Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | // |
| 31 | // Simple blas functions for use in the Schur Eliminator. These are |
| 32 | // fairly basic implementations which already yield a significant |
| 33 | // speedup in the eliminator performance. |
| 34 | |
| 35 | #ifndef CERES_INTERNAL_SMALL_BLAS_H_ |
| 36 | #define CERES_INTERNAL_SMALL_BLAS_H_ |
| 37 | |
| 38 | #include "ceres/internal/port.h" |
| 39 | #include "ceres/internal/eigen.h" |
| 40 | #include "glog/logging.h" |
| 41 | #include "small_blas_generic.h" |
| 42 | |
| 43 | namespace ceres { |
| 44 | namespace internal { |
| 45 | |
| 46 | // The following three macros are used to share code and reduce |
| 47 | // template junk across the various GEMM variants. |
| 48 | #define CERES_GEMM_BEGIN(name) \ |
| 49 | template<int kRowA, int kColA, int kRowB, int kColB, int kOperation> \ |
| 50 | inline void name(const double* A, \ |
| 51 | const int num_row_a, \ |
| 52 | const int num_col_a, \ |
| 53 | const double* B, \ |
| 54 | const int num_row_b, \ |
| 55 | const int num_col_b, \ |
| 56 | double* C, \ |
| 57 | const int start_row_c, \ |
| 58 | const int start_col_c, \ |
| 59 | const int row_stride_c, \ |
| 60 | const int col_stride_c) |
| 61 | |
| 62 | #define CERES_GEMM_NAIVE_HEADER \ |
| 63 | DCHECK_GT(num_row_a, 0); \ |
| 64 | DCHECK_GT(num_col_a, 0); \ |
| 65 | DCHECK_GT(num_row_b, 0); \ |
| 66 | DCHECK_GT(num_col_b, 0); \ |
| 67 | DCHECK_GE(start_row_c, 0); \ |
| 68 | DCHECK_GE(start_col_c, 0); \ |
| 69 | DCHECK_GT(row_stride_c, 0); \ |
| 70 | DCHECK_GT(col_stride_c, 0); \ |
| 71 | DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a)); \ |
| 72 | DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a)); \ |
| 73 | DCHECK((kRowB == Eigen::Dynamic) || (kRowB == num_row_b)); \ |
| 74 | DCHECK((kColB == Eigen::Dynamic) || (kColB == num_col_b)); \ |
| 75 | const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a); \ |
| 76 | const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a); \ |
| 77 | const int NUM_ROW_B = (kRowB != Eigen::Dynamic ? kRowB : num_row_b); \ |
| 78 | const int NUM_COL_B = (kColB != Eigen::Dynamic ? kColB : num_col_b); |
| 79 | |
| 80 | #define CERES_GEMM_EIGEN_HEADER \ |
| 81 | const typename EigenTypes<kRowA, kColA>::ConstMatrixRef \ |
| 82 | Aref(A, num_row_a, num_col_a); \ |
| 83 | const typename EigenTypes<kRowB, kColB>::ConstMatrixRef \ |
| 84 | Bref(B, num_row_b, num_col_b); \ |
| 85 | MatrixRef Cref(C, row_stride_c, col_stride_c); \ |
| 86 | |
| 87 | #define CERES_CALL_GEMM(name) \ |
| 88 | name<kRowA, kColA, kRowB, kColB, kOperation>( \ |
| 89 | A, num_row_a, num_col_a, \ |
| 90 | B, num_row_b, num_col_b, \ |
| 91 | C, start_row_c, start_col_c, row_stride_c, col_stride_c); |
| 92 | |
| 93 | #define CERES_GEMM_STORE_SINGLE(p, index, value) \ |
| 94 | if (kOperation > 0) { \ |
| 95 | p[index] += value; \ |
| 96 | } else if (kOperation < 0) { \ |
| 97 | p[index] -= value; \ |
| 98 | } else { \ |
| 99 | p[index] = value; \ |
| 100 | } |
| 101 | |
| 102 | #define CERES_GEMM_STORE_PAIR(p, index, v1, v2) \ |
| 103 | if (kOperation > 0) { \ |
| 104 | p[index] += v1; \ |
| 105 | p[index + 1] += v2; \ |
| 106 | } else if (kOperation < 0) { \ |
| 107 | p[index] -= v1; \ |
| 108 | p[index + 1] -= v2; \ |
