Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | |
| 31 | #ifndef CERES_INTERNAL_PARAMETER_BLOCK_H_ |
| 32 | #define CERES_INTERNAL_PARAMETER_BLOCK_H_ |
| 33 | |
| 34 | #include <algorithm> |
| 35 | #include <cstdint> |
| 36 | #include <cstdlib> |
| 37 | #include <limits> |
| 38 | #include <memory> |
| 39 | #include <string> |
| 40 | #include <unordered_set> |
| 41 | #include "ceres/array_utils.h" |
| 42 | #include "ceres/internal/eigen.h" |
| 43 | #include "ceres/internal/port.h" |
| 44 | #include "ceres/local_parameterization.h" |
| 45 | #include "ceres/stringprintf.h" |
| 46 | #include "glog/logging.h" |
| 47 | |
| 48 | namespace ceres { |
| 49 | namespace internal { |
| 50 | |
| 51 | class ProblemImpl; |
| 52 | class ResidualBlock; |
| 53 | |
| 54 | // The parameter block encodes the location of the user's original value, and |
| 55 | // also the "current state" of the parameter. The evaluator uses whatever is in |
| 56 | // the current state of the parameter when evaluating. This is inlined since the |
| 57 | // methods are performance sensitive. |
| 58 | // |
| 59 | // The class is not thread-safe, unless only const methods are called. The |
| 60 | // parameter block may also hold a pointer to a local parameterization; the |
| 61 | // parameter block does not take ownership of this pointer, so the user is |
| 62 | // responsible for the proper disposal of the local parameterization. |
| 63 | class ParameterBlock { |
| 64 | public: |
| 65 | typedef std::unordered_set<ResidualBlock*> ResidualBlockSet; |
| 66 | |
| 67 | // Create a parameter block with the user state, size, and index specified. |
| 68 | // The size is the size of the parameter block and the index is the position |
| 69 | // of the parameter block inside a Program (if any). |
| 70 | ParameterBlock(double* user_state, int size, int index) |
| 71 | : user_state_(user_state), |
| 72 | state_(user_state), |
| 73 | size_(size), |
| 74 | index_(index) {} |
| 75 | |
| 76 | ParameterBlock(double* user_state, |
| 77 | int size, |
| 78 | int index, |
| 79 | LocalParameterization* local_parameterization) |
| 80 | : user_state_(user_state), |
| 81 | state_(user_state), |
| 82 | size_(size), |
| 83 | index_(index) { |
| 84 | if (local_parameterization != nullptr) { |
| 85 | SetParameterization(local_parameterization); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | // The size of the parameter block. |
| 90 | int Size() const { return size_; } |
| 91 | |
| 92 | // Manipulate the parameter state. |
| 93 | bool SetState(const double* x) { |
| 94 | CHECK(x != nullptr) << "Tried to set the state of constant parameter " |
| 95 | << "with user location " << user_state_; |
| 96 | CHECK(!IsConstant()) << "Tried to set the state of constant parameter " |
| 97 | << "with user location " << user_state_; |
| 98 | |
| 99 | state_ = x; |
| 100 | return UpdateLocalParameterizationJacobian(); |
| 101 | } |
| 102 | |
| 103 | // Copy the current parameter state out to x. This is "GetState()" rather than |
| 104 | // simply "state()" since it is actively copying the data into the passed |
| 105 | // pointer. |
| 106 | void GetState(double* x) const { |
| 107 | if (x != state_) { |
| 108 | std::copy(state_, state_ + size_, x); |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | // Direct pointers to the current state. |
| 113 | const double* state() const { return state_; } |
| 114 | const double* user_state() const { return user_state_; } |
| 115 | double* mutable_user_state() { return user_state_; } |
| 116 | const LocalParameterization* local_parameterization() const { |
| 117 | return local_parameterization_; |
| 118 | } |
| 119 | LocalParameterization* mutable_local_parameterization() { |
| 120 | return local_parameterization_; |
| 121 | } |
| 122 | |
| 123 | // Set this parameter block to vary or not. |
| 124 | void SetConstant() { is_set_constant_ = true; } |
| 125 | void SetVarying() { is_set_constant_ = false; } |
