blob: bf41b9e916271eab04522fe883a3cdb9c0653755 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// Purpose: See .h file.
32
33#include "ceres/loss_function.h"
34
35#include <algorithm>
36#include <cmath>
37#include <cstddef>
38#include <limits>
39
40namespace ceres {
41
42void TrivialLoss::Evaluate(double s, double rho[3]) const {
43 rho[0] = s;
44 rho[1] = 1.0;
45 rho[2] = 0.0;
46}
47
48void HuberLoss::Evaluate(double s, double rho[3]) const {
49 if (s > b_) {
50 // Outlier region.
51 // 'r' is always positive.
52 const double r = sqrt(s);
53 rho[0] = 2.0 * a_ * r - b_;
54 rho[1] = std::max(std::numeric_limits<double>::min(), a_ / r);
55 rho[2] = - rho[1] / (2.0 * s);
56 } else {
57 // Inlier region.
58 rho[0] = s;
59 rho[1] = 1.0;
60 rho[2] = 0.0;
61 }
62}
63
64void SoftLOneLoss::Evaluate(double s, double rho[3]) const {
65 const double sum = 1.0 + s * c_;
66 const double tmp = sqrt(sum);
67 // 'sum' and 'tmp' are always positive, assuming that 's' is.
68 rho[0] = 2.0 * b_ * (tmp - 1.0);
69 rho[1] = std::max(std::numeric_limits<double>::min(), 1.0 / tmp);
70 rho[2] = - (c_ * rho[1]) / (2.0 * sum);
71}
72
73void CauchyLoss::Evaluate(double s, double rho[3]) const {
74 const double sum = 1.0 + s * c_;
75 const double inv = 1.0 / sum;
76 // 'sum' and 'inv' are always positive, assuming that 's' is.
77 rho[0] = b_ * log(sum);
78 rho[1] = std::max(std::numeric_limits<double>::min(), inv);
79 rho[2] = - c_ * (inv * inv);
80}
81
82void ArctanLoss::Evaluate(double s, double rho[3]) const {
83 const double sum = 1 + s * s * b_;
84 const double inv = 1 / sum;
85 // 'sum' and 'inv' are always positive.
86 rho[0] = a_ * atan2(s, a_);
87 rho[1] = std::max(std::numeric_limits<double>::min(), inv);
88 rho[2] = -2.0 * s * b_ * (inv * inv);
89}
90
91TolerantLoss::TolerantLoss(double a, double b)
92 : a_(a),
93 b_(b),
94 c_(b * log(1.0 + exp(-a / b))) {
95 CHECK_GE(a, 0.0);
96 CHECK_GT(b, 0.0);
97}
98
99void TolerantLoss::Evaluate(double s, double rho[3]) const {
100 const double x = (s - a_) / b_;
101 // The basic equation is rho[0] = b ln(1 + e^x). However, if e^x is too
102 // large, it will overflow. Since numerically 1 + e^x == e^x when the
103 // x is greater than about ln(2^53) for doubles, beyond this threshold
104 // we substitute x for ln(1 + e^x) as a numerically equivalent approximation.
105 static const double kLog2Pow53 = 36.7; // ln(MathLimits<double>::kEpsilon).
106 if (x > kLog2Pow53) {
107 rho[0] = s - a_ - c_;
108 rho[1] = 1.0;
109 rho[2] = 0.0;
110 } else {
111 const double e_x = exp(x);
112 rho[0] = b_ * log(1.0 + e_x) - c_;
113 rho[1] = std::max(std::numeric_limits<double>::min(), e_x / (1.0 + e_x));
114 rho[2] = 0.5 / (b_ * (1.0 + cosh(x)));
115 }
116}
117
118void TukeyLoss::Evaluate(double s, double* rho) const {
119 if (s <= a_squared_) {
120 // Inlier region.
121 const double value = 1.0 - s / a_squared_;
122 const double value_sq = value * value;
123 rho[0] = a_squared_ / 6.0 * (1.0 - value_sq * value);
124 rho[1] = 0.5 * value_sq;
125 rho[2] = -1.0 / a_squared_ * value;
126 } else {
127 // Outlier region.
128 rho[0] = a_squared_ / 6.0;
129 rho[1] = 0.0;
130 rho[2] = 0.0;
131 }
132}
133
134ComposedLoss::ComposedLoss(const LossFunction* f, Ownership ownership_f,
135 const LossFunction* g, Ownership ownership_g)
136 : f_(f),
137 g_(g),
138 ownership_f_(ownership_f),
139 ownership_g_(ownership_g) {
140 CHECK(f_ != nullptr);
141 CHECK(g_ != nullptr);
142}
143
144ComposedLoss::~ComposedLoss() {
145 if (ownership_f_ == DO_NOT_TAKE_OWNERSHIP) {
146 f_.release();
147 }
148 if (ownership_g_ == DO_NOT_TAKE_OWNERSHIP) {
149 g_.release();
150 }
151}
152
153void ComposedLoss::Evaluate(double s, double rho[3]) const {
154 double rho_f[3], rho_g[3];
155 g_->Evaluate(s, rho_g);
156 f_->Evaluate(rho_g[0], rho_f);
157 rho[0] = rho_f[0];
158 // f'(g(s)) * g'(s).
159 rho[1] = rho_f[1] * rho_g[1];
160 // f''(g(s)) * g'(s) * g'(s) + f'(g(s)) * g''(s).
161 rho[2] = rho_f[2] * rho_g[1] * rho_g[1] + rho_f[1] * rho_g[2];
162}
163
164void ScaledLoss::Evaluate(double s, double rho[3]) const {
165 if (rho_.get() == NULL) {
166 rho[0] = a_ * s;
167 rho[1] = a_;
168 rho[2] = 0.0;
169 } else {
170 rho_->Evaluate(s, rho);
171 rho[0] *= a_;
172 rho[1] *= a_;
173 rho[2] *= a_;
174 }
175}
176
177} // namespace ceres