Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include <cmath> |
| 32 | #include <limits> |
| 33 | #include <memory> |
| 34 | |
| 35 | #include "Eigen/Geometry" |
| 36 | #include "ceres/autodiff_local_parameterization.h" |
| 37 | #include "ceres/householder_vector.h" |
| 38 | #include "ceres/internal/autodiff.h" |
| 39 | #include "ceres/internal/eigen.h" |
| 40 | #include "ceres/local_parameterization.h" |
| 41 | #include "ceres/random.h" |
| 42 | #include "ceres/rotation.h" |
| 43 | #include "gtest/gtest.h" |
| 44 | |
| 45 | namespace ceres { |
| 46 | namespace internal { |
| 47 | |
| 48 | TEST(IdentityParameterization, EverythingTest) { |
| 49 | IdentityParameterization parameterization(3); |
| 50 | EXPECT_EQ(parameterization.GlobalSize(), 3); |
| 51 | EXPECT_EQ(parameterization.LocalSize(), 3); |
| 52 | |
| 53 | double x[3] = {1.0, 2.0, 3.0}; |
| 54 | double delta[3] = {0.0, 1.0, 2.0}; |
| 55 | double x_plus_delta[3] = {0.0, 0.0, 0.0}; |
| 56 | parameterization.Plus(x, delta, x_plus_delta); |
| 57 | EXPECT_EQ(x_plus_delta[0], 1.0); |
| 58 | EXPECT_EQ(x_plus_delta[1], 3.0); |
| 59 | EXPECT_EQ(x_plus_delta[2], 5.0); |
| 60 | |
| 61 | double jacobian[9]; |
| 62 | parameterization.ComputeJacobian(x, jacobian); |
| 63 | int k = 0; |
| 64 | for (int i = 0; i < 3; ++i) { |
| 65 | for (int j = 0; j < 3; ++j, ++k) { |
| 66 | EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | Matrix global_matrix = Matrix::Ones(10, 3); |
| 71 | Matrix local_matrix = Matrix::Zero(10, 3); |
| 72 | parameterization.MultiplyByJacobian(x, |
| 73 | 10, |
| 74 | global_matrix.data(), |
| 75 | local_matrix.data()); |
| 76 | EXPECT_EQ((local_matrix - global_matrix).norm(), 0.0); |
| 77 | } |
| 78 | |
| 79 | |
| 80 | TEST(SubsetParameterization, NegativeParameterIndexDeathTest) { |
| 81 | std::vector<int> constant_parameters; |
| 82 | constant_parameters.push_back(-1); |
| 83 | EXPECT_DEATH_IF_SUPPORTED( |
| 84 | SubsetParameterization parameterization(2, constant_parameters), |
| 85 | "greater than equal to zero"); |
| 86 | } |
| 87 | |
| 88 | TEST(SubsetParameterization, GreaterThanSizeParameterIndexDeathTest) { |
| 89 | std::vector<int> constant_parameters; |
| 90 | constant_parameters.push_back(2); |
| 91 | EXPECT_DEATH_IF_SUPPORTED( |
| 92 | SubsetParameterization parameterization(2, constant_parameters), |
| 93 | "less than the size"); |
| 94 | } |
| 95 | |
| 96 | TEST(SubsetParameterization, DuplicateParametersDeathTest) { |
| 97 | std::vector<int> constant_parameters; |
| 98 | constant_parameters.push_back(1); |
| 99 | constant_parameters.push_back(1); |
| 100 | EXPECT_DEATH_IF_SUPPORTED( |
| 101 | SubsetParameterization parameterization(2, constant_parameters), |
| 102 | "duplicates"); |
| 103 | } |
| 104 | |
| 105 | TEST(SubsetParameterization, |
| 106 | ProductParameterizationWithZeroLocalSizeSubsetParameterization1) { |
| 107 | std::vector<int> constant_parameters; |
| 108 | constant_parameters.push_back(0); |
| 109 | LocalParameterization* subset_param = |
| 110 | new SubsetParameterization(1, constant_parameters); |
| 111 | LocalParameterization* identity_param = new IdentityParameterization(2); |
| 112 | ProductParameterization product_param(subset_param, identity_param); |
| 113 | EXPECT_EQ(product_param.GlobalSize(), 3); |
| 114 | EXPECT_EQ(product_param.LocalSize(), 2); |
| 115 | double x[] = {1.0, 1.0, 1.0}; |
| 116 | double delta[] = {2.0, 3.0}; |
| 117 | double x_plus_delta[] = {0.0, 0.0, 0.0}; |
| 118 | EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta)); |
| 119 | EXPECT_EQ(x_plus_delta[0], x[0]); |
| 120 | EXPECT_EQ(x_plus_delta[1], x[1] + delta[0]); |
| 121 | EXPECT_EQ(x_plus_delta[2], x[2] + delta[1]); |
| 122 | |
| 123 | Matrix actual_jacobian(3, 2); |
| 124 | EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data())); |
