Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/partitioned_matrix_view.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cstring> |
| 35 | #include <vector> |
| 36 | #include "ceres/block_sparse_matrix.h" |
| 37 | #include "ceres/block_structure.h" |
| 38 | #include "ceres/internal/eigen.h" |
| 39 | #include "ceres/small_blas.h" |
| 40 | #include "glog/logging.h" |
| 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 46 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 47 | PartitionedMatrixView( |
| 48 | const BlockSparseMatrix& matrix, |
| 49 | int num_col_blocks_e) |
| 50 | : matrix_(matrix), |
| 51 | num_col_blocks_e_(num_col_blocks_e) { |
| 52 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 53 | CHECK(bs != nullptr); |
| 54 | |
| 55 | num_col_blocks_f_ = bs->cols.size() - num_col_blocks_e_; |
| 56 | |
| 57 | // Compute the number of row blocks in E. The number of row blocks |
| 58 | // in E maybe less than the number of row blocks in the input matrix |
| 59 | // as some of the row blocks at the bottom may not have any |
| 60 | // e_blocks. For a definition of what an e_block is, please see |
| 61 | // explicit_schur_complement_solver.h |
| 62 | num_row_blocks_e_ = 0; |
| 63 | for (int r = 0; r < bs->rows.size(); ++r) { |
| 64 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 65 | if (cells[0].block_id < num_col_blocks_e_) { |
| 66 | ++num_row_blocks_e_; |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | // Compute the number of columns in E and F. |
| 71 | num_cols_e_ = 0; |
| 72 | num_cols_f_ = 0; |
| 73 | |
| 74 | for (int c = 0; c < bs->cols.size(); ++c) { |
| 75 | const Block& block = bs->cols[c]; |
| 76 | if (c < num_col_blocks_e_) { |
| 77 | num_cols_e_ += block.size; |
| 78 | } else { |
| 79 | num_cols_f_ += block.size; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | CHECK_EQ(num_cols_e_ + num_cols_f_, matrix_.num_cols()); |
| 84 | } |
| 85 | |
| 86 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 87 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 88 | ~PartitionedMatrixView() { |
| 89 | } |
| 90 | |
| 91 | // The next four methods don't seem to be particularly cache |
| 92 | // friendly. This is an artifact of how the BlockStructure of the |
| 93 | // input matrix is constructed. These methods will benefit from |
| 94 | // multithreading as well as improved data layout. |
| 95 | |
| 96 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 97 | void |
| 98 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 99 | RightMultiplyE(const double* x, double* y) const { |
| 100 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 101 | |
| 102 | // Iterate over the first num_row_blocks_e_ row blocks, and multiply |
| 103 | // by the first cell in each row block. |
| 104 | const double* values = matrix_.values(); |
| 105 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 106 | const Cell& cell = bs->rows[r].cells[0]; |
| 107 | const int row_block_pos = bs->rows[r].block.position; |
| 108 | const int row_block_size = bs->rows[r].block.size; |
| 109 | const int col_block_id = cell.block_id; |
| 110 | const int col_block_pos = bs->cols[col_block_id].position; |
| 111 | const int col_block_size = bs->cols[col_block_id].size; |
| 112 | MatrixVectorMultiply<kRowBlockSize, kEBlockSize, 1>( |
| 113 | values + cell.position, row_block_size, col_block_size, |
| 114 | x + col_block_pos, |
| 115 | y + row_block_pos); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 120 | void |
| 121 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 122 | RightMultiplyF(const double* x, double* y) const { |
| 123 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 124 | |
| 125 | // Iterate over row blocks, and if the row block is in E, then |
| 126 | // multiply by all the cells except the first one which is of type |
| 127 | // E. If the row block is not in E (i.e its in the bottom |
| 128 | // num_row_blocks - num_row_blocks_e row blocks), then all the cells |
| 129 | // are of type F and multiply by them all. |
| 130 | const double* values = matrix_.values(); |
| 131 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 132 | const int row_block_pos = bs->rows[r].block.position; |
| 133 | const int row_block_size = bs->rows[r].block.size; |
| 134 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 135 | for (int c = 1; c < cells.size(); ++c) { |
| 136 | const int col_block_id = cells[c].block_id; |
| 137 | const int col_block_pos = bs->cols[col_block_id].position; |
| 138 | const int col_block_size = bs->cols[col_block_id].size; |
| 139 | MatrixVectorMultiply<kRowBlockSize, kFBlockSize, 1>( |
| 140 | values + cells[c].position, row_block_size, col_block_size, |
| 141 | x + col_block_pos - num_cols_e_, |
| 142 | y + row_block_pos); |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) { |
| 147 | const int row_block_pos = bs->rows[r].block.position; |
| 148 | const int row_block_size = bs->rows[r].block.size; |
| 149 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 150 | for (int c = 0; c < cells.size(); ++c) { |
| 151 | const int col_block_id = cells[c].block_id; |
| 152 | const int col_block_pos = bs->cols[col_block_id].position; |