| 109 | } else { \ |
| 110 | p[index] = v1; \ |
| 111 | p[index + 1] = v2; \ |
| 112 | } |
| 113 | |
| 114 | // For the matrix-matrix functions below, there are three variants for |
| 115 | // each functionality. Foo, FooNaive and FooEigen. Foo is the one to |
| 116 | // be called by the user. FooNaive is a basic loop based |
| 117 | // implementation and FooEigen uses Eigen's implementation. Foo |
| 118 | // chooses between FooNaive and FooEigen depending on how many of the |
| 119 | // template arguments are fixed at compile time. Currently, FooEigen |
| 120 | // is called if all matrix dimensions are compile time |
| 121 | // constants. FooNaive is called otherwise. This leads to the best |
| 122 | // performance currently. |
| 123 | // |
| 124 | // The MatrixMatrixMultiply variants compute: |
| 125 | // |
| 126 | // C op A * B; |
| 127 | // |
| 128 | // The MatrixTransposeMatrixMultiply variants compute: |
| 129 | // |
| 130 | // C op A' * B |
| 131 | // |
| 132 | // where op can be +=, -=, or =. |
| 133 | // |
| 134 | // The template parameters (kRowA, kColA, kRowB, kColB) allow |
| 135 | // specialization of the loop at compile time. If this information is |
| 136 | // not available, then Eigen::Dynamic should be used as the template |
| 137 | // argument. |
| 138 | // |
| 139 | // kOperation = 1 -> C += A * B |
| 140 | // kOperation = -1 -> C -= A * B |
| 141 | // kOperation = 0 -> C = A * B |
| 142 | // |
| 143 | // The functions can write into matrices C which are larger than the |
| 144 | // matrix A * B. This is done by specifying the true size of C via |
| 145 | // row_stride_c and col_stride_c, and then indicating where A * B |
| 146 | // should be written into by start_row_c and start_col_c. |
| 147 | // |
| 148 | // Graphically if row_stride_c = 10, col_stride_c = 12, start_row_c = |
| 149 | // 4 and start_col_c = 5, then if A = 3x2 and B = 2x4, we get |
| 150 | // |
| 151 | // ------------ |
| 152 | // ------------ |
| 153 | // ------------ |
| 154 | // ------------ |
| 155 | // -----xxxx--- |
| 156 | // -----xxxx--- |
| 157 | // -----xxxx--- |
| 158 | // ------------ |
| 159 | // ------------ |
| 160 | // ------------ |
| 161 | // |
| 162 | CERES_GEMM_BEGIN(MatrixMatrixMultiplyEigen) { |
| 163 | CERES_GEMM_EIGEN_HEADER |
| 164 | Eigen::Block<MatrixRef, kRowA, kColB> |
| 165 | block(Cref, start_row_c, start_col_c, num_row_a, num_col_b); |
| 166 | |
| 167 | if (kOperation > 0) { |
| 168 | block.noalias() += Aref * Bref; |
| 169 | } else if (kOperation < 0) { |
| 170 | block.noalias() -= Aref * Bref; |
| 171 | } else { |
| 172 | block.noalias() = Aref * Bref; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | CERES_GEMM_BEGIN(MatrixMatrixMultiplyNaive) { |
| 177 | CERES_GEMM_NAIVE_HEADER |
| 178 | DCHECK_EQ(NUM_COL_A, NUM_ROW_B); |
| 179 | |
| 180 | const int NUM_ROW_C = NUM_ROW_A; |
| 181 | const int NUM_COL_C = NUM_COL_B; |
| 182 | DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c); |
| 183 | DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c); |
| 184 | const int span = 4; |
| 185 | |
| 186 | // Calculate the remainder part first. |
| 187 | |
| 188 | // Process the last odd column if present. |
| 189 | if (NUM_COL_C & 1) { |
| 190 | int col = NUM_COL_C - 1; |
| 191 | const double* pa = &A[0]; |
