Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway |
| 11 | |
| 12 | namespace Eigen { |
| 13 | |
| 14 | template<typename Other, |
| 15 | int OtherRows=Other::RowsAtCompileTime, |
| 16 | int OtherCols=Other::ColsAtCompileTime> |
| 17 | struct ei_quaternion_assign_impl; |
| 18 | |
| 19 | /** \geometry_module \ingroup Geometry_Module |
| 20 | * |
| 21 | * \class Quaternion |
| 22 | * |
| 23 | * \brief The quaternion class used to represent 3D orientations and rotations |
| 24 | * |
| 25 | * \param _Scalar the scalar type, i.e., the type of the coefficients |
| 26 | * |
| 27 | * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of |
| 28 | * orientations and rotations of objects in three dimensions. Compared to other representations |
| 29 | * like Euler angles or 3x3 matrices, quatertions offer the following advantages: |
| 30 | * \li \b compact storage (4 scalars) |
| 31 | * \li \b efficient to compose (28 flops), |
| 32 | * \li \b stable spherical interpolation |
| 33 | * |
| 34 | * The following two typedefs are provided for convenience: |
| 35 | * \li \c Quaternionf for \c float |
| 36 | * \li \c Quaterniond for \c double |
| 37 | * |
| 38 | * \sa class AngleAxis, class Transform |
| 39 | */ |
| 40 | |
| 41 | template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> > |
| 42 | { |
| 43 | typedef _Scalar Scalar; |
| 44 | }; |
| 45 | |
| 46 | template<typename _Scalar> |
| 47 | class Quaternion : public RotationBase<Quaternion<_Scalar>,3> |
| 48 | { |
| 49 | typedef RotationBase<Quaternion<_Scalar>,3> Base; |
| 50 | |
| 51 | public: |
| 52 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4) |
| 53 | |
| 54 | using Base::operator*; |
| 55 | |
| 56 | /** the scalar type of the coefficients */ |
| 57 | typedef _Scalar Scalar; |
| 58 | |
| 59 | /** the type of the Coefficients 4-vector */ |
| 60 | typedef Matrix<Scalar, 4, 1> Coefficients; |
| 61 | /** the type of a 3D vector */ |
| 62 | typedef Matrix<Scalar,3,1> Vector3; |
| 63 | /** the equivalent rotation matrix type */ |
| 64 | typedef Matrix<Scalar,3,3> Matrix3; |
| 65 | /** the equivalent angle-axis type */ |
| 66 | typedef AngleAxis<Scalar> AngleAxisType; |
| 67 | |
| 68 | /** \returns the \c x coefficient */ |
| 69 | inline Scalar x() const { return m_coeffs.coeff(0); } |
| 70 | /** \returns the \c y coefficient */ |
| 71 | inline Scalar y() const { return m_coeffs.coeff(1); } |
| 72 | /** \returns the \c z coefficient */ |
| 73 | inline Scalar z() const { return m_coeffs.coeff(2); } |
| 74 | /** \returns the \c w coefficient */ |
| 75 | inline Scalar w() const { return m_coeffs.coeff(3); } |
| 76 | |
| 77 | /** \returns a reference to the \c x coefficient */ |
| 78 | inline Scalar& x() { return m_coeffs.coeffRef(0); } |
| 79 | /** \returns a reference to the \c y coefficient */ |
| 80 | inline Scalar& y() { return m_coeffs.coeffRef(1); } |
| 81 | /** \returns a reference to the \c z coefficient */ |
| 82 | inline Scalar& z() { return m_coeffs.coeffRef(2); } |
| 83 | /** \returns a reference to the \c w coefficient */ |
| 84 | inline Scalar& w() { return m_coeffs.coeffRef(3); } |
| 85 | |
| 86 | /** \returns a read-only vector expression of the imaginary part (x,y,z) */ |
| 87 | inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); } |
| 88 | |
| 89 | /** \returns a vector expression of the imaginary part (x,y,z) */ |
| 90 | inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); } |
| 91 | |
| 92 | /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ |
| 93 | inline const Coefficients& coeffs() const { return m_coeffs; } |
| 94 | |
| 95 | /** \returns a vector expression of the coefficients (x,y,z,w) */ |
| 96 | inline Coefficients& coeffs() { return m_coeffs; } |
| 97 | |
| 98 | /** Default constructor leaving the quaternion uninitialized. */ |
| 99 | inline Quaternion() {} |
| 100 | |
