Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway |
| 11 | |
| 12 | namespace Eigen { |
| 13 | |
| 14 | /** \geometry_module \ingroup Geometry_Module |
| 15 | * |
| 16 | * \class Rotation2D |
| 17 | * |
| 18 | * \brief Represents a rotation/orientation in a 2 dimensional space. |
| 19 | * |
| 20 | * \param _Scalar the scalar type, i.e., the type of the coefficients |
| 21 | * |
| 22 | * This class is equivalent to a single scalar representing a counter clock wise rotation |
| 23 | * as a single angle in radian. It provides some additional features such as the automatic |
| 24 | * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar |
| 25 | * interface to Quaternion in order to facilitate the writing of generic algorithms |
| 26 | * dealing with rotations. |
| 27 | * |
| 28 | * \sa class Quaternion, class Transform |
| 29 | */ |
| 30 | template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> > |
| 31 | { |
| 32 | typedef _Scalar Scalar; |
| 33 | }; |
| 34 | |
| 35 | template<typename _Scalar> |
| 36 | class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> |
| 37 | { |
| 38 | typedef RotationBase<Rotation2D<_Scalar>,2> Base; |
| 39 | |
| 40 | public: |
| 41 | |
| 42 | using Base::operator*; |
| 43 | |
| 44 | enum { Dim = 2 }; |
| 45 | /** the scalar type of the coefficients */ |
| 46 | typedef _Scalar Scalar; |
| 47 | typedef Matrix<Scalar,2,1> Vector2; |
| 48 | typedef Matrix<Scalar,2,2> Matrix2; |
| 49 | |
| 50 | protected: |
| 51 | |
| 52 | Scalar m_angle; |
| 53 | |
| 54 | public: |
| 55 | |
| 56 | /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ |
| 57 | inline Rotation2D(Scalar a) : m_angle(a) {} |
| 58 | |
| 59 | /** \returns the rotation angle */ |
| 60 | inline Scalar angle() const { return m_angle; } |
| 61 | |
| 62 | /** \returns a read-write reference to the rotation angle */ |
| 63 | inline Scalar& angle() { return m_angle; } |
| 64 | |
| 65 | /** \returns the inverse rotation */ |
| 66 | inline Rotation2D inverse() const { return -m_angle; } |
| 67 | |
| 68 | /** Concatenates two rotations */ |
| 69 | inline Rotation2D operator*(const Rotation2D& other) const |
| 70 | { return m_angle + other.m_angle; } |
| 71 | |
| 72 | /** Concatenates two rotations */ |
| 73 | inline Rotation2D& operator*=(const Rotation2D& other) |
| 74 | { return m_angle += other.m_angle; return *this; } |
| 75 | |
| 76 | /** Applies the rotation to a 2D vector */ |
| 77 | Vector2 operator* (const Vector2& vec) const |
| 78 | { return toRotationMatrix() * vec; } |
| 79 | |
| 80 | template<typename Derived> |
| 81 | Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); |
| 82 | Matrix2 toRotationMatrix(void) const; |
| 83 | |
| 84 | /** \returns the spherical interpolation between \c *this and \a other using |
| 85 | * parameter \a t. It is in fact equivalent to a linear interpolation. |
| 86 | */ |
| 87 | inline Rotation2D slerp(Scalar t, const Rotation2D& other) const |
| 88 | { return m_angle * (1-t) + other.angle() * t; } |
| 89 | |
| 90 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 91 | * |
| 92 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 93 | * then this function smartly returns a const reference to \c *this. |
| 94 | */ |
| 95 | template<typename NewScalarType> |
| 96 | inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const |
| 97 | { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } |
| 98 | |
| 99 | /** Copy constructor with scalar type conversion */ |
| 100 | template<typename OtherScalarType> |
| 101 | inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) |
| 102 | { |
| 103 | m_angle = Scalar(other.angle()); |
| 104 | } |
| 105 | |
| 106 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 107 | * determined by \a prec. |
| 108 | * |
| 109 | * \sa MatrixBase::isApprox() */ |
| 110 | bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const |
| 111 | { return ei_isApprox(m_angle,other.m_angle, prec); } |
| 112 | }; |
| 113 | |
| 114 | /** \ingroup Geometry_Module |
| 115 | * single precision 2D rotation type */ |
| 116 | typedef Rotation2D<float> Rotation2Df; |
| 117 | /** \ingroup Geometry_Module |
| 118 | * double precision 2D rotation type */ |
| 119 | typedef Rotation2D<double> Rotation2Dd; |
| 120 | |
| 121 | /** Set \c *this from a 2x2 rotation matrix \a mat. |
| 122 | * In other words, this function extract the rotation angle |
| 123 | * from the rotation matrix. |
| 124 | */ |
| 125 | template<typename Scalar> |
| 126 | template<typename Derived> |
| 127 | Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
| 128 | { |
| 129 | EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) |
| 130 | m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0)); |
| 131 | return *this; |
| 132 | } |
| 133 | |
| 134 | /** Constructs and \returns an equivalent 2x2 rotation matrix. |
| 135 | */ |
| 136 | template<typename Scalar> |
| 137 | typename Rotation2D<Scalar>::Matrix2 |
| 138 | Rotation2D<Scalar>::toRotationMatrix(void) const |
| 139 | { |
| 140 | Scalar sinA = ei_sin(m_angle); |
| 141 | Scalar cosA = ei_cos(m_angle); |
| 142 | return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); |
| 143 | } |
| 144 | |
| 145 | } // end namespace Eigen |