Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2017 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // Preconditioners for linear systems that arise in Structure from |
| 32 | // Motion problems. VisibilityBasedPreconditioner implements: |
| 33 | // |
| 34 | // CLUSTER_JACOBI |
| 35 | // CLUSTER_TRIDIAGONAL |
| 36 | // |
| 37 | // Detailed descriptions of these preconditions beyond what is |
| 38 | // documented here can be found in |
| 39 | // |
| 40 | // Visibility Based Preconditioning for Bundle Adjustment |
| 41 | // A. Kushal & S. Agarwal, CVPR 2012. |
| 42 | // |
| 43 | // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf |
| 44 | // |
| 45 | // The two preconditioners share enough code that its most efficient |
| 46 | // to implement them as part of the same code base. |
| 47 | |
| 48 | #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |
| 49 | #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |
| 50 | |
| 51 | #include <memory> |
| 52 | #include <set> |
| 53 | #include <unordered_map> |
| 54 | #include <unordered_set> |
| 55 | #include <utility> |
| 56 | #include <vector> |
| 57 | |
| 58 | #include "ceres/graph.h" |
| 59 | #include "ceres/linear_solver.h" |
| 60 | #include "ceres/pair_hash.h" |
| 61 | #include "ceres/preconditioner.h" |
| 62 | #include "ceres/sparse_cholesky.h" |
| 63 | |
| 64 | namespace ceres { |
| 65 | namespace internal { |
| 66 | |
| 67 | class BlockRandomAccessSparseMatrix; |
| 68 | class BlockSparseMatrix; |
| 69 | struct CompressedRowBlockStructure; |
| 70 | class SchurEliminatorBase; |
| 71 | |
| 72 | // This class implements visibility based preconditioners for |
| 73 | // Structure from Motion/Bundle Adjustment problems. The name |
| 74 | // VisibilityBasedPreconditioner comes from the fact that the sparsity |
| 75 | // structure of the preconditioner matrix is determined by analyzing |
| 76 | // the visibility structure of the scene, i.e. which cameras see which |
| 77 | // points. |
| 78 | // |
| 79 | // The key idea of visibility based preconditioning is to identify |
| 80 | // cameras that we expect have strong interactions, and then using the |
| 81 | // entries in the Schur complement matrix corresponding to these |
| 82 | // camera pairs as an approximation to the full Schur complement. |
| 83 | // |
| 84 | // CLUSTER_JACOBI identifies these camera pairs by clustering cameras, |
| 85 | // and considering all non-zero camera pairs within each cluster. The |
| 86 | // clustering in the current implementation is done using the |
| 87 | // Canonical Views algorithm of Simon et al. (see |
| 88 | // canonical_views_clustering.h). For the purposes of clustering, the |
| 89 | // similarity or the degree of interaction between a pair of cameras |
| 90 | // is measured by counting the number of points visible in both the |
| 91 | // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we |
| 92 | // were to permute the parameter blocks such that all the cameras in |
| 93 | // the same cluster occur contiguously, the preconditioner matrix will |
| 94 | // be a block diagonal matrix with blocks corresponding to the |
| 95 | // clusters. Thus in analogy with the Jacobi preconditioner we refer |
| 96 | // to this as the CLUSTER_JACOBI preconditioner. |
| 97 | // |
| 98 | // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI |
| 99 | // preconditioner by considering the interaction between clusters and |
| 100 | // identifying strong interactions between cluster pairs. This is done |
| 101 | // by constructing a weighted graph on the clusters, with the weight |
| 102 | // on the edges connecting two clusters proportional to the number of |
| 103 | // 3D points visible to cameras in both the clusters. A degree-2 |
| 104 | // maximum spanning forest is identified in this graph and the camera |
| 105 | // pairs contained in the edges of this forest are added to the |
| 106 | // preconditioner. The detailed reasoning for this construction is |
| 107 | // explained in the paper mentioned above. |
| 108 | // |
| 109 | // Degree-2 spanning trees and forests have the property that they |
| 110 | // correspond to tri-diagonal matrices. Thus there exist a permutation |
| 111 | // of the camera blocks under which the CLUSTER_TRIDIAGONAL |