| 126 | bool IsSetConstantByUser() const { return is_set_constant_; } |
| 127 | bool IsConstant() const { return (is_set_constant_ || LocalSize() == 0); } |
| 128 | |
| 129 | double UpperBound(int index) const { |
| 130 | return (upper_bounds_ ? upper_bounds_[index] |
| 131 | : std::numeric_limits<double>::max()); |
| 132 | } |
| 133 | |
| 134 | double LowerBound(int index) const { |
| 135 | return (lower_bounds_ ? lower_bounds_[index] |
| 136 | : -std::numeric_limits<double>::max()); |
| 137 | } |
| 138 | |
| 139 | bool IsUpperBounded() const { return (upper_bounds_ == nullptr); } |
| 140 | bool IsLowerBounded() const { return (lower_bounds_ == nullptr); } |
| 141 | |
| 142 | // This parameter block's index in an array. |
| 143 | int index() const { return index_; } |
| 144 | void set_index(int index) { index_ = index; } |
| 145 | |
| 146 | // This parameter offset inside a larger state vector. |
| 147 | int state_offset() const { return state_offset_; } |
| 148 | void set_state_offset(int state_offset) { state_offset_ = state_offset; } |
| 149 | |
| 150 | // This parameter offset inside a larger delta vector. |
| 151 | int delta_offset() const { return delta_offset_; } |
| 152 | void set_delta_offset(int delta_offset) { delta_offset_ = delta_offset; } |
| 153 | |
| 154 | // Methods relating to the parameter block's parameterization. |
| 155 | |
| 156 | // The local to global jacobian. Returns nullptr if there is no local |
| 157 | // parameterization for this parameter block. The returned matrix is row-major |
| 158 | // and has Size() rows and LocalSize() columns. |
| 159 | const double* LocalParameterizationJacobian() const { |
| 160 | return local_parameterization_jacobian_.get(); |
| 161 | } |
| 162 | |
| 163 | int LocalSize() const { |
| 164 | return (local_parameterization_ == nullptr) |
| 165 | ? size_ |
| 166 | : local_parameterization_->LocalSize(); |
| 167 | } |
| 168 | |
| 169 | // Set the parameterization. The parameterization can be set exactly once; |
| 170 | // multiple calls to set the parameterization to different values will crash. |
| 171 | // It is an error to pass nullptr for the parameterization. The parameter |
| 172 | // block does not take ownership of the parameterization. |
| 173 | void SetParameterization(LocalParameterization* new_parameterization) { |
| 174 | CHECK(new_parameterization != nullptr) |
| 175 | << "nullptr parameterization invalid."; |
| 176 | // Nothing to do if the new parameterization is the same as the |
| 177 | // old parameterization. |
| 178 | if (new_parameterization == local_parameterization_) { |
| 179 | return; |
| 180 | } |
| 181 | |
| 182 | CHECK(local_parameterization_ == nullptr) |
| 183 | << "Can't re-set the local parameterization; it leads to " |
| 184 | << "ambiguous ownership. Current local parameterization is: " |
| 185 | << local_parameterization_; |
| 186 | |
| 187 | CHECK(new_parameterization->GlobalSize() == size_) |
| 188 | << "Invalid parameterization for parameter block. The parameter block " |
| 189 | << "has size " << size_ << " while the parameterization has a global " |
| 190 | << "size of " << new_parameterization->GlobalSize() << ". Did you " |
| 191 | << "accidentally use the wrong parameter block or parameterization?"; |
| 192 | |
| 193 | CHECK_GT(new_parameterization->LocalSize(), 0) |
| 194 | << "Invalid parameterization. Parameterizations must have a " |
| 195 | << "positive dimensional tangent space."; |
| 196 | |
| 197 | local_parameterization_ = new_parameterization; |
| 198 | local_parameterization_jacobian_.reset( |
| 199 | new double[local_parameterization_->GlobalSize() * |
| 200 | local_parameterization_->LocalSize()]); |
| 201 | CHECK(UpdateLocalParameterizationJacobian()) |
| 202 | << "Local parameterization Jacobian computation failed for x: " |
| 203 | << ConstVectorRef(state_, Size()).transpose(); |
| 204 | } |
| 205 | |
| 206 | void SetUpperBound(int index, double upper_bound) { |
| 207 | CHECK_LT(index, size_); |
| 208 | |