| 192 | for (int row = 0; row < NUM_ROW_C; ++row, pa += NUM_COL_A) { |
| 193 | const double* pb = &B[col]; |
| 194 | double tmp = 0.0; |
| 195 | for (int k = 0; k < NUM_COL_A; ++k, pb += NUM_COL_B) { |
| 196 | tmp += pa[k] * pb[0]; |
| 197 | } |
| 198 | |
| 199 | const int index = (row + start_row_c) * col_stride_c + start_col_c + col; |
| 200 | CERES_GEMM_STORE_SINGLE(C, index, tmp); |
| 201 | } |
| 202 | |
| 203 | // Return directly for efficiency of extremely small matrix multiply. |
| 204 | if (NUM_COL_C == 1) { |
| 205 | return; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | // Process the couple columns in remainder if present. |
| 210 | if (NUM_COL_C & 2) { |
| 211 | int col = NUM_COL_C & (int)(~(span - 1)) ; |
| 212 | const double* pa = &A[0]; |
| 213 | for (int row = 0; row < NUM_ROW_C; ++row, pa += NUM_COL_A) { |
| 214 | const double* pb = &B[col]; |
| 215 | double tmp1 = 0.0, tmp2 = 0.0; |
| 216 | for (int k = 0; k < NUM_COL_A; ++k, pb += NUM_COL_B) { |
| 217 | double av = pa[k]; |
| 218 | tmp1 += av * pb[0]; |
| 219 | tmp2 += av * pb[1]; |
| 220 | } |
| 221 | |
| 222 | const int index = (row + start_row_c) * col_stride_c + start_col_c + col; |
| 223 | CERES_GEMM_STORE_PAIR(C, index, tmp1, tmp2); |
| 224 | } |
| 225 | |
| 226 | // Return directly for efficiency of extremely small matrix multiply. |
| 227 | if (NUM_COL_C < span) { |
| 228 | return; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | // Calculate the main part with multiples of 4. |
| 233 | int col_m = NUM_COL_C & (int)(~(span - 1)); |
| 234 | for (int col = 0; col < col_m; col += span) { |
| 235 | for (int row = 0; row < NUM_ROW_C; ++row) { |
| 236 | const int index = (row + start_row_c) * col_stride_c + start_col_c + col; |
| 237 | MMM_mat1x4(NUM_COL_A, &A[row * NUM_COL_A], |
| 238 | &B[col], NUM_COL_B, &C[index], kOperation); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | } |
| 243 | |
| 244 | CERES_GEMM_BEGIN(MatrixMatrixMultiply) { |
| 245 | #ifdef CERES_NO_CUSTOM_BLAS |
| 246 | |
| 247 | CERES_CALL_GEMM(MatrixMatrixMultiplyEigen) |
| 248 | return; |
| 249 | |
| 250 | #else |
| 251 | |
| 252 | if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic && |
| 253 | kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) { |
| 254 | CERES_CALL_GEMM(MatrixMatrixMultiplyEigen) |
| 255 | } else { |
| 256 | CERES_CALL_GEMM(MatrixMatrixMultiplyNaive) |
| 257 | } |
| 258 | |
| 259 | #endif |
| 260 | } |
| 261 | |
| 262 | CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyEigen) { |
| 263 | CERES_GEMM_EIGEN_HEADER |
| 264 | Eigen::Block<MatrixRef, kColA, kColB> block(Cref, |
| 265 | start_row_c, start_col_c, |
| 266 | num_col_a, num_col_b); |
| 267 | if (kOperation > 0) { |
| 268 | block.noalias() += Aref.transpose() * Bref; |
| 269 | } else if (kOperation < 0) { |
| 270 | block.noalias() -= Aref.transpose() * Bref; |
| 271 | } else { |
| 272 | block.noalias() = Aref.transpose() * Bref; |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiplyNaive) { |
| 277 | CERES_GEMM_NAIVE_HEADER |
| 278 | DCHECK_EQ(NUM_ROW_A, NUM_ROW_B); |
| 279 | |
| 280 | const int NUM_ROW_C = NUM_COL_A; |
| 281 | const int NUM_COL_C = NUM_COL_B; |
| 282 | DCHECK_LE(start_row_c + NUM_ROW_C, row_stride_c); |