| 125 | } |
| 126 | |
| 127 | TEST(SubsetParameterization, |
| 128 | ProductParameterizationWithZeroLocalSizeSubsetParameterization2) { |
| 129 | std::vector<int> constant_parameters; |
| 130 | constant_parameters.push_back(0); |
| 131 | LocalParameterization* subset_param = |
| 132 | new SubsetParameterization(1, constant_parameters); |
| 133 | LocalParameterization* identity_param = new IdentityParameterization(2); |
| 134 | ProductParameterization product_param(identity_param, subset_param); |
| 135 | EXPECT_EQ(product_param.GlobalSize(), 3); |
| 136 | EXPECT_EQ(product_param.LocalSize(), 2); |
| 137 | double x[] = {1.0, 1.0, 1.0}; |
| 138 | double delta[] = {2.0, 3.0}; |
| 139 | double x_plus_delta[] = {0.0, 0.0, 0.0}; |
| 140 | EXPECT_TRUE(product_param.Plus(x, delta, x_plus_delta)); |
| 141 | EXPECT_EQ(x_plus_delta[0], x[0] + delta[0]); |
| 142 | EXPECT_EQ(x_plus_delta[1], x[1] + delta[1]); |
| 143 | EXPECT_EQ(x_plus_delta[2], x[2]); |
| 144 | |
| 145 | Matrix actual_jacobian(3, 2); |
| 146 | EXPECT_TRUE(product_param.ComputeJacobian(x, actual_jacobian.data())); |
| 147 | } |
| 148 | |
| 149 | TEST(SubsetParameterization, NormalFunctionTest) { |
| 150 | const int kGlobalSize = 4; |
| 151 | const int kLocalSize = 3; |
| 152 | |
| 153 | double x[kGlobalSize] = {1.0, 2.0, 3.0, 4.0}; |
| 154 | for (int i = 0; i < kGlobalSize; ++i) { |
| 155 | std::vector<int> constant_parameters; |
| 156 | constant_parameters.push_back(i); |
| 157 | SubsetParameterization parameterization(kGlobalSize, constant_parameters); |
| 158 | double delta[kLocalSize] = {1.0, 2.0, 3.0}; |
| 159 | double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0}; |
| 160 | |
| 161 | parameterization.Plus(x, delta, x_plus_delta); |
| 162 | int k = 0; |
| 163 | for (int j = 0; j < kGlobalSize; ++j) { |
| 164 | if (j == i) { |
| 165 | EXPECT_EQ(x_plus_delta[j], x[j]); |
| 166 | } else { |
| 167 | EXPECT_EQ(x_plus_delta[j], x[j] + delta[k++]); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | double jacobian[kGlobalSize * kLocalSize]; |
| 172 | parameterization.ComputeJacobian(x, jacobian); |
| 173 | int delta_cursor = 0; |
| 174 | int jacobian_cursor = 0; |
| 175 | for (int j = 0; j < kGlobalSize; ++j) { |
| 176 | if (j != i) { |
| 177 | for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) { |
| 178 | EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); |
| 179 | } |
| 180 | ++delta_cursor; |
| 181 | } else { |
| 182 | for (int k = 0; k < kLocalSize; ++k, jacobian_cursor++) { |
| 183 | EXPECT_EQ(jacobian[jacobian_cursor], 0.0); |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | Matrix global_matrix = Matrix::Ones(10, kGlobalSize); |
| 189 | for (int row = 0; row < kGlobalSize; ++row) { |
| 190 | for (int col = 0; col < kGlobalSize; ++col) { |
| 191 | global_matrix(row, col) = col; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | Matrix local_matrix = Matrix::Zero(10, kLocalSize); |
| 196 | parameterization.MultiplyByJacobian(x, |
| 197 | 10, |
| 198 | global_matrix.data(), |
| 199 | local_matrix.data()); |
| 200 | Matrix expected_local_matrix = |
| 201 | global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize); |
| 202 | EXPECT_EQ((local_matrix - expected_local_matrix).norm(), 0.0); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | // Functor needed to implement automatically differentiated Plus for |
| 207 | // quaternions. |
| 208 | struct QuaternionPlus { |
| 209 | template<typename T> |
| 210 | bool operator()(const T* x, const T* delta, T* x_plus_delta) const { |
| 211 | const T squared_norm_delta = |
| 212 | delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; |
| 213 | |
| 214 | T q_delta[4]; |
| 215 | if (squared_norm_delta > T(0.0)) { |
| 216 | T norm_delta = sqrt(squared_norm_delta); |