| 209 | if (upper_bound >= std::numeric_limits<double>::max() && !upper_bounds_) { |
| 210 | return; |
| 211 | } |
| 212 | |
| 213 | if (!upper_bounds_) { |
| 214 | upper_bounds_.reset(new double[size_]); |
| 215 | std::fill(upper_bounds_.get(), |
| 216 | upper_bounds_.get() + size_, |
| 217 | std::numeric_limits<double>::max()); |
| 218 | } |
| 219 | |
| 220 | upper_bounds_[index] = upper_bound; |
| 221 | } |
| 222 | |
| 223 | void SetLowerBound(int index, double lower_bound) { |
| 224 | CHECK_LT(index, size_); |
| 225 | |
| 226 | if (lower_bound <= -std::numeric_limits<double>::max() && !lower_bounds_) { |
| 227 | return; |
| 228 | } |
| 229 | |
| 230 | if (!lower_bounds_) { |
| 231 | lower_bounds_.reset(new double[size_]); |
| 232 | std::fill(lower_bounds_.get(), |
| 233 | lower_bounds_.get() + size_, |
| 234 | -std::numeric_limits<double>::max()); |
| 235 | } |
| 236 | |
| 237 | lower_bounds_[index] = lower_bound; |
| 238 | } |
| 239 | |
| 240 | // Generalization of the addition operation. This is the same as |
| 241 | // LocalParameterization::Plus() followed by projection onto the |
| 242 | // hyper cube implied by the bounds constraints. |
| 243 | bool Plus(const double* x, const double* delta, double* x_plus_delta) { |
| 244 | if (local_parameterization_ != nullptr) { |
| 245 | if (!local_parameterization_->Plus(x, delta, x_plus_delta)) { |
| 246 | return false; |
| 247 | } |
| 248 | } else { |
| 249 | VectorRef(x_plus_delta, size_) = |
| 250 | ConstVectorRef(x, size_) + ConstVectorRef(delta, size_); |
| 251 | } |
| 252 | |
| 253 | // Project onto the box constraints. |
| 254 | if (lower_bounds_.get() != nullptr) { |
| 255 | for (int i = 0; i < size_; ++i) { |
| 256 | x_plus_delta[i] = std::max(x_plus_delta[i], lower_bounds_[i]); |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | if (upper_bounds_.get() != nullptr) { |
| 261 | for (int i = 0; i < size_; ++i) { |
| 262 | x_plus_delta[i] = std::min(x_plus_delta[i], upper_bounds_[i]); |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | return true; |
| 267 | } |
| 268 | |
| 269 | std::string ToString() const { |
| 270 | return StringPrintf( |
| 271 | "{ this=%p, user_state=%p, state=%p, size=%d, " |
| 272 | "constant=%d, index=%d, state_offset=%d, " |
| 273 | "delta_offset=%d }", |
| 274 | this, |
| 275 | user_state_, |
| 276 | state_, |
| 277 | size_, |
| 278 | is_set_constant_, |
| 279 | index_, |
| 280 | state_offset_, |
| 281 | delta_offset_); |
| 282 | } |
| 283 | |
| 284 | void EnableResidualBlockDependencies() { |
| 285 | CHECK(residual_blocks_.get() == nullptr) |
| 286 | << "Ceres bug: There is already a residual block collection " |
| 287 | << "for parameter block: " << ToString(); |
| 288 | residual_blocks_.reset(new ResidualBlockSet); |
| 289 | } |
| 290 | |
| 291 | void AddResidualBlock(ResidualBlock* residual_block) { |
| 292 | CHECK(residual_blocks_.get() != nullptr) |
| 293 | << "Ceres bug: The residual block collection is null for parameter " |
| 294 | << "block: " << ToString(); |
| 295 | residual_blocks_->insert(residual_block); |
| 296 | } |
| 297 | |
| 298 | void RemoveResidualBlock(ResidualBlock* residual_block) { |
| 299 | CHECK(residual_blocks_.get() != nullptr) |
| 300 | << "Ceres bug: The residual block collection is null for parameter " |
| 301 | << "block: " << ToString(); |
| 302 | CHECK(residual_blocks_->find(residual_block) != residual_blocks_->end()) |
| 303 | << "Ceres bug: Missing residual for parameter block: " << ToString(); |
| 304 | residual_blocks_->erase(residual_block); |
| 305 | } |
| 306 | |
| 307 | // This is only intended for iterating; perhaps this should only expose |
| 308 | // .begin() and .end(). |
| 309 | ResidualBlockSet* mutable_residual_blocks() { return residual_blocks_.get(); } |
| 310 | |
| 311 | double LowerBoundForParameter(int index) const { |
| 312 | if (lower_bounds_.get() == nullptr) { |
| 313 | return -std::numeric_limits<double>::max(); |
| 314 | } else { |
