | */ |
| 436 | template<typename MatrixType, int Size, bool IsComplex> |
| 437 | struct tridiagonalization_inplace_selector |
| 438 | { |
| 439 | typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType; |
| 440 | typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; |
| 441 | typedef typename MatrixType::Index Index; |
| 442 | template<typename DiagonalType, typename SubDiagonalType> |
| 443 | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| 444 | { |
| 445 | CoeffVectorType hCoeffs(mat.cols()-1); |
| 446 | tridiagonalization_inplace(mat,hCoeffs); |
| 447 | diag = mat.diagonal().real(); |
| 448 | subdiag = mat.template diagonal<-1>().real(); |
| 449 | if(extractQ) |
| 450 | mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) |
| 451 | .setLength(mat.rows() - 1) |
| 452 | .setShift(1); |
| 453 | } |
| 454 | }; |
| 455 | |
| 456 | /** \internal |
| 457 | * Specialization for 3x3 real matrices. |
| 458 | * Especially useful for plane fitting. |
| 459 | */ |
| 460 | template<typename MatrixType> |
| 461 | struct tridiagonalization_inplace_selector<MatrixType,3,false> |
| 462 | { |
| 463 | typedef typename MatrixType::Scalar Scalar; |
| 464 | typedef typename MatrixType::RealScalar RealScalar; |
| 465 | |
| 466 | template<typename DiagonalType, typename SubDiagonalType> |
| 467 | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| 468 | { |
| 469 | using std::sqrt; |
| 470 | diag[0] = mat(0,0); |
| 471 | RealScalar v1norm2 = numext::abs2(mat(2,0)); |
| 472 | if(v1norm2 == RealScalar(0)) |
| 473 | { |
| 474 | diag[1] = mat(1,1); |
| 475 | diag[2] = mat(2,2); |
| 476 | subdiag[0] = mat(1,0); |
| 477 | subdiag[1] = mat(2,1); |
| 478 | if (extractQ) |
| 479 | mat.setIdentity(); |
| 480 | } |
| 481 | else |
| 482 | { |
| 483 | RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); |
| 484 | RealScalar invBeta = RealScalar(1)/beta; |
| 485 | Scalar m01 = mat(1,0) * invBeta; |
| 486 | Scalar m02 = mat(2,0) * invBeta; |
| 487 | Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); |
| 488 | diag[1] = mat(1,1) + m02*q; |
| 489 | diag[2] = mat(2,2) - m02*q; |
| 490 | subdiag[0] = beta; |
| 491 | subdiag[1] = mat(2,1) - m01 * q; |
| 492 | if (extractQ) |
| 493 | { |
| 494 | mat << 1, 0, 0, |
| 495 | 0, m01, m02, |
| 496 | 0, m02, -m01; |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | }; |
| 501 | |
| 502 | /** \internal |
| 503 | * Trivial specialization for 1x1 matrices |
| 504 | */ |
| 505 | template<typename MatrixType, bool IsComplex> |
| 506 | struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> |
| 507 | { |
| 508 | typedef typename MatrixType::Scalar Scalar; |
| 509 | |
| 510 | template<typename DiagonalType, typename SubDiagonalType> |
| 511 | static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) |
| 512 | { |
| 513 | diag(0,0) = numext::real(mat(0,0)); |
| 514 | if(extractQ) |
| 515 | mat(0,0) = Scalar(1); |
| 516 | } |
| 517 | }; |
| 518 | |
| 519 | /** \internal |
| 520 | * \eigenvalues_module \ingroup Eigenvalues_Module |
| 521 | * |
| 522 | * \brief Expression type for return value of Tridiagonalization::matrixT() |
| 523 | * |
| 524 | * \tparam MatrixType type of underlying dense matrix |
| 525 | */ |
| 526 | template<typename MatrixType> struct TridiagonalizationMatrixTReturnType |
| 527 | : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > |
| 528 | { |
| 529 | typedef typename MatrixType::Index Index; |
| 530 | public: |
| 531 | /** \brief Constructor. |
| 532 | * |
| 533 | * \param[in] mat The underlying dense matrix |
| 534 | */ |
| 535 | TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } |
| 536 | |
| 537 | template <typename ResultType> |
| 538 | inline void evalTo(ResultType& result) const |
| 539 | { |
| 540 | result.setZero(); |
| 541 | result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); |
| 542 | result.diagonal() = m_matrix.diagonal(); |
| 543 | result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); |
| 544 | } |
| 545 | |
| 546 | Index rows() const { return m_matrix.rows(); } |
| 547 | Index cols() const { return m_matrix.cols(); } |
| 548 | |
| 549 | protected: |
| 550 | typename MatrixType::Nested m_matrix; |
| 551 | }; |
| 552 | |
| 553 | } // end namespace internal |
| 554 | |
| 555 | } // end namespace Eigen |
| 556 | |
| 557 | #endif // EIGEN_TRIDIAGONALIZATION_H |