| 101 | /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from |
| 102 | * its four coefficients \a w, \a x, \a y and \a z. |
| 103 | * |
| 104 | * \warning Note the order of the arguments: the real \a w coefficient first, |
| 105 | * while internally the coefficients are stored in the following order: |
| 106 | * [\c x, \c y, \c z, \c w] |
| 107 | */ |
| 108 | inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) |
| 109 | { m_coeffs << x, y, z, w; } |
| 110 | |
| 111 | /** Copy constructor */ |
| 112 | inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } |
| 113 | |
| 114 | /** Constructs and initializes a quaternion from the angle-axis \a aa */ |
| 115 | explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } |
| 116 | |
| 117 | /** Constructs and initializes a quaternion from either: |
| 118 | * - a rotation matrix expression, |
| 119 | * - a 4D vector expression representing quaternion coefficients. |
| 120 | * \sa operator=(MatrixBase<Derived>) |
| 121 | */ |
| 122 | template<typename Derived> |
| 123 | explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; } |
| 124 | |
| 125 | Quaternion& operator=(const Quaternion& other); |
| 126 | Quaternion& operator=(const AngleAxisType& aa); |
| 127 | template<typename Derived> |
| 128 | Quaternion& operator=(const MatrixBase<Derived>& m); |
| 129 | |
| 130 | /** \returns a quaternion representing an identity rotation |
| 131 | * \sa MatrixBase::Identity() |
| 132 | */ |
| 133 | static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); } |
| 134 | |
| 135 | /** \sa Quaternion::Identity(), MatrixBase::setIdentity() |
| 136 | */ |
| 137 | inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; } |
| 138 | |
| 139 | /** \returns the squared norm of the quaternion's coefficients |
| 140 | * \sa Quaternion::norm(), MatrixBase::squaredNorm() |
| 141 | */ |
| 142 | inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); } |
| 143 | |
| 144 | /** \returns the norm of the quaternion's coefficients |
| 145 | * \sa Quaternion::squaredNorm(), MatrixBase::norm() |
| 146 | */ |
| 147 | inline Scalar norm() const { return m_coeffs.norm(); } |
| 148 | |
| 149 | /** Normalizes the quaternion \c *this |
| 150 | * \sa normalized(), MatrixBase::normalize() */ |
| 151 | inline void normalize() { m_coeffs.normalize(); } |
| 152 | /** \returns a normalized version of \c *this |
| 153 | * \sa normalize(), MatrixBase::normalized() */ |
| 154 | inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); } |
| 155 | |
| 156 | /** \returns the dot product of \c *this and \a other |
| 157 | * Geometrically speaking, the dot product of two unit quaternions |
| 158 | * corresponds to the cosine of half the angle between the two rotations. |
| 159 | * \sa angularDistance() |
| 160 | */ |
| 161 | inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); } |
| 162 | |
| 163 | inline Scalar angularDistance(const Quaternion& other) const; |
| 164 | |
| 165 | Matrix3 toRotationMatrix(void) const; |
| 166 | |
| 167 | template<typename Derived1, typename Derived2> |
| 168 | Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| 169 | |
| 170 | inline Quaternion operator* (const Quaternion& q) const; |
| 171 | inline Quaternion& operator*= (const Quaternion& q); |
| 172 | |
| 173 | Quaternion inverse(void) const; |
| 174 | Quaternion conjugate(void) const; |
| 175 | |
| 176 | Quaternion slerp(Scalar t, const Quaternion& other) const; |
| 177 | |
| 178 | template<typename Derived> |
| 179 | Vector3 operator* (const MatrixBase<Derived>& vec) const; |
| 180 | |
| 181 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 182 | * |
| 183 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 184 | * then this function smartly returns a const reference to \c *this. |
| 185 | */ |
| 186 | template<typename NewScalarType> |