| 217 | const T sin_delta_by_delta = sin(norm_delta) / norm_delta; |
| 218 | q_delta[0] = cos(norm_delta); |
| 219 | q_delta[1] = sin_delta_by_delta * delta[0]; |
| 220 | q_delta[2] = sin_delta_by_delta * delta[1]; |
| 221 | q_delta[3] = sin_delta_by_delta * delta[2]; |
| 222 | } else { |
| 223 | // We do not just use q_delta = [1,0,0,0] here because that is a |
| 224 | // constant and when used for automatic differentiation will |
| 225 | // lead to a zero derivative. Instead we take a first order |
| 226 | // approximation and evaluate it at zero. |
| 227 | q_delta[0] = T(1.0); |
| 228 | q_delta[1] = delta[0]; |
| 229 | q_delta[2] = delta[1]; |
| 230 | q_delta[3] = delta[2]; |
| 231 | } |
| 232 | |
| 233 | QuaternionProduct(q_delta, x, x_plus_delta); |
| 234 | return true; |
| 235 | } |
| 236 | }; |
| 237 | |
| 238 | template<typename Parameterization, typename Plus> |
| 239 | void QuaternionParameterizationTestHelper( |
| 240 | const double* x, const double* delta, |
| 241 | const double* x_plus_delta_ref) { |
| 242 | const int kGlobalSize = 4; |
| 243 | const int kLocalSize = 3; |
| 244 | |
| 245 | const double kTolerance = 1e-14; |
| 246 | |
| 247 | double x_plus_delta[kGlobalSize] = {0.0, 0.0, 0.0, 0.0}; |
| 248 | Parameterization parameterization; |
| 249 | parameterization.Plus(x, delta, x_plus_delta); |
| 250 | for (int i = 0; i < kGlobalSize; ++i) { |
| 251 | EXPECT_NEAR(x_plus_delta[i], x_plus_delta[i], kTolerance); |
| 252 | } |
| 253 | |
| 254 | const double x_plus_delta_norm = |
| 255 | sqrt(x_plus_delta[0] * x_plus_delta[0] + |
| 256 | x_plus_delta[1] * x_plus_delta[1] + |
| 257 | x_plus_delta[2] * x_plus_delta[2] + |
| 258 | x_plus_delta[3] * x_plus_delta[3]); |
| 259 | |
| 260 | EXPECT_NEAR(x_plus_delta_norm, 1.0, kTolerance); |
| 261 | |
| 262 | double jacobian_ref[12]; |
| 263 | double zero_delta[kLocalSize] = {0.0, 0.0, 0.0}; |
| 264 | const double* parameters[2] = {x, zero_delta}; |
| 265 | double* jacobian_array[2] = { NULL, jacobian_ref }; |
| 266 | |
| 267 | // Autodiff jacobian at delta_x = 0. |
| 268 | internal::AutoDifferentiate<StaticParameterDims<kGlobalSize, kLocalSize>>( |
| 269 | Plus(), |
| 270 | parameters, |
| 271 | kGlobalSize, |
| 272 | x_plus_delta, |
| 273 | jacobian_array); |
| 274 | |
| 275 | double jacobian[12]; |
| 276 | parameterization.ComputeJacobian(x, jacobian); |
| 277 | for (int i = 0; i < 12; ++i) { |
| 278 | EXPECT_TRUE(IsFinite(jacobian[i])); |
| 279 | EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) |
| 280 | << "Jacobian mismatch: i = " << i |
| 281 | << "\n Expected \n" |
| 282 | << ConstMatrixRef(jacobian_ref, kGlobalSize, kLocalSize) |
| 283 | << "\n Actual \n" |
| 284 | << ConstMatrixRef(jacobian, kGlobalSize, kLocalSize); |
| 285 | } |
| 286 | |
| 287 | Matrix global_matrix = Matrix::Random(10, kGlobalSize); |
| 288 | Matrix local_matrix = Matrix::Zero(10, kLocalSize); |
| 289 | parameterization.MultiplyByJacobian(x, |
| 290 | 10, |
| 291 | global_matrix.data(), |
| 292 | local_matrix.data()); |
| 293 | Matrix expected_local_matrix = |
| 294 | global_matrix * MatrixRef(jacobian, kGlobalSize, kLocalSize); |
| 295 | EXPECT_NEAR((local_matrix - expected_local_matrix).norm(), |
| 296 | 0.0, |
| 297 | 10.0 * std::numeric_limits<double>::epsilon()); |
| 298 | } |
| 299 | |
| 300 | template <int N> |
| 301 | void Normalize(double* x) { |
| 302 | VectorRef(x, N).normalize(); |
| 303 | } |
| 304 | |
| 305 | TEST(QuaternionParameterization, ZeroTest) { |
| 306 | double x[4] = {0.5, 0.5, 0.5, 0.5}; |
| 307 | double delta[3] = {0.0, 0.0, 0.0}; |
| 308 | double q_delta[4] = {1.0, 0.0, 0.0, 0.0}; |
| 309 | double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; |
| 310 | QuaternionProduct(q_delta, x, x_plus_delta); |
| 311 | QuaternionParameterizationTestHelper<QuaternionParameterization, |