| 315 | return lower_bounds_[index]; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | double UpperBoundForParameter(int index) const { |
| 320 | if (upper_bounds_.get() == nullptr) { |
| 321 | return std::numeric_limits<double>::max(); |
| 322 | } else { |
| 323 | return upper_bounds_[index]; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | private: |
| 328 | bool UpdateLocalParameterizationJacobian() { |
| 329 | if (local_parameterization_ == nullptr) { |
| 330 | return true; |
| 331 | } |
| 332 | |
| 333 | // Update the local to global Jacobian. In some cases this is |
| 334 | // wasted effort; if this is a bottleneck, we will find a solution |
| 335 | // at that time. |
| 336 | |
| 337 | const int jacobian_size = Size() * LocalSize(); |
| 338 | InvalidateArray(jacobian_size, local_parameterization_jacobian_.get()); |
| 339 | if (!local_parameterization_->ComputeJacobian( |
| 340 | state_, local_parameterization_jacobian_.get())) { |
| 341 | LOG(WARNING) << "Local parameterization Jacobian computation failed" |
| 342 | "for x: " |
| 343 | << ConstVectorRef(state_, Size()).transpose(); |
| 344 | return false; |
| 345 | } |
| 346 | |
| 347 | if (!IsArrayValid(jacobian_size, local_parameterization_jacobian_.get())) { |
| 348 | LOG(WARNING) << "Local parameterization Jacobian computation returned" |
| 349 | << "an invalid matrix for x: " |
| 350 | << ConstVectorRef(state_, Size()).transpose() |
| 351 | << "\n Jacobian matrix : " |
| 352 | << ConstMatrixRef(local_parameterization_jacobian_.get(), |
| 353 | Size(), |
| 354 | LocalSize()); |
| 355 | return false; |
| 356 | } |
| 357 | return true; |
| 358 | } |
| 359 | |
| 360 | double* user_state_ = nullptr; |
| 361 | int size_ = -1; |
| 362 | bool is_set_constant_ = false; |
| 363 | LocalParameterization* local_parameterization_ = nullptr; |
| 364 | |
| 365 | // The "state" of the parameter. These fields are only needed while the |
| 366 | // solver is running. While at first glance using mutable is a bad idea, this |
| 367 | // ends up simplifying the internals of Ceres enough to justify the potential |
| 368 | // pitfalls of using "mutable." |
| 369 | mutable const double* state_ = nullptr; |
| 370 | mutable std::unique_ptr<double[]> local_parameterization_jacobian_; |
| 371 | |
| 372 | // The index of the parameter. This is used by various other parts of Ceres to |
| 373 | // permit switching from a ParameterBlock* to an index in another array. |
| 374 | int32_t index_ = -1; |
| 375 | |
| 376 | // The offset of this parameter block inside a larger state vector. |
| 377 | int32_t state_offset_ = -1; |
| 378 | |
| 379 | // The offset of this parameter block inside a larger delta vector. |
| 380 | int32_t delta_offset_ = -1; |
| 381 | |
| 382 | // If non-null, contains the residual blocks this parameter block is in. |
| 383 | std::unique_ptr<ResidualBlockSet> residual_blocks_; |
| 384 | |
| 385 | // Upper and lower bounds for the parameter block. SetUpperBound |
| 386 | // and SetLowerBound lazily initialize the upper_bounds_ and |
| 387 | // lower_bounds_ arrays. If they are never called, then memory for |
| 388 | // these arrays is never allocated. Thus for problems where there |
| 389 | // are no bounds, or only one sided bounds we do not pay the cost of |
| 390 | // allocating memory for the inactive bounds constraints. |
| 391 | // |
| 392 | // Upon initialization these arrays are initialized to |
| 393 | // std::numeric_limits<double>::max() and |
| 394 | // -std::numeric_limits<double>::max() respectively which correspond |
| 395 | // to the parameter block being unconstrained. |
| 396 | std::unique_ptr<double[]> upper_bounds_; |
| 397 | std::unique_ptr<double[]> lower_bounds_; |
| 398 | |
| 399 | // Necessary so ProblemImpl can clean up the parameterizations. |
| 400 | friend class ProblemImpl; |
| 401 | }; |
| 402 | |
| 403 | } // namespace internal |
| 404 | } // namespace ceres |
| 405 | |
| 406 | #endif // CERES_INTERNAL_PARAMETER_BLOCK_H_ |