| 187 | inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const |
| 188 | { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); } |
| 189 | |
| 190 | /** Copy constructor with scalar type conversion */ |
| 191 | template<typename OtherScalarType> |
| 192 | inline explicit Quaternion(const Quaternion<OtherScalarType>& other) |
| 193 | { m_coeffs = other.coeffs().template cast<Scalar>(); } |
| 194 | |
| 195 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 196 | * determined by \a prec. |
| 197 | * |
| 198 | * \sa MatrixBase::isApprox() */ |
| 199 | bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const |
| 200 | { return m_coeffs.isApprox(other.m_coeffs, prec); } |
| 201 | |
| 202 | protected: |
| 203 | Coefficients m_coeffs; |
| 204 | }; |
| 205 | |
| 206 | /** \ingroup Geometry_Module |
| 207 | * single precision quaternion type */ |
| 208 | typedef Quaternion<float> Quaternionf; |
| 209 | /** \ingroup Geometry_Module |
| 210 | * double precision quaternion type */ |
| 211 | typedef Quaternion<double> Quaterniond; |
| 212 | |
| 213 | // Generic Quaternion * Quaternion product |
| 214 | template<typename Scalar> inline Quaternion<Scalar> |
| 215 | ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b) |
| 216 | { |
| 217 | return Quaternion<Scalar> |
| 218 | ( |
| 219 | a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), |
| 220 | a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), |
| 221 | a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), |
| 222 | a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() |
| 223 | ); |
| 224 | } |
| 225 | |
| 226 | /** \returns the concatenation of two rotations as a quaternion-quaternion product */ |
| 227 | template <typename Scalar> |
| 228 | inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const |
| 229 | { |
| 230 | return ei_quaternion_product(*this,other); |
| 231 | } |
| 232 | |
| 233 | /** \sa operator*(Quaternion) */ |
| 234 | template <typename Scalar> |
| 235 | inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other) |
| 236 | { |
| 237 | return (*this = *this * other); |
| 238 | } |
| 239 | |
| 240 | /** Rotation of a vector by a quaternion. |
| 241 | * \remarks If the quaternion is used to rotate several points (>1) |
| 242 | * then it is much more efficient to first convert it to a 3x3 Matrix. |
| 243 | * Comparison of the operation cost for n transformations: |
| 244 | * - Quaternion: 30n |
| 245 | * - Via a Matrix3: 24 + 15n |
| 246 | */ |
| 247 | template <typename Scalar> |
| 248 | template<typename Derived> |
| 249 | inline typename Quaternion<Scalar>::Vector3 |
| 250 | Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const |
| 251 | { |
| 252 | // Note that this algorithm comes from the optimization by hand |
| 253 | // of the conversion to a Matrix followed by a Matrix/Vector product. |
| 254 | // It appears to be much faster than the common algorithm found |
| 255 | // in the litterature (30 versus 39 flops). It also requires two |
| 256 | // Vector3 as temporaries. |
| 257 | Vector3 uv; |
| 258 | uv = 2 * this->vec().cross(v); |
| 259 | return v + this->w() * uv + this->vec().cross(uv); |
| 260 | } |
| 261 | |
| 262 | template<typename Scalar> |
| 263 | inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other) |
| 264 | { |
| 265 | m_coeffs = other.m_coeffs; |
| 266 | return *this; |
| 267 | } |
| 268 | |
| 269 | /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this |
| 270 | */ |
| 271 | template<typename Scalar> |
| 272 | inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa) |
| 273 | { |
| 274 | Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings |
| 275 | this->w() = ei_cos(ha); |
| 276 | this->vec() = ei_sin(ha) * aa.axis(); |
| 277 | return *this; |
| 278 | } |
| 279 | |
| 280 | /** Set \c *this from the expression \a xpr: |
| 281 | * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion |
| 282 | * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
| 283 | * and \a xpr is converted to a quaternion |
| 284 | */ |
| 285 | template<typename Scalar> |
| 286 | template<typename Derived> |
| 287 | inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr) |
| 288 | { |
| 289 | ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived()); |
| 290 | return *this; |
| 291 | } |
| 292 | |
| 293 | /** Convert the quaternion to a 3x3 rotation matrix */ |
| 294 | template<typename Scalar> |
| 295 | inline typename Quaternion<Scalar>::Matrix3 |
| 296 | Quaternion<Scalar>::toRotationMatrix(void) const |
| 297 | { |
| 298 | // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) |
| 299 | // if not inlined then the cost of the return by value is huge ~ +35%, |
| 300 | // however, not inlining this function is an order of magnitude slower, so |
| 301 | // it has to be inlined, and so the return by value is not an issue |
| 302 | Matrix3 res; |
| 303 | |
| 304 | const Scalar tx = Scalar(2)*this->x(); |
| 305 | const Scalar ty = Scalar(2)*this->y(); |
| 306 | const Scalar tz = Scalar(2)*this->z(); |
| 307 | const Scalar twx = tx*this->w(); |
| 308 | const Scalar twy = ty*this->w(); |
| 309 | const Scalar twz = tz*this->w(); |
| 310 | const Scalar txx = tx*this->x(); |
| 311 | const Scalar txy = ty*this->x(); |
| 312 | const Scalar txz = tz*this->x(); |
| 313 | const Scalar tyy = ty*this->y(); |
| 314 | const Scalar tyz = tz*this->y(); |
| 315 | const Scalar tzz = tz*this->z(); |
| 316 | |
| 317 | res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); |
| 318 | res.coeffRef(0,1) = txy-twz; |
| 319 | res.coeffRef(0,2) = txz+twy; |
| 320 | res.coeffRef(1,0) = txy+twz; |
| 321 | res.coeffRef(1,1) = Scalar(1)-(txx+tzz); |
| 322 | res.coeffRef(1,2) = tyz-twx; |
| 323 | res.coeffRef(2,0) = txz-twy; |
| 324 | res.coeffRef(2,1) = tyz+twx; |
| 325 | res.coeffRef(2,2) = Scalar(1)-(txx+tyy); |
| 326 | |
| 327 | return res; |
| 328 | } |
| 329 | |
| 330 | /** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b. |
| 331 | * |
| 332 | * \returns a reference to *this. |
| 333 | * |
| 334 | * Note that the two input vectors do \b not have to be normalized. |
| 335 | */ |
| 336 | template<typename Scalar> |
| 337 | template<typename Derived1, typename Derived2> |
| 338 | inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) |
| 339 | { |
| 340 | Vector3 v0 = a.normalized(); |
| 341 | Vector3 v1 = b.normalized(); |
| 342 | Scalar c = v0.eigen2_dot(v1); |
| 343 | |
| 344 | // if dot == 1, vectors are the same |
| 345 | if (ei_isApprox(c,Scalar(1))) |
| 346 | { |
| 347 | // set to identity |
| 348 | this->w() = 1; this->vec().setZero(); |
| 349 | return *this; |
| 350 | } |
| 351 | // if dot == -1, vectors are opposites |
| 352 | if (ei_isApprox(c,Scalar(-1))) |
| 353 | { |
| 354 | this->vec() = v0.unitOrthogonal(); |
| 355 | this->w() = 0; |
| 356 | return *this; |
| 357 | } |
| 358 | |
| 359 | Vector3 axis = v0.cross(v1); |
| 360 | Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); |
| 361 | Scalar invs = Scalar(1)/s; |
| 362 | this->vec() = axis * invs; |
| 363 | this->w() = s * Scalar(0.5); |
| 364 | |
| 365 | return *this; |
| 366 | } |
| 367 | |
| 368 | /** \returns the multiplicative inverse of \c *this |
| 369 | * Note that in most cases, i.e., if you simply want the opposite rotation, |
| 370 | * and/or the quaternion is normalized, then it is enough to use the conjugate. |
| 371 | * |
| 372 | * \sa Quaternion::conjugate() |
| 373 | */ |
| 374 | template <typename Scalar> |
| 375 | inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const |
| 376 | { |
| 377 | // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? |
| 378 | Scalar n2 = this->squaredNorm(); |
| 379 | if (n2 > 0) |
| 380 | return Quaternion(conjugate().coeffs() / n2); |
| 381 | else |