| 312 | QuaternionPlus>(x, delta, x_plus_delta); |
| 313 | } |
| 314 | |
| 315 | TEST(QuaternionParameterization, NearZeroTest) { |
| 316 | double x[4] = {0.52, 0.25, 0.15, 0.45}; |
| 317 | Normalize<4>(x); |
| 318 | |
| 319 | double delta[3] = {0.24, 0.15, 0.10}; |
| 320 | for (int i = 0; i < 3; ++i) { |
| 321 | delta[i] = delta[i] * 1e-14; |
| 322 | } |
| 323 | |
| 324 | double q_delta[4]; |
| 325 | q_delta[0] = 1.0; |
| 326 | q_delta[1] = delta[0]; |
| 327 | q_delta[2] = delta[1]; |
| 328 | q_delta[3] = delta[2]; |
| 329 | |
| 330 | double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; |
| 331 | QuaternionProduct(q_delta, x, x_plus_delta); |
| 332 | QuaternionParameterizationTestHelper<QuaternionParameterization, |
| 333 | QuaternionPlus>(x, delta, x_plus_delta); |
| 334 | } |
| 335 | |
| 336 | TEST(QuaternionParameterization, AwayFromZeroTest) { |
| 337 | double x[4] = {0.52, 0.25, 0.15, 0.45}; |
| 338 | Normalize<4>(x); |
| 339 | |
| 340 | double delta[3] = {0.24, 0.15, 0.10}; |
| 341 | const double delta_norm = sqrt(delta[0] * delta[0] + |
| 342 | delta[1] * delta[1] + |
| 343 | delta[2] * delta[2]); |
| 344 | double q_delta[4]; |
| 345 | q_delta[0] = cos(delta_norm); |
| 346 | q_delta[1] = sin(delta_norm) / delta_norm * delta[0]; |
| 347 | q_delta[2] = sin(delta_norm) / delta_norm * delta[1]; |
| 348 | q_delta[3] = sin(delta_norm) / delta_norm * delta[2]; |
| 349 | |
| 350 | double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; |
| 351 | QuaternionProduct(q_delta, x, x_plus_delta); |
| 352 | QuaternionParameterizationTestHelper<QuaternionParameterization, |
| 353 | QuaternionPlus>(x, delta, x_plus_delta); |
| 354 | } |
| 355 | |
| 356 | // Functor needed to implement automatically differentiated Plus for |
| 357 | // Eigen's quaternion. |
| 358 | struct EigenQuaternionPlus { |
| 359 | template<typename T> |
| 360 | bool operator()(const T* x, const T* delta, T* x_plus_delta) const { |
| 361 | const T norm_delta = |
| 362 | sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); |
| 363 | |
| 364 | Eigen::Quaternion<T> q_delta; |
| 365 | if (norm_delta > T(0.0)) { |
| 366 | const T sin_delta_by_delta = sin(norm_delta) / norm_delta; |
| 367 | q_delta.coeffs() << sin_delta_by_delta * delta[0], |
| 368 | sin_delta_by_delta * delta[1], sin_delta_by_delta * delta[2], |
| 369 | cos(norm_delta); |
| 370 | } else { |
| 371 | // We do not just use q_delta = [0,0,0,1] here because that is a |
| 372 | // constant and when used for automatic differentiation will |
| 373 | // lead to a zero derivative. Instead we take a first order |
| 374 | // approximation and evaluate it at zero. |
| 375 | q_delta.coeffs() << delta[0], delta[1], delta[2], T(1.0); |
| 376 | } |
| 377 | |
| 378 | Eigen::Map<Eigen::Quaternion<T>> x_plus_delta_ref(x_plus_delta); |
| 379 | Eigen::Map<const Eigen::Quaternion<T>> x_ref(x); |
| 380 | x_plus_delta_ref = q_delta * x_ref; |
| 381 | return true; |
| 382 | } |
| 383 | }; |
| 384 | |
| 385 | TEST(EigenQuaternionParameterization, ZeroTest) { |
| 386 | Eigen::Quaterniond x(0.5, 0.5, 0.5, 0.5); |
| 387 | double delta[3] = {0.0, 0.0, 0.0}; |
| 388 | Eigen::Quaterniond q_delta(1.0, 0.0, 0.0, 0.0); |
| 389 | Eigen::Quaterniond x_plus_delta = q_delta * x; |
| 390 | QuaternionParameterizationTestHelper<EigenQuaternionParameterization, |
| 391 | EigenQuaternionPlus>( |
| 392 | x.coeffs().data(), delta, x_plus_delta.coeffs().data()); |
| 393 | } |
| 394 | |
| 395 | TEST(EigenQuaternionParameterization, NearZeroTest) { |
| 396 | Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45); |
| 397 | x.normalize(); |
| 398 | |
| 399 | double delta[3] = {0.24, 0.15, 0.10}; |
| 400 | for (int i = 0; i < 3; ++i) { |
| 401 | delta[i] = delta[i] * 1e-14; |
| 402 | } |
| 403 | |
| 404 | // Note: w is first in the constructor. |