| 283 | DCHECK_LE(start_col_c + NUM_COL_C, col_stride_c); |
| 284 | const int span = 4; |
| 285 | |
| 286 | // Process the remainder part first. |
| 287 | |
| 288 | // Process the last odd column if present. |
| 289 | if (NUM_COL_C & 1) { |
| 290 | int col = NUM_COL_C - 1; |
| 291 | for (int row = 0; row < NUM_ROW_C; ++row) { |
| 292 | const double* pa = &A[row]; |
| 293 | const double* pb = &B[col]; |
| 294 | double tmp = 0.0; |
| 295 | for (int k = 0; k < NUM_ROW_A; ++k) { |
| 296 | tmp += pa[0] * pb[0]; |
| 297 | pa += NUM_COL_A; |
| 298 | pb += NUM_COL_B; |
| 299 | } |
| 300 | |
| 301 | const int index = (row + start_row_c) * col_stride_c + start_col_c + col; |
| 302 | CERES_GEMM_STORE_SINGLE(C, index, tmp); |
| 303 | } |
| 304 | |
| 305 | // Return directly for efficiency of extremely small matrix multiply. |
| 306 | if (NUM_COL_C == 1) { |
| 307 | return; |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | // Process the couple columns in remainder if present. |
| 312 | if (NUM_COL_C & 2) { |
| 313 | int col = NUM_COL_C & (int)(~(span - 1)) ; |
| 314 | for (int row = 0; row < NUM_ROW_C; ++row) { |
| 315 | const double* pa = &A[row]; |
| 316 | const double* pb = &B[col]; |
| 317 | double tmp1 = 0.0, tmp2 = 0.0; |
| 318 | for (int k = 0; k < NUM_ROW_A; ++k) { |
| 319 | double av = *pa; |
| 320 | tmp1 += av * pb[0]; |
| 321 | tmp2 += av * pb[1]; |
| 322 | pa += NUM_COL_A; |
| 323 | pb += NUM_COL_B; |
| 324 | } |
| 325 | |
| 326 | const int index = (row + start_row_c) * col_stride_c + start_col_c + col; |
| 327 | CERES_GEMM_STORE_PAIR(C, index, tmp1, tmp2); |
| 328 | } |
| 329 | |
| 330 | // Return directly for efficiency of extremely small matrix multiply. |
| 331 | if (NUM_COL_C < span) { |
| 332 | return; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Process the main part with multiples of 4. |
| 337 | int col_m = NUM_COL_C & (int)(~(span - 1)); |
| 338 | for (int col = 0; col < col_m; col += span) { |
| 339 | for (int row = 0; row < NUM_ROW_C; ++row) { |
| 340 | const int index = (row + start_row_c) * col_stride_c + start_col_c + col; |
| 341 | MTM_mat1x4(NUM_ROW_A, &A[row], NUM_COL_A, |
| 342 | &B[col], NUM_COL_B, &C[index], kOperation); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | } |
| 347 | |
| 348 | CERES_GEMM_BEGIN(MatrixTransposeMatrixMultiply) { |
| 349 | #ifdef CERES_NO_CUSTOM_BLAS |
| 350 | |
| 351 | CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen) |
| 352 | return; |
| 353 | |
| 354 | #else |
| 355 | |
| 356 | if (kRowA != Eigen::Dynamic && kColA != Eigen::Dynamic && |
| 357 | kRowB != Eigen::Dynamic && kColB != Eigen::Dynamic) { |
| 358 | CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyEigen) |
| 359 | } else { |
| 360 | CERES_CALL_GEMM(MatrixTransposeMatrixMultiplyNaive) |
| 361 | } |
| 362 | |
| 363 | #endif |
| 364 | } |
| 365 | |
| 366 | // Matrix-Vector multiplication |
| 367 | // |
| 368 | // c op A * b; |
| 369 | // |
| 370 | // where op can be +=, -=, or =. |
| 371 | // |
| 372 | // The template parameters (kRowA, kColA) allow specialization of the |
| 373 | // loop at compile time. If this information is not available, then |
| 374 | // Eigen::Dynamic should be used as the template argument. |
| 375 | // |
| 376 | // kOperation = 1 -> c += A' * b |
| 377 | // kOperation = -1 -> c -= A' * b |