| 382 | { |
| 383 | // return an invalid result to flag the error |
| 384 | return Quaternion(Coefficients::Zero()); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse |
| 389 | * if the quaternion is normalized. |
| 390 | * The conjugate of a quaternion represents the opposite rotation. |
| 391 | * |
| 392 | * \sa Quaternion::inverse() |
| 393 | */ |
| 394 | template <typename Scalar> |
| 395 | inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const |
| 396 | { |
| 397 | return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); |
| 398 | } |
| 399 | |
| 400 | /** \returns the angle (in radian) between two rotations |
| 401 | * \sa eigen2_dot() |
| 402 | */ |
| 403 | template <typename Scalar> |
| 404 | inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const |
| 405 | { |
| 406 | double d = ei_abs(this->eigen2_dot(other)); |
| 407 | if (d>=1.0) |
| 408 | return 0; |
| 409 | return Scalar(2) * std::acos(d); |
| 410 | } |
| 411 | |
| 412 | /** \returns the spherical linear interpolation between the two quaternions |
| 413 | * \c *this and \a other at the parameter \a t |
| 414 | */ |
| 415 | template <typename Scalar> |
| 416 | Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const |
| 417 | { |
| 418 | static const Scalar one = Scalar(1) - machine_epsilon<Scalar>(); |
| 419 | Scalar d = this->eigen2_dot(other); |
| 420 | Scalar absD = ei_abs(d); |
| 421 | |
| 422 | Scalar scale0; |
| 423 | Scalar scale1; |
| 424 | |
| 425 | if (absD>=one) |
| 426 | { |
| 427 | scale0 = Scalar(1) - t; |
| 428 | scale1 = t; |
| 429 | } |
| 430 | else |
| 431 | { |
| 432 | // theta is the angle between the 2 quaternions |
| 433 | Scalar theta = std::acos(absD); |
| 434 | Scalar sinTheta = ei_sin(theta); |
| 435 | |
| 436 | scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; |
| 437 | scale1 = ei_sin( ( t * theta) ) / sinTheta; |
| 438 | if (d<0) |
| 439 | scale1 = -scale1; |
| 440 | } |
| 441 | |
| 442 | return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); |
| 443 | } |
| 444 | |
| 445 | // set from a rotation matrix |
| 446 | template<typename Other> |
| 447 | struct ei_quaternion_assign_impl<Other,3,3> |
| 448 | { |
| 449 | typedef typename Other::Scalar Scalar; |
| 450 | static inline void run(Quaternion<Scalar>& q, const Other& mat) |
| 451 | { |
| 452 | // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| 453 | // Ken Shoemake, 1987 SIGGRAPH course notes |
| 454 | Scalar t = mat.trace(); |
| 455 | if (t > 0) |
| 456 | { |
| 457 | t = ei_sqrt(t + Scalar(1.0)); |
| 458 | q.w() = Scalar(0.5)*t; |
| 459 | t = Scalar(0.5)/t; |
| 460 | q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; |
| 461 | q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; |
| 462 | q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; |
| 463 | } |
| 464 | else |
| 465 | { |
| 466 | int i = 0; |
| 467 | if (mat.coeff(1,1) > mat.coeff(0,0)) |
| 468 | i = 1; |
| 469 | if (mat.coeff(2,2) > mat.coeff(i,i)) |
| 470 | i = 2; |
| 471 | int j = (i+1)%3; |
| 472 | int k = (j+1)%3; |
| 473 | |
| 474 | t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); |
| 475 | q.coeffs().coeffRef(i) = Scalar(0.5) * t; |
| 476 | t = Scalar(0.5)/t; |
| 477 | q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; |
| 478 | q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; |
| 479 | q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; |
| 480 | } |
| 481 | } |
| 482 | }; |
| 483 | |
| 484 | // set from a vector of coefficients assumed to be a quaternion |
| 485 | template<typename Other> |
| 486 | struct ei_quaternion_assign_impl<Other,4,1> |
| 487 | { |
| 488 | typedef typename Other::Scalar Scalar; |
| 489 | static inline void run(Quaternion<Scalar>& q, const Other& vec) |
| 490 | { |
| 491 | q.coeffs() = vec; |
| 492 | } |
| 493 | }; |
| 494 | |
| 495 | } // end namespace Eigen |