| 405 | Eigen::Quaterniond q_delta(1.0, delta[0], delta[1], delta[2]); |
| 406 | |
| 407 | Eigen::Quaterniond x_plus_delta = q_delta * x; |
| 408 | QuaternionParameterizationTestHelper<EigenQuaternionParameterization, |
| 409 | EigenQuaternionPlus>( |
| 410 | x.coeffs().data(), delta, x_plus_delta.coeffs().data()); |
| 411 | } |
| 412 | |
| 413 | TEST(EigenQuaternionParameterization, AwayFromZeroTest) { |
| 414 | Eigen::Quaterniond x(0.52, 0.25, 0.15, 0.45); |
| 415 | x.normalize(); |
| 416 | |
| 417 | double delta[3] = {0.24, 0.15, 0.10}; |
| 418 | const double delta_norm = sqrt(delta[0] * delta[0] + |
| 419 | delta[1] * delta[1] + |
| 420 | delta[2] * delta[2]); |
| 421 | |
| 422 | // Note: w is first in the constructor. |
| 423 | Eigen::Quaterniond q_delta(cos(delta_norm), |
| 424 | sin(delta_norm) / delta_norm * delta[0], |
| 425 | sin(delta_norm) / delta_norm * delta[1], |
| 426 | sin(delta_norm) / delta_norm * delta[2]); |
| 427 | |
| 428 | Eigen::Quaterniond x_plus_delta = q_delta * x; |
| 429 | QuaternionParameterizationTestHelper<EigenQuaternionParameterization, |
| 430 | EigenQuaternionPlus>( |
| 431 | x.coeffs().data(), delta, x_plus_delta.coeffs().data()); |
| 432 | } |
| 433 | |
| 434 | // Functor needed to implement automatically differentiated Plus for |
| 435 | // homogeneous vectors. Note this explicitly defined for vectors of size 4. |
| 436 | struct HomogeneousVectorParameterizationPlus { |
| 437 | template<typename Scalar> |
| 438 | bool operator()(const Scalar* p_x, const Scalar* p_delta, |
| 439 | Scalar* p_x_plus_delta) const { |
| 440 | Eigen::Map<const Eigen::Matrix<Scalar, 4, 1>> x(p_x); |
| 441 | Eigen::Map<const Eigen::Matrix<Scalar, 3, 1>> delta(p_delta); |
| 442 | Eigen::Map<Eigen::Matrix<Scalar, 4, 1>> x_plus_delta(p_x_plus_delta); |
| 443 | |
| 444 | const Scalar squared_norm_delta = |
| 445 | delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; |
| 446 | |
| 447 | Eigen::Matrix<Scalar, 4, 1> y; |
| 448 | Scalar one_half(0.5); |
| 449 | if (squared_norm_delta > Scalar(0.0)) { |
| 450 | Scalar norm_delta = sqrt(squared_norm_delta); |
| 451 | Scalar norm_delta_div_2 = 0.5 * norm_delta; |
| 452 | const Scalar sin_delta_by_delta = sin(norm_delta_div_2) / |
| 453 | norm_delta_div_2; |
| 454 | y[0] = sin_delta_by_delta * delta[0] * one_half; |
| 455 | y[1] = sin_delta_by_delta * delta[1] * one_half; |
| 456 | y[2] = sin_delta_by_delta * delta[2] * one_half; |
| 457 | y[3] = cos(norm_delta_div_2); |
| 458 | |
| 459 | } else { |
| 460 | // We do not just use y = [0,0,0,1] here because that is a |
| 461 | // constant and when used for automatic differentiation will |
| 462 | // lead to a zero derivative. Instead we take a first order |
| 463 | // approximation and evaluate it at zero. |
| 464 | y[0] = delta[0] * one_half; |
| 465 | y[1] = delta[1] * one_half; |
| 466 | y[2] = delta[2] * one_half; |
| 467 | y[3] = Scalar(1.0); |
| 468 | } |
| 469 | |
| 470 | Eigen::Matrix<Scalar, Eigen::Dynamic, 1> v(4); |
| 471 | Scalar beta; |
| 472 | internal::ComputeHouseholderVector<Scalar>(x, &v, &beta); |
| 473 | |
| 474 | x_plus_delta = x.norm() * (y - v * (beta * v.dot(y))); |
| 475 | |
| 476 | return true; |
| 477 | } |
| 478 | }; |
| 479 | |
| 480 | void HomogeneousVectorParameterizationHelper(const double* x, |
| 481 | const double* delta) { |
| 482 | const double kTolerance = 1e-14; |
| 483 | |
| 484 | HomogeneousVectorParameterization homogeneous_vector_parameterization(4); |
| 485 | |
| 486 | // Ensure the update maintains the norm. |
| 487 | double x_plus_delta[4] = {0.0, 0.0, 0.0, 0.0}; |
| 488 | homogeneous_vector_parameterization.Plus(x, delta, x_plus_delta); |
| 489 | |
| 490 | const double x_plus_delta_norm = |
| 491 | sqrt(x_plus_delta[0] * x_plus_delta[0] + |