| 378 | // kOperation = 0 -> c = A' * b |
| 379 | template<int kRowA, int kColA, int kOperation> |
| 380 | inline void MatrixVectorMultiply(const double* A, |
| 381 | const int num_row_a, |
| 382 | const int num_col_a, |
| 383 | const double* b, |
| 384 | double* c) { |
| 385 | #ifdef CERES_NO_CUSTOM_BLAS |
| 386 | const typename EigenTypes<kRowA, kColA>::ConstMatrixRef |
| 387 | Aref(A, num_row_a, num_col_a); |
| 388 | const typename EigenTypes<kColA>::ConstVectorRef bref(b, num_col_a); |
| 389 | typename EigenTypes<kRowA>::VectorRef cref(c, num_row_a); |
| 390 | |
| 391 | // lazyProduct works better than .noalias() for matrix-vector |
| 392 | // products. |
| 393 | if (kOperation > 0) { |
| 394 | cref += Aref.lazyProduct(bref); |
| 395 | } else if (kOperation < 0) { |
| 396 | cref -= Aref.lazyProduct(bref); |
| 397 | } else { |
| 398 | cref = Aref.lazyProduct(bref); |
| 399 | } |
| 400 | #else |
| 401 | |
| 402 | DCHECK_GT(num_row_a, 0); |
| 403 | DCHECK_GT(num_col_a, 0); |
| 404 | DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a)); |
| 405 | DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a)); |
| 406 | |
| 407 | const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a); |
| 408 | const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a); |
| 409 | const int span = 4; |
| 410 | |
| 411 | // Calculate the remainder part first. |
| 412 | |
| 413 | // Process the last odd row if present. |
| 414 | if (NUM_ROW_A & 1) { |
| 415 | int row = NUM_ROW_A - 1; |
| 416 | const double* pa = &A[row * NUM_COL_A]; |
| 417 | const double* pb = &b[0]; |
| 418 | double tmp = 0.0; |
| 419 | for (int col = 0; col < NUM_COL_A; ++col) { |
| 420 | tmp += (*pa++) * (*pb++); |
| 421 | } |
| 422 | CERES_GEMM_STORE_SINGLE(c, row, tmp); |
| 423 | |
| 424 | // Return directly for efficiency of extremely small matrix multiply. |
| 425 | if (NUM_ROW_A == 1) { |
| 426 | return; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | // Process the couple rows in remainder if present. |
| 431 | if (NUM_ROW_A & 2) { |
| 432 | int row = NUM_ROW_A & (int)(~(span - 1)); |
| 433 | const double* pa1 = &A[row * NUM_COL_A]; |
| 434 | const double* pa2 = pa1 + NUM_COL_A; |
| 435 | const double* pb = &b[0]; |
| 436 | double tmp1 = 0.0, tmp2 = 0.0; |
| 437 | for (int col = 0; col < NUM_COL_A; ++col) { |
| 438 | double bv = *pb++; |
| 439 | tmp1 += *(pa1++) * bv; |
| 440 | tmp2 += *(pa2++) * bv; |
| 441 | } |
| 442 | CERES_GEMM_STORE_PAIR(c, row, tmp1, tmp2); |
| 443 | |
| 444 | // Return directly for efficiency of extremely small matrix multiply. |
| 445 | if (NUM_ROW_A < span) { |
| 446 | return; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | // Calculate the main part with multiples of 4. |
| 451 | int row_m = NUM_ROW_A & (int)(~(span - 1)); |
| 452 | for (int row = 0; row < row_m; row += span) { |
| 453 | MVM_mat4x1(NUM_COL_A, &A[row * NUM_COL_A], NUM_COL_A, |
| 454 | &b[0], &c[row], kOperation); |
| 455 | } |
| 456 | |
| 457 | #endif // CERES_NO_CUSTOM_BLAS |
| 458 | } |
| 459 | |
| 460 | // Similar to MatrixVectorMultiply, except that A is transposed, i.e., |
| 461 | // |
| 462 | // c op A' * b; |
| 463 | template<int kRowA, int kColA, int kOperation> |
| 464 | inline void MatrixTransposeVectorMultiply(const double* A, |
