blob: 6781eb710f2aecaddd81f43c9f76eb7fd13df989 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// The ProgramEvaluator runs the cost functions contained in each residual block
32// and stores the result into a jacobian. The particular type of jacobian is
33// abstracted out using two template parameters:
34//
35// - An "EvaluatePreparer" that is responsible for creating the array with
36// pointers to the jacobian blocks where the cost function evaluates to.
37// - A "JacobianWriter" that is responsible for storing the resulting
38// jacobian blocks in the passed sparse matrix.
39//
40// This abstraction affords an efficient evaluator implementation while still
41// supporting writing to multiple sparse matrix formats. For example, when the
42// ProgramEvaluator is parameterized for writing to block sparse matrices, the
43// residual jacobians are written directly into their final position in the
44// block sparse matrix by the user's CostFunction; there is no copying.
45//
46// The evaluation is threaded with OpenMP or C++11 threads.
47//
48// The EvaluatePreparer and JacobianWriter interfaces are as follows:
49//
50// class EvaluatePreparer {
51// // Prepare the jacobians array for use as the destination of a call to
52// // a cost function's evaluate method.
53// void Prepare(const ResidualBlock* residual_block,
54// int residual_block_index,
55// SparseMatrix* jacobian,
56// double** jacobians);
57// }
58//
59// class JacobianWriter {
60// // Create a jacobian that this writer can write. Same as
61// // Evaluator::CreateJacobian.
62// SparseMatrix* CreateJacobian() const;
63//
64// // Create num_threads evaluate preparers. Caller owns result which must
65// // be freed with delete[]. Resulting preparers are valid while *this is.
66// EvaluatePreparer* CreateEvaluatePreparers(int num_threads);
67//
68// // Write the block jacobians from a residual block evaluation to the
69// // larger sparse jacobian.
70// void Write(int residual_id,
71// int residual_offset,
72// double** jacobians,
73// SparseMatrix* jacobian);
74// }
75//
76// Note: The ProgramEvaluator is not thread safe, since internally it maintains
77// some per-thread scratch space.
78
79#ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
80#define CERES_INTERNAL_PROGRAM_EVALUATOR_H_
81
82// This include must come before any #ifndef check on Ceres compile options.
83#include "ceres/internal/port.h"
84
85#include <atomic>
86#include <map>
87#include <memory>
88#include <string>
89#include <vector>
90
91#include "ceres/evaluation_callback.h"
92#include "ceres/execution_summary.h"
93#include "ceres/internal/eigen.h"
94#include "ceres/parallel_for.h"
95#include "ceres/parameter_block.h"
96#include "ceres/program.h"
97#include "ceres/residual_block.h"
98#include "ceres/small_blas.h"
99
100namespace ceres {
101namespace internal {
102
103struct NullJacobianFinalizer {
104 void operator()(SparseMatrix* jacobian, int num_parameters) {}
105};
106
107template<typename EvaluatePreparer,
108 typename JacobianWriter,
109 typename JacobianFinalizer = NullJacobianFinalizer>
110class ProgramEvaluator : public Evaluator {
111 public:
112 ProgramEvaluator(const Evaluator::Options &options, Program* program)
113 : options_(options),
114 program_(program),
115 jacobian_writer_(options, program),
116 evaluate_preparers_(
117 jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {
118#ifdef CERES_NO_THREADS
119 if (options_.num_threads > 1) {
120 LOG(WARNING)
121 << "No threading support is compiled into this binary; "
122 << "only options.num_threads = 1 is supported. Switching "
123 << "to single threaded mode.";
124 options_.num_threads = 1;
125 }
126#endif // CERES_NO_THREADS
127
128 BuildResidualLayout(*program, &residual_layout_);
129 evaluate_scratch_.reset(CreateEvaluatorScratch(*program,
130 options.num_threads));
131 }
132
133 // Implementation of Evaluator interface.
134 SparseMatrix* CreateJacobian() const {
135 return jacobian_writer_.CreateJacobian();
136 }
137
138 bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
139 const double* state,
140 double* cost,
141 double* residuals,
142 double* gradient,
143 SparseMatrix* jacobian) {
144 ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);
145 ScopedExecutionTimer call_type_timer(gradient == NULL && jacobian == NULL
146 ? "Evaluator::Residual"
147 : "Evaluator::Jacobian",
148 &execution_summary_);
149
150 // The parameters are stateful, so set the state before evaluating.