| 492 | x_plus_delta[1] * x_plus_delta[1] + |
| 493 | x_plus_delta[2] * x_plus_delta[2] + |
| 494 | x_plus_delta[3] * x_plus_delta[3]); |
| 495 | |
| 496 | const double x_norm = sqrt(x[0] * x[0] + x[1] * x[1] + |
| 497 | x[2] * x[2] + x[3] * x[3]); |
| 498 | |
| 499 | EXPECT_NEAR(x_plus_delta_norm, x_norm, kTolerance); |
| 500 | |
| 501 | // Autodiff jacobian at delta_x = 0. |
| 502 | AutoDiffLocalParameterization<HomogeneousVectorParameterizationPlus, 4, 3> |
| 503 | autodiff_jacobian; |
| 504 | |
| 505 | double jacobian_autodiff[12]; |
| 506 | double jacobian_analytic[12]; |
| 507 | |
| 508 | homogeneous_vector_parameterization.ComputeJacobian(x, jacobian_analytic); |
| 509 | autodiff_jacobian.ComputeJacobian(x, jacobian_autodiff); |
| 510 | |
| 511 | for (int i = 0; i < 12; ++i) { |
| 512 | EXPECT_TRUE(ceres::IsFinite(jacobian_analytic[i])); |
| 513 | EXPECT_NEAR(jacobian_analytic[i], jacobian_autodiff[i], kTolerance) |
| 514 | << "Jacobian mismatch: i = " << i << ", " << jacobian_analytic[i] << " " |
| 515 | << jacobian_autodiff[i]; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | TEST(HomogeneousVectorParameterization, ZeroTest) { |
| 520 | double x[4] = {0.0, 0.0, 0.0, 1.0}; |
| 521 | Normalize<4>(x); |
| 522 | double delta[3] = {0.0, 0.0, 0.0}; |
| 523 | |
| 524 | HomogeneousVectorParameterizationHelper(x, delta); |
| 525 | } |
| 526 | |
| 527 | TEST(HomogeneousVectorParameterization, NearZeroTest1) { |
| 528 | double x[4] = {1e-5, 1e-5, 1e-5, 1.0}; |
| 529 | Normalize<4>(x); |
| 530 | double delta[3] = {0.0, 1.0, 0.0}; |
| 531 | |
| 532 | HomogeneousVectorParameterizationHelper(x, delta); |
| 533 | } |
| 534 | |
| 535 | TEST(HomogeneousVectorParameterization, NearZeroTest2) { |
| 536 | double x[4] = {0.001, 0.0, 0.0, 0.0}; |
| 537 | double delta[3] = {0.0, 1.0, 0.0}; |
| 538 | |
| 539 | HomogeneousVectorParameterizationHelper(x, delta); |
| 540 | } |
| 541 | |
| 542 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest1) { |
| 543 | double x[4] = {0.52, 0.25, 0.15, 0.45}; |
| 544 | Normalize<4>(x); |
| 545 | double delta[3] = {0.0, 1.0, -0.5}; |
| 546 | |
| 547 | HomogeneousVectorParameterizationHelper(x, delta); |
| 548 | } |
| 549 | |
| 550 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest2) { |
| 551 | double x[4] = {0.87, -0.25, -0.34, 0.45}; |
| 552 | Normalize<4>(x); |
| 553 | double delta[3] = {0.0, 0.0, -0.5}; |
| 554 | |
| 555 | HomogeneousVectorParameterizationHelper(x, delta); |
| 556 | } |
| 557 | |
| 558 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest3) { |
| 559 | double x[4] = {0.0, 0.0, 0.0, 2.0}; |
| 560 | double delta[3] = {0.0, 0.0, 0}; |
| 561 | |
| 562 | HomogeneousVectorParameterizationHelper(x, delta); |
| 563 | } |
| 564 | |
| 565 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest4) { |
| 566 | double x[4] = {0.2, -1.0, 0.0, 2.0}; |
| 567 | double delta[3] = {1.4, 0.0, -0.5}; |
| 568 | |
| 569 | HomogeneousVectorParameterizationHelper(x, delta); |
| 570 | } |
| 571 | |
| 572 | TEST(HomogeneousVectorParameterization, AwayFromZeroTest5) { |
| 573 | double x[4] = {2.0, 0.0, 0.0, 0.0}; |
| 574 | double delta[3] = {1.4, 0.0, -0.5}; |
| 575 | |
| 576 | HomogeneousVectorParameterizationHelper(x, delta); |
| 577 | } |
| 578 | |
| 579 | TEST(HomogeneousVectorParameterization, DeathTests) { |
| 580 | EXPECT_DEATH_IF_SUPPORTED(HomogeneousVectorParameterization x(1), "size"); |
| 581 | } |
| 582 | |
| 583 | |
| 584 | class ProductParameterizationTest : public ::testing::Test { |
| 585 | protected : |
| 586 | virtual void SetUp() { |
| 587 | const int global_size1 = 5; |
| 588 | std::vector<int> constant_parameters1; |
| 589 | constant_parameters1.push_back(2); |
| 590 | param1_.reset(new SubsetParameterization(global_size1, |
| 591 | constant_parameters1)); |
| 592 | |
| 593 | const int global_size2 = 3; |