| 465 | const int num_row_a, |
| 466 | const int num_col_a, |
| 467 | const double* b, |
| 468 | double* c) { |
| 469 | #ifdef CERES_NO_CUSTOM_BLAS |
| 470 | const typename EigenTypes<kRowA, kColA>::ConstMatrixRef |
| 471 | Aref(A, num_row_a, num_col_a); |
| 472 | const typename EigenTypes<kRowA>::ConstVectorRef bref(b, num_row_a); |
| 473 | typename EigenTypes<kColA>::VectorRef cref(c, num_col_a); |
| 474 | |
| 475 | // lazyProduct works better than .noalias() for matrix-vector |
| 476 | // products. |
| 477 | if (kOperation > 0) { |
| 478 | cref += Aref.transpose().lazyProduct(bref); |
| 479 | } else if (kOperation < 0) { |
| 480 | cref -= Aref.transpose().lazyProduct(bref); |
| 481 | } else { |
| 482 | cref = Aref.transpose().lazyProduct(bref); |
| 483 | } |
| 484 | #else |
| 485 | |
| 486 | DCHECK_GT(num_row_a, 0); |
| 487 | DCHECK_GT(num_col_a, 0); |
| 488 | DCHECK((kRowA == Eigen::Dynamic) || (kRowA == num_row_a)); |
| 489 | DCHECK((kColA == Eigen::Dynamic) || (kColA == num_col_a)); |
| 490 | |
| 491 | const int NUM_ROW_A = (kRowA != Eigen::Dynamic ? kRowA : num_row_a); |
| 492 | const int NUM_COL_A = (kColA != Eigen::Dynamic ? kColA : num_col_a); |
| 493 | const int span = 4; |
| 494 | |
| 495 | // Calculate the remainder part first. |
| 496 | |
| 497 | // Process the last odd column if present. |
| 498 | if (NUM_COL_A & 1) { |
| 499 | int row = NUM_COL_A - 1; |
| 500 | const double* pa = &A[row]; |
| 501 | const double* pb = &b[0]; |
| 502 | double tmp = 0.0; |
| 503 | for (int col = 0; col < NUM_ROW_A; ++col) { |
| 504 | tmp += *pa * (*pb++); |
| 505 | pa += NUM_COL_A; |
| 506 | } |
| 507 | CERES_GEMM_STORE_SINGLE(c, row, tmp); |
| 508 | |
| 509 | // Return directly for efficiency of extremely small matrix multiply. |
| 510 | if (NUM_COL_A == 1) { |
| 511 | return; |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | // Process the couple columns in remainder if present. |
| 516 | if (NUM_COL_A & 2) { |
| 517 | int row = NUM_COL_A & (int)(~(span - 1)); |
| 518 | const double* pa = &A[row]; |
| 519 | const double* pb = &b[0]; |
| 520 | double tmp1 = 0.0, tmp2 = 0.0; |
| 521 | for (int col = 0; col < NUM_ROW_A; ++col) { |
| 522 | double bv = *pb++; |
| 523 | tmp1 += *(pa ) * bv; |
| 524 | tmp2 += *(pa + 1) * bv; |
| 525 | pa += NUM_COL_A; |
| 526 | } |
| 527 | CERES_GEMM_STORE_PAIR(c, row, tmp1, tmp2); |
| 528 | |
| 529 | // Return directly for efficiency of extremely small matrix multiply. |
| 530 | if (NUM_COL_A < span) { |
| 531 | return; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | // Calculate the main part with multiples of 4. |
| 536 | int row_m = NUM_COL_A & (int)(~(span - 1)); |
| 537 | for (int row = 0; row < row_m; row += span) { |
| 538 | MTV_mat4x1(NUM_ROW_A, &A[row], NUM_COL_A, |
| 539 | &b[0], &c[row], kOperation); |
| 540 | } |
| 541 | |
| 542 | #endif // CERES_NO_CUSTOM_BLAS |
| 543 | } |
| 544 | |
| 545 | #undef CERES_GEMM_BEGIN |
| 546 | #undef CERES_GEMM_EIGEN_HEADER |
| 547 | #undef CERES_GEMM_NAIVE_HEADER |
| 548 | #undef CERES_CALL_GEMM |
| 549 | #undef CERES_GEMM_STORE_SINGLE |
| 550 | #undef CERES_GEMM_STORE_PAIR |
| 551 | |
| 552 | } // namespace internal |
| 553 | } // namespace ceres |
| 554 | |
| 555 | #endif // CERES_INTERNAL_SMALL_BLAS_H_ |