| 153 | const int col_block_size = bs->cols[col_block_id].size; |
| 154 | MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 155 | values + cells[c].position, row_block_size, col_block_size, |
| 156 | x + col_block_pos - num_cols_e_, |
| 157 | y + row_block_pos); |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 163 | void |
| 164 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 165 | LeftMultiplyE(const double* x, double* y) const { |
| 166 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 167 | |
| 168 | // Iterate over the first num_row_blocks_e_ row blocks, and multiply |
| 169 | // by the first cell in each row block. |
| 170 | const double* values = matrix_.values(); |
| 171 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 172 | const Cell& cell = bs->rows[r].cells[0]; |
| 173 | const int row_block_pos = bs->rows[r].block.position; |
| 174 | const int row_block_size = bs->rows[r].block.size; |
| 175 | const int col_block_id = cell.block_id; |
| 176 | const int col_block_pos = bs->cols[col_block_id].position; |
| 177 | const int col_block_size = bs->cols[col_block_id].size; |
| 178 | MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>( |
| 179 | values + cell.position, row_block_size, col_block_size, |
| 180 | x + row_block_pos, |
| 181 | y + col_block_pos); |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 186 | void |
| 187 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 188 | LeftMultiplyF(const double* x, double* y) const { |
| 189 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 190 | |
| 191 | // Iterate over row blocks, and if the row block is in E, then |
| 192 | // multiply by all the cells except the first one which is of type |
| 193 | // E. If the row block is not in E (i.e its in the bottom |
| 194 | // num_row_blocks - num_row_blocks_e row blocks), then all the cells |
| 195 | // are of type F and multiply by them all. |
| 196 | const double* values = matrix_.values(); |
| 197 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 198 | const int row_block_pos = bs->rows[r].block.position; |
| 199 | const int row_block_size = bs->rows[r].block.size; |
| 200 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 201 | for (int c = 1; c < cells.size(); ++c) { |
| 202 | const int col_block_id = cells[c].block_id; |
| 203 | const int col_block_pos = bs->cols[col_block_id].position; |
| 204 | const int col_block_size = bs->cols[col_block_id].size; |
| 205 | MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>( |
| 206 | values + cells[c].position, row_block_size, col_block_size, |
| 207 | x + row_block_pos, |
| 208 | y + col_block_pos - num_cols_e_); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) { |
| 213 | const int row_block_pos = bs->rows[r].block.position; |
| 214 | const int row_block_size = bs->rows[r].block.size; |
| 215 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 216 | for (int c = 0; c < cells.size(); ++c) { |
| 217 | const int col_block_id = cells[c].block_id; |
| 218 | const int col_block_pos = bs->cols[col_block_id].position; |
| 219 | const int col_block_size = bs->cols[col_block_id].size; |
| 220 | MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 221 | values + cells[c].position, row_block_size, col_block_size, |
| 222 | x + row_block_pos, |
| 223 | y + col_block_pos - num_cols_e_); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | // Given a range of columns blocks of a matrix m, compute the block |
| 229 | // structure of the block diagonal of the matrix m(:, |
| 230 | // start_col_block:end_col_block)'m(:, start_col_block:end_col_block) |
| 231 | // and return a BlockSparseMatrix with the this block structure. The |
| 232 | // caller owns the result. |
| 233 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 234 | BlockSparseMatrix* |
| 235 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 236 | CreateBlockDiagonalMatrixLayout(int start_col_block, int end_col_block) const { |
| 237 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 238 | CompressedRowBlockStructure* block_diagonal_structure = |
| 239 | new CompressedRowBlockStructure; |
| 240 | |
| 241 | int block_position = 0; |
| 242 | int diagonal_cell_position = 0; |
| 243 | |
| 244 | // Iterate over the column blocks, creating a new diagonal block for |
| 245 | // each column block. |
| 246 | for (int c = start_col_block; c < end_col_block; ++c) { |
| 247 | const Block& block = bs->cols[c]; |
| 248 | block_diagonal_structure->cols.push_back(Block()); |
| 249 | Block& diagonal_block = block_diagonal_structure->cols.back(); |
| 250 | diagonal_block.size = block.size; |
| 251 | diagonal_block.position = block_position; |
| 252 | |
| 253 | block_diagonal_structure->rows.push_back(CompressedRow()); |
| 254 | CompressedRow& row = block_diagonal_structure->rows.back(); |
| 255 | row.block = diagonal_block; |
| 256 | |
| 257 | row.cells.push_back(Cell()); |
| 258 | Cell& cell = row.cells.back(); |
| 259 | cell.block_id = c - start_col_block; |
| 260 | cell.position = diagonal_cell_position; |
| 261 | |
| 262 | block_position += block.size; |
| 263 | diagonal_cell_position += block.size * block.size; |
| 264 | } |
| 265 | |