| 594 | std::vector<int> constant_parameters2; |
| 595 | constant_parameters2.push_back(0); |
| 596 | constant_parameters2.push_back(1); |
| 597 | param2_.reset(new SubsetParameterization(global_size2, |
| 598 | constant_parameters2)); |
| 599 | |
| 600 | const int global_size3 = 4; |
| 601 | std::vector<int> constant_parameters3; |
| 602 | constant_parameters3.push_back(1); |
| 603 | param3_.reset(new SubsetParameterization(global_size3, |
| 604 | constant_parameters3)); |
| 605 | |
| 606 | const int global_size4 = 2; |
| 607 | std::vector<int> constant_parameters4; |
| 608 | constant_parameters4.push_back(1); |
| 609 | param4_.reset(new SubsetParameterization(global_size4, |
| 610 | constant_parameters4)); |
| 611 | } |
| 612 | |
| 613 | std::unique_ptr<LocalParameterization> param1_; |
| 614 | std::unique_ptr<LocalParameterization> param2_; |
| 615 | std::unique_ptr<LocalParameterization> param3_; |
| 616 | std::unique_ptr<LocalParameterization> param4_; |
| 617 | }; |
| 618 | |
| 619 | TEST_F(ProductParameterizationTest, LocalAndGlobalSize2) { |
| 620 | LocalParameterization* param1 = param1_.release(); |
| 621 | LocalParameterization* param2 = param2_.release(); |
| 622 | |
| 623 | ProductParameterization product_param(param1, param2); |
| 624 | EXPECT_EQ(product_param.LocalSize(), |
| 625 | param1->LocalSize() + param2->LocalSize()); |
| 626 | EXPECT_EQ(product_param.GlobalSize(), |
| 627 | param1->GlobalSize() + param2->GlobalSize()); |
| 628 | } |
| 629 | |
| 630 | |
| 631 | TEST_F(ProductParameterizationTest, LocalAndGlobalSize3) { |
| 632 | LocalParameterization* param1 = param1_.release(); |
| 633 | LocalParameterization* param2 = param2_.release(); |
| 634 | LocalParameterization* param3 = param3_.release(); |
| 635 | |
| 636 | ProductParameterization product_param(param1, param2, param3); |
| 637 | EXPECT_EQ(product_param.LocalSize(), |
| 638 | param1->LocalSize() + param2->LocalSize() + param3->LocalSize()); |
| 639 | EXPECT_EQ(product_param.GlobalSize(), |
| 640 | param1->GlobalSize() + param2->GlobalSize() + param3->GlobalSize()); |
| 641 | } |
| 642 | |
| 643 | TEST_F(ProductParameterizationTest, LocalAndGlobalSize4) { |
| 644 | LocalParameterization* param1 = param1_.release(); |
| 645 | LocalParameterization* param2 = param2_.release(); |
| 646 | LocalParameterization* param3 = param3_.release(); |
| 647 | LocalParameterization* param4 = param4_.release(); |
| 648 | |
| 649 | ProductParameterization product_param(param1, param2, param3, param4); |
| 650 | EXPECT_EQ(product_param.LocalSize(), |
| 651 | param1->LocalSize() + |
| 652 | param2->LocalSize() + |
| 653 | param3->LocalSize() + |
| 654 | param4->LocalSize()); |
| 655 | EXPECT_EQ(product_param.GlobalSize(), |
| 656 | param1->GlobalSize() + |
| 657 | param2->GlobalSize() + |
| 658 | param3->GlobalSize() + |
| 659 | param4->GlobalSize()); |
| 660 | } |
| 661 | |
| 662 | TEST_F(ProductParameterizationTest, Plus) { |
| 663 | LocalParameterization* param1 = param1_.release(); |
| 664 | LocalParameterization* param2 = param2_.release(); |
| 665 | LocalParameterization* param3 = param3_.release(); |
| 666 | LocalParameterization* param4 = param4_.release(); |
| 667 | |
| 668 | ProductParameterization product_param(param1, param2, param3, param4); |
| 669 | std::vector<double> x(product_param.GlobalSize(), 0.0); |
| 670 | std::vector<double> delta(product_param.LocalSize(), 0.0); |
| 671 | std::vector<double> x_plus_delta_expected(product_param.GlobalSize(), 0.0); |
| 672 | std::vector<double> x_plus_delta(product_param.GlobalSize(), 0.0); |
| 673 | |
| 674 | for (int i = 0; i < product_param.GlobalSize(); ++i) { |
| 675 | x[i] = RandNormal(); |
| 676 | } |
| 677 | |
| 678 | for (int i = 0; i < product_param.LocalSize(); ++i) { |
| 679 | delta[i] = RandNormal(); |