151 if (!program_->StateVectorToParameterBlocks(state)) {
152 return false;
153 }
154
155 // Notify the user about a new evaluation point if they are interested.
156 if (options_.evaluation_callback != NULL) {
157 program_->CopyParameterBlockStateToUserState();
158 options_.evaluation_callback->PrepareForEvaluation(
159 /*jacobians=*/(gradient != NULL || jacobian != NULL),
160 evaluate_options.new_evaluation_point);
161 }
162
163 if (residuals != NULL) {
164 VectorRef(residuals, program_->NumResiduals()).setZero();
165 }
166
167 if (jacobian != NULL) {
168 jacobian->SetZero();
169 }
170
171 // Each thread gets it's own cost and evaluate scratch space.
172 for (int i = 0; i < options_.num_threads; ++i) {
173 evaluate_scratch_[i].cost = 0.0;
174 if (gradient != NULL) {
175 VectorRef(evaluate_scratch_[i].gradient.get(),
176 program_->NumEffectiveParameters()).setZero();
177 }
178 }
179
180 const int num_residual_blocks = program_->NumResidualBlocks();
181 // This bool is used to disable the loop if an error is encountered without
182 // breaking out of it. The remaining loop iterations are still run, but with
183 // an empty body, and so will finish quickly.
184 std::atomic_bool abort(false);
185 ParallelFor(
186 options_.context,
187 0,
188 num_residual_blocks,
189 options_.num_threads,
190 [&](int thread_id, int i) {
191 if (abort) {
192 return;
193 }
194
195 EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
196 EvaluateScratch* scratch = &evaluate_scratch_[thread_id];
197
198 // Prepare block residuals if requested.
199 const ResidualBlock* residual_block = program_->residual_blocks()[i];
200 double* block_residuals = NULL;
201 if (residuals != NULL) {
202 block_residuals = residuals + residual_layout_[i];
203 } else if (gradient != NULL) {
204 block_residuals = scratch->residual_block_residuals.get();
205 }
206
207 // Prepare block jacobians if requested.
208 double** block_jacobians = NULL;
209 if (jacobian != NULL || gradient != NULL) {
210 preparer->Prepare(residual_block,
211 i,
212 jacobian,
213 scratch->jacobian_block_ptrs.get());
214 block_jacobians = scratch->jacobian_block_ptrs.get();
215 }
216
217 // Evaluate the cost, residuals, and jacobians.
218 double block_cost;
219 if (!residual_block->Evaluate(
220 evaluate_options.apply_loss_function,
221 &block_cost,
222 block_residuals,
223 block_jacobians,
224 scratch->residual_block_evaluate_scratch.get())) {
225 abort = true;
226 return;
227 }
228
229 scratch->cost += block_cost;
230
231 // Store the jacobians, if they were requested.
232 if (jacobian != NULL) {
233 jacobian_writer_.Write(i,
234 residual_layout_[i],
235 block_jacobians,
236 jacobian);
237 }
238
239 // Compute and store the gradient, if it was requested.
240 if (gradient != NULL) {
241 int num_residuals = residual_block->NumResiduals();
242 int num_parameter_blocks = residual_block->NumParameterBlocks();
243 for (int j = 0; j < num_parameter_blocks; ++j) {
244 const ParameterBlock* parameter_block =
245 residual_block->parameter_blocks()[j];
246 if (parameter_block->IsConstant()) {
247 continue;
248 }
249
250 MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
251 block_jacobians[j],
252 num_residuals,
253 parameter_block->LocalSize(),
254 block_residuals,
255 scratch->gradient.get() + parameter_block->delta_offset());
256 }
257 }
258 });
259
260 if (!abort) {
261 const int num_parameters = program_->NumEffectiveParameters();
262
263 // Sum the cost and gradient (if requested) from each thread.