| 266 | // Build a BlockSparseMatrix with the just computed block |
| 267 | // structure. |
| 268 | return new BlockSparseMatrix(block_diagonal_structure); |
| 269 | } |
| 270 | |
| 271 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 272 | BlockSparseMatrix* |
| 273 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 274 | CreateBlockDiagonalEtE() const { |
| 275 | BlockSparseMatrix* block_diagonal = |
| 276 | CreateBlockDiagonalMatrixLayout(0, num_col_blocks_e_); |
| 277 | UpdateBlockDiagonalEtE(block_diagonal); |
| 278 | return block_diagonal; |
| 279 | } |
| 280 | |
| 281 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 282 | BlockSparseMatrix* |
| 283 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 284 | CreateBlockDiagonalFtF() const { |
| 285 | BlockSparseMatrix* block_diagonal = |
| 286 | CreateBlockDiagonalMatrixLayout( |
| 287 | num_col_blocks_e_, num_col_blocks_e_ + num_col_blocks_f_); |
| 288 | UpdateBlockDiagonalFtF(block_diagonal); |
| 289 | return block_diagonal; |
| 290 | } |
| 291 | |
| 292 | // Similar to the code in RightMultiplyE, except instead of the matrix |
| 293 | // vector multiply its an outer product. |
| 294 | // |
| 295 | // block_diagonal = block_diagonal(E'E) |
| 296 | // |
| 297 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 298 | void |
| 299 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 300 | UpdateBlockDiagonalEtE( |
| 301 | BlockSparseMatrix* block_diagonal) const { |
| 302 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 303 | const CompressedRowBlockStructure* block_diagonal_structure = |
| 304 | block_diagonal->block_structure(); |
| 305 | |
| 306 | block_diagonal->SetZero(); |
| 307 | const double* values = matrix_.values(); |
| 308 | for (int r = 0; r < num_row_blocks_e_ ; ++r) { |
| 309 | const Cell& cell = bs->rows[r].cells[0]; |
| 310 | const int row_block_size = bs->rows[r].block.size; |
| 311 | const int block_id = cell.block_id; |
| 312 | const int col_block_size = bs->cols[block_id].size; |
| 313 | const int cell_position = |
| 314 | block_diagonal_structure->rows[block_id].cells[0].position; |
| 315 | |
| 316 | MatrixTransposeMatrixMultiply |
| 317 | <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>( |
| 318 | values + cell.position, row_block_size, col_block_size, |
| 319 | values + cell.position, row_block_size, col_block_size, |
| 320 | block_diagonal->mutable_values() + cell_position, |
| 321 | 0, 0, col_block_size, col_block_size); |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | // Similar to the code in RightMultiplyF, except instead of the matrix |
| 326 | // vector multiply its an outer product. |
| 327 | // |
| 328 | // block_diagonal = block_diagonal(F'F) |
| 329 | // |
| 330 | template <int kRowBlockSize, int kEBlockSize, int kFBlockSize> |
| 331 | void |
| 332 | PartitionedMatrixView<kRowBlockSize, kEBlockSize, kFBlockSize>:: |
| 333 | UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const { |
| 334 | const CompressedRowBlockStructure* bs = matrix_.block_structure(); |
| 335 | const CompressedRowBlockStructure* block_diagonal_structure = |
| 336 | block_diagonal->block_structure(); |
| 337 | |
| 338 | block_diagonal->SetZero(); |
| 339 | const double* values = matrix_.values(); |
| 340 | for (int r = 0; r < num_row_blocks_e_; ++r) { |
| 341 | const int row_block_size = bs->rows[r].block.size; |
| 342 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 343 | for (int c = 1; c < cells.size(); ++c) { |
| 344 | const int col_block_id = cells[c].block_id; |
| 345 | const int col_block_size = bs->cols[col_block_id].size; |
| 346 | const int diagonal_block_id = col_block_id - num_col_blocks_e_; |
| 347 | const int cell_position = |
| 348 | block_diagonal_structure->rows[diagonal_block_id].cells[0].position; |
| 349 | |
| 350 | MatrixTransposeMatrixMultiply |
| 351 | <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>( |
| 352 | values + cells[c].position, row_block_size, col_block_size, |
| 353 | values + cells[c].position, row_block_size, col_block_size, |
| 354 | block_diagonal->mutable_values() + cell_position, |
| 355 | 0, 0, col_block_size, col_block_size); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | for (int r = num_row_blocks_e_; r < bs->rows.size(); ++r) { |
| 360 | const int row_block_size = bs->rows[r].block.size; |
| 361 | const std::vector<Cell>& cells = bs->rows[r].cells; |
| 362 | for (int c = 0; c < cells.size(); ++c) { |
| 363 | const int col_block_id = cells[c].block_id; |
| 364 | const int col_block_size = bs->cols[col_block_id].size; |
| 365 | const int diagonal_block_id = col_block_id - num_col_blocks_e_; |
| 366 | const int cell_position = |
| 367 | block_diagonal_structure->rows[diagonal_block_id].cells[0].position; |
| 368 | |
| 369 | MatrixTransposeMatrixMultiply |
| 370 | <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>( |
| 371 | values + cells[c].position, row_block_size, col_block_size, |
| 372 | values + cells[c].position, row_block_size, col_block_size, |
| 373 | block_diagonal->mutable_values() + cell_position, |
| 374 | 0, 0, col_block_size, col_block_size); |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | } // namespace internal |
| 380 | } // namespace ceres |