| 680 | } |
| 681 | |
| 682 | EXPECT_TRUE(product_param.Plus(&x[0], &delta[0], &x_plus_delta_expected[0])); |
| 683 | int x_cursor = 0; |
| 684 | int delta_cursor = 0; |
| 685 | |
| 686 | EXPECT_TRUE(param1->Plus(&x[x_cursor], |
| 687 | &delta[delta_cursor], |
| 688 | &x_plus_delta[x_cursor])); |
| 689 | x_cursor += param1->GlobalSize(); |
| 690 | delta_cursor += param1->LocalSize(); |
| 691 | |
| 692 | EXPECT_TRUE(param2->Plus(&x[x_cursor], |
| 693 | &delta[delta_cursor], |
| 694 | &x_plus_delta[x_cursor])); |
| 695 | x_cursor += param2->GlobalSize(); |
| 696 | delta_cursor += param2->LocalSize(); |
| 697 | |
| 698 | EXPECT_TRUE(param3->Plus(&x[x_cursor], |
| 699 | &delta[delta_cursor], |
| 700 | &x_plus_delta[x_cursor])); |
| 701 | x_cursor += param3->GlobalSize(); |
| 702 | delta_cursor += param3->LocalSize(); |
| 703 | |
| 704 | EXPECT_TRUE(param4->Plus(&x[x_cursor], |
| 705 | &delta[delta_cursor], |
| 706 | &x_plus_delta[x_cursor])); |
| 707 | x_cursor += param4->GlobalSize(); |
| 708 | delta_cursor += param4->LocalSize(); |
| 709 | |
| 710 | for (int i = 0; i < x.size(); ++i) { |
| 711 | EXPECT_EQ(x_plus_delta[i], x_plus_delta_expected[i]); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | TEST_F(ProductParameterizationTest, ComputeJacobian) { |
| 716 | LocalParameterization* param1 = param1_.release(); |
| 717 | LocalParameterization* param2 = param2_.release(); |
| 718 | LocalParameterization* param3 = param3_.release(); |
| 719 | LocalParameterization* param4 = param4_.release(); |
| 720 | |
| 721 | ProductParameterization product_param(param1, param2, param3, param4); |
| 722 | std::vector<double> x(product_param.GlobalSize(), 0.0); |
| 723 | |
| 724 | for (int i = 0; i < product_param.GlobalSize(); ++i) { |
| 725 | x[i] = RandNormal(); |
| 726 | } |
| 727 | |
| 728 | Matrix jacobian = Matrix::Random(product_param.GlobalSize(), |
| 729 | product_param.LocalSize()); |
| 730 | EXPECT_TRUE(product_param.ComputeJacobian(&x[0], jacobian.data())); |
| 731 | int x_cursor = 0; |
| 732 | int delta_cursor = 0; |
| 733 | |
| 734 | Matrix jacobian1(param1->GlobalSize(), param1->LocalSize()); |
| 735 | EXPECT_TRUE(param1->ComputeJacobian(&x[x_cursor], jacobian1.data())); |
| 736 | jacobian.block(x_cursor, delta_cursor, |
| 737 | param1->GlobalSize(), |
| 738 | param1->LocalSize()) |
| 739 | -= jacobian1; |
| 740 | x_cursor += param1->GlobalSize(); |
| 741 | delta_cursor += param1->LocalSize(); |
| 742 | |
| 743 | Matrix jacobian2(param2->GlobalSize(), param2->LocalSize()); |
| 744 | EXPECT_TRUE(param2->ComputeJacobian(&x[x_cursor], jacobian2.data())); |
| 745 | jacobian.block(x_cursor, delta_cursor, |
| 746 | param2->GlobalSize(), |
| 747 | param2->LocalSize()) |
| 748 | -= jacobian2; |
| 749 | x_cursor += param2->GlobalSize(); |
| 750 | delta_cursor += param2->LocalSize(); |
| 751 | |
| 752 | Matrix jacobian3(param3->GlobalSize(), param3->LocalSize()); |
| 753 | EXPECT_TRUE(param3->ComputeJacobian(&x[x_cursor], jacobian3.data())); |
| 754 | jacobian.block(x_cursor, delta_cursor, |
| 755 | param3->GlobalSize(), |
| 756 | param3->LocalSize()) |
| 757 | -= jacobian3; |
| 758 | x_cursor += param3->GlobalSize(); |
| 759 | delta_cursor += param3->LocalSize(); |
| 760 | |
| 761 | Matrix jacobian4(param4->GlobalSize(), param4->LocalSize()); |
| 762 | EXPECT_TRUE(param4->ComputeJacobian(&x[x_cursor], jacobian4.data())); |
| 763 | jacobian.block(x_cursor, delta_cursor, |
| 764 | param4->GlobalSize(), |
| 765 | param4->LocalSize()) |
| 766 | -= jacobian4; |
| 767 | x_cursor += param4->GlobalSize(); |
| 768 | delta_cursor += param4->LocalSize(); |
| 769 | |
| 770 | EXPECT_NEAR(jacobian.norm(), 0.0, std::numeric_limits<double>::epsilon()); |
| 771 | } |
| 772 | |
| 773 | } // namespace internal |
| 774 | } // namespace ceres |