| 112 | // preconditioner matrix is a block tridiagonal matrix, and thus the |
| 113 | // name for the preconditioner. |
| 114 | // |
| 115 | // Thread Safety: This class is NOT thread safe. |
| 116 | // |
| 117 | // Example usage: |
| 118 | // |
| 119 | // LinearSolver::Options options; |
| 120 | // options.preconditioner_type = CLUSTER_JACOBI; |
| 121 | // options.elimination_groups.push_back(num_points); |
| 122 | // options.elimination_groups.push_back(num_cameras); |
| 123 | // VisibilityBasedPreconditioner preconditioner( |
| 124 | // *A.block_structure(), options); |
| 125 | // preconditioner.Update(A, NULL); |
| 126 | // preconditioner.RightMultiply(x, y); |
| 127 | class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner { |
| 128 | public: |
| 129 | // Initialize the symbolic structure of the preconditioner. bs is |
| 130 | // the block structure of the linear system to be solved. It is used |
| 131 | // to determine the sparsity structure of the preconditioner matrix. |
| 132 | // |
| 133 | // It has the same structural requirement as other Schur complement |
| 134 | // based solvers. Please see schur_eliminator.h for more details. |
| 135 | VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs, |
| 136 | const Preconditioner::Options& options); |
| 137 | VisibilityBasedPreconditioner(const VisibilityBasedPreconditioner&) = delete; |
| 138 | void operator=(const VisibilityBasedPreconditioner&) = delete; |
| 139 | |
| 140 | virtual ~VisibilityBasedPreconditioner(); |
| 141 | |
| 142 | // Preconditioner interface |
| 143 | virtual void RightMultiply(const double* x, double* y) const; |
| 144 | virtual int num_rows() const; |
| 145 | |
| 146 | friend class VisibilityBasedPreconditionerTest; |
| 147 | |
| 148 | private: |
| 149 | virtual bool UpdateImpl(const BlockSparseMatrix& A, const double* D); |
| 150 | void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs); |
| 151 | void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs); |
| 152 | void InitStorage(const CompressedRowBlockStructure& bs); |
| 153 | void InitEliminator(const CompressedRowBlockStructure& bs); |
| 154 | LinearSolverTerminationType Factorize(); |
| 155 | void ScaleOffDiagonalCells(); |
| 156 | |
| 157 | void ClusterCameras(const std::vector<std::set<int>>& visibility); |
| 158 | void FlattenMembershipMap(const std::unordered_map<int, int>& membership_map, |
| 159 | std::vector<int>* membership_vector) const; |
| 160 | void ComputeClusterVisibility( |
| 161 | const std::vector<std::set<int>>& visibility, |
| 162 | std::vector<std::set<int>>* cluster_visibility) const; |
| 163 | WeightedGraph<int>* CreateClusterGraph( |
| 164 | const std::vector<std::set<int>>& visibility) const; |
| 165 | void ForestToClusterPairs(const WeightedGraph<int>& forest, |
| 166 | std::unordered_set<std::pair<int, int>, pair_hash>* cluster_pairs) const; |
| 167 | void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs); |
| 168 | bool IsBlockPairInPreconditioner(int block1, int block2) const; |
| 169 | bool IsBlockPairOffDiagonal(int block1, int block2) const; |
| 170 | |
| 171 | Preconditioner::Options options_; |
| 172 | |
| 173 | // Number of parameter blocks in the schur complement. |
| 174 | int num_blocks_; |
| 175 | int num_clusters_; |
| 176 | |
| 177 | // Sizes of the blocks in the schur complement. |
| 178 | std::vector<int> block_size_; |
| 179 | |
| 180 | // Mapping from cameras to clusters. |
| 181 | std::vector<int> cluster_membership_; |
| 182 | |
| 183 | // Non-zero camera pairs from the schur complement matrix that are |
| 184 | // present in the preconditioner, sorted by row (first element of |
| 185 | // each pair), then column (second). |
| 186 | std::set<std::pair<int, int>> block_pairs_; |
| 187 | |
| 188 | // Set of cluster pairs (including self pairs (i,i)) in the |
| 189 | // preconditioner. |
| 190 | std::unordered_set<std::pair<int, int>, pair_hash> cluster_pairs_; |
| 191 | std::unique_ptr<SchurEliminatorBase> eliminator_; |
| 192 | |
| 193 | // Preconditioner matrix. |
| 194 | std::unique_ptr<BlockRandomAccessSparseMatrix> m_; |
| 195 | std::unique_ptr<SparseCholesky> sparse_cholesky_; |
| 196 | }; |
| 197 | |
| 198 | } // namespace internal |
| 199 | } // namespace ceres |
| 200 | |
| 201 | #endif // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_ |