264 (*cost) = 0.0;
265 if (gradient != NULL) {
266 VectorRef(gradient, num_parameters).setZero();
267 }
268 for (int i = 0; i < options_.num_threads; ++i) {
269 (*cost) += evaluate_scratch_[i].cost;
270 if (gradient != NULL) {
271 VectorRef(gradient, num_parameters) +=
272 VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
273 }
274 }
275
276 // Finalize the Jacobian if it is available.
277 // `num_parameters` is passed to the finalizer so that additional
278 // storage can be reserved for additional diagonal elements if
279 // necessary.
280 if (jacobian != NULL) {
281 JacobianFinalizer f;
282 f(jacobian, num_parameters);
283 }
284 }
285 return !abort;
286 }
287
288 bool Plus(const double* state,
289 const double* delta,
290 double* state_plus_delta) const {
291 return program_->Plus(state, delta, state_plus_delta);
292 }
293
294 int NumParameters() const {
295 return program_->NumParameters();
296 }
297 int NumEffectiveParameters() const {
298 return program_->NumEffectiveParameters();
299 }
300
301 int NumResiduals() const {
302 return program_->NumResiduals();
303 }
304
305 virtual std::map<std::string, CallStatistics> Statistics() const {
306 return execution_summary_.statistics();
307 }
308
309 private:
310 // Per-thread scratch space needed to evaluate and store each residual block.
311 struct EvaluateScratch {
312 void Init(int max_parameters_per_residual_block,
313 int max_scratch_doubles_needed_for_evaluate,
314 int max_residuals_per_residual_block,
315 int num_parameters) {
316 residual_block_evaluate_scratch.reset(
317 new double[max_scratch_doubles_needed_for_evaluate]);
318 gradient.reset(new double[num_parameters]);
319 VectorRef(gradient.get(), num_parameters).setZero();
320 residual_block_residuals.reset(
321 new double[max_residuals_per_residual_block]);
322 jacobian_block_ptrs.reset(
323 new double*[max_parameters_per_residual_block]);
324 }
325
326 double cost;
327 std::unique_ptr<double[]> residual_block_evaluate_scratch;
328 // The gradient in the local parameterization.
329 std::unique_ptr<double[]> gradient;
330 // Enough space to store the residual for the largest residual block.
331 std::unique_ptr<double[]> residual_block_residuals;
332 std::unique_ptr<double*[]> jacobian_block_ptrs;
333 };
334
335 static void BuildResidualLayout(const Program& program,
336 std::vector<int>* residual_layout) {
337 const std::vector<ResidualBlock*>& residual_blocks =
338 program.residual_blocks();
339 residual_layout->resize(program.NumResidualBlocks());
340 int residual_pos = 0;
341 for (int i = 0; i < residual_blocks.size(); ++i) {
342 const int num_residuals = residual_blocks[i]->NumResiduals();
343 (*residual_layout)[i] = residual_pos;
344 residual_pos += num_residuals;
345 }
346 }
347
348 // Create scratch space for each thread evaluating the program.
349 static EvaluateScratch* CreateEvaluatorScratch(const Program& program,
350 int num_threads) {
351 int max_parameters_per_residual_block =
352 program.MaxParametersPerResidualBlock();
353 int max_scratch_doubles_needed_for_evaluate =
354 program.MaxScratchDoublesNeededForEvaluate();
355 int max_residuals_per_residual_block =
356 program.MaxResidualsPerResidualBlock();
357 int num_parameters = program.NumEffectiveParameters();
358
359 EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];
360 for (int i = 0; i < num_threads; i++) {
361 evaluate_scratch[i].Init(max_parameters_per_residual_block,
362 max_scratch_doubles_needed_for_evaluate,
363 max_residuals_per_residual_block,
364 num_parameters);
365 }
366 return evaluate_scratch;
367 }
368
369 Evaluator::Options options_;
370 Program* program_;
371 JacobianWriter jacobian_writer_;
372 std::unique_ptr<EvaluatePreparer[]> evaluate_preparers_;
373 std::unique_ptr<EvaluateScratch[]> evaluate_scratch_;
374 std::vector<int> residual_layout_;
375 ::ceres::internal::ExecutionSummary execution_summary_;
376};
377
378} // namespace internal
379} // namespace ceres
380
381#endif // CERES_INTERNAL_PROGRAM_EVALUATOR_H_