Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/local_parameterization.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include "Eigen/Geometry" |
| 35 | #include "ceres/householder_vector.h" |
| 36 | #include "ceres/internal/eigen.h" |
| 37 | #include "ceres/internal/fixed_array.h" |
| 38 | #include "ceres/rotation.h" |
| 39 | #include "glog/logging.h" |
| 40 | |
| 41 | namespace ceres { |
| 42 | |
| 43 | using std::vector; |
| 44 | |
| 45 | LocalParameterization::~LocalParameterization() { |
| 46 | } |
| 47 | |
| 48 | bool LocalParameterization::MultiplyByJacobian(const double* x, |
| 49 | const int num_rows, |
| 50 | const double* global_matrix, |
| 51 | double* local_matrix) const { |
| 52 | if (LocalSize() == 0) { |
| 53 | return true; |
| 54 | } |
| 55 | |
| 56 | Matrix jacobian(GlobalSize(), LocalSize()); |
| 57 | if (!ComputeJacobian(x, jacobian.data())) { |
| 58 | return false; |
| 59 | } |
| 60 | |
| 61 | MatrixRef(local_matrix, num_rows, LocalSize()) = |
| 62 | ConstMatrixRef(global_matrix, num_rows, GlobalSize()) * jacobian; |
| 63 | return true; |
| 64 | } |
| 65 | |
| 66 | IdentityParameterization::IdentityParameterization(const int size) |
| 67 | : size_(size) { |
| 68 | CHECK_GT(size, 0); |
| 69 | } |
| 70 | |
| 71 | bool IdentityParameterization::Plus(const double* x, |
| 72 | const double* delta, |
| 73 | double* x_plus_delta) const { |
| 74 | VectorRef(x_plus_delta, size_) = |
| 75 | ConstVectorRef(x, size_) + ConstVectorRef(delta, size_); |
| 76 | return true; |
| 77 | } |
| 78 | |
| 79 | bool IdentityParameterization::ComputeJacobian(const double* x, |
| 80 | double* jacobian) const { |
| 81 | MatrixRef(jacobian, size_, size_).setIdentity(); |
| 82 | return true; |
| 83 | } |
| 84 | |
| 85 | bool IdentityParameterization::MultiplyByJacobian(const double* x, |
| 86 | const int num_cols, |
| 87 | const double* global_matrix, |
| 88 | double* local_matrix) const { |
| 89 | std::copy(global_matrix, |
| 90 | global_matrix + num_cols * GlobalSize(), |
| 91 | local_matrix); |
| 92 | return true; |
| 93 | } |
| 94 | |
| 95 | SubsetParameterization::SubsetParameterization( |
| 96 | int size, const vector<int>& constant_parameters) |
| 97 | : local_size_(size - constant_parameters.size()), constancy_mask_(size, 0) { |
| 98 | vector<int> constant = constant_parameters; |
| 99 | std::sort(constant.begin(), constant.end()); |
| 100 | CHECK_GE(constant.front(), 0) << "Indices indicating constant parameter must " |
| 101 | "be greater than equal to zero."; |
| 102 | CHECK_LT(constant.back(), size) |
| 103 | << "Indices indicating constant parameter must be less than the size " |
| 104 | << "of the parameter block."; |
| 105 | CHECK(std::adjacent_find(constant.begin(), constant.end()) == constant.end()) |
| 106 | << "The set of constant parameters cannot contain duplicates"; |
| 107 | for (int i = 0; i < constant_parameters.size(); ++i) { |
| 108 | constancy_mask_[constant_parameters[i]] = 1; |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | bool SubsetParameterization::Plus(const double* x, |
| 113 | const double* delta, |
| 114 | double* x_plus_delta) const { |
| 115 | const int global_size = GlobalSize(); |
| 116 | for (int i = 0, j = 0; i < global_size; ++i) { |
| 117 | if (constancy_mask_[i]) { |
| 118 | x_plus_delta[i] = x[i]; |
| 119 | } else { |
| 120 | x_plus_delta[i] = x[i] + delta[j++]; |
| 121 | } |
| 122 | } |
| 123 | return true; |
| 124 | } |
| 125 | |
| 126 | bool SubsetParameterization::ComputeJacobian(const double* x, |
| 127 | double* jacobian) const { |
| 128 | if (local_size_ == 0) { |
| 129 | return true; |
| 130 | } |
| 131 | |
| 132 | const int global_size = GlobalSize(); |
| 133 | MatrixRef m(jacobian, global_size, local_size_); |
| 134 | m.setZero(); |
| 135 | for (int i = 0, j = 0; i < global_size; ++i) { |
| 136 | if (!constancy_mask_[i]) { |
| 137 | m(i, j++) = 1.0; |
| 138 | } |
| 139 | } |
| 140 | return true; |
| 141 | } |
| 142 | |
| 143 | bool SubsetParameterization::MultiplyByJacobian(const double* x, |
| 144 | const int num_rows, |
| 145 | const double* global_matrix, |
| 146 | double* local_matrix) const { |
| 147 | if (local_size_ == 0) { |
| 148 | return true; |
| 149 | } |
| 150 | |
| 151 | const int global_size = GlobalSize(); |
| 152 | for (int row = 0; row < num_rows; ++row) { |
| 153 | for (int col = 0, j = 0; col < global_size; ++col) { |
| 154 | if (!constancy_mask_[col]) { |
| 155 | local_matrix[row * local_size_ + j++] = |
| 156 | global_matrix[row * global_size + col]; |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | return true; |
| 161 | } |
| 162 | |
| 163 | bool QuaternionParameterization::Plus(const double* x, |
| 164 | const double* delta, |
| 165 | double* x_plus_delta) const { |
| 166 | const double norm_delta = |
| 167 | sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); |
| 168 | if (norm_delta > 0.0) { |
| 169 | const double sin_delta_by_delta = (sin(norm_delta) / norm_delta); |
| 170 | double q_delta[4]; |
| 171 | q_delta[0] = cos(norm_delta); |
| 172 | q_delta[1] = sin_delta_by_delta * delta[0]; |
| 173 | q_delta[2] = sin_delta_by_delta * delta[1]; |
| 174 | q_delta[3] = sin_delta_by_delta * delta[2]; |
| 175 | QuaternionProduct(q_delta, x, x_plus_delta); |
| 176 | } else { |
| 177 | for (int i = 0; i < 4; ++i) { |
| 178 | x_plus_delta[i] = x[i]; |
| 179 | } |
| 180 | } |
| 181 | return true; |
| 182 | } |
| 183 | |
| 184 | bool QuaternionParameterization::ComputeJacobian(const double* x, |
| 185 | double* jacobian) const { |
| 186 | jacobian[0] = -x[1]; jacobian[1] = -x[2]; jacobian[2] = -x[3]; // NOLINT |
| 187 | jacobian[3] = x[0]; jacobian[4] = x[3]; jacobian[5] = -x[2]; // NOLINT |
| 188 | jacobian[6] = -x[3]; jacobian[7] = x[0]; jacobian[8] = x[1]; // NOLINT |
| 189 | jacobian[9] = x[2]; jacobian[10] = -x[1]; jacobian[11] = x[0]; // NOLINT |
| 190 | return true; |
| 191 | } |
| 192 | |
| 193 | bool EigenQuaternionParameterization::Plus(const double* x_ptr, |
| 194 | const double* delta, |
| 195 | double* x_plus_delta_ptr) const { |
| 196 | Eigen::Map<Eigen::Quaterniond> x_plus_delta(x_plus_delta_ptr); |
| 197 | Eigen::Map<const Eigen::Quaterniond> x(x_ptr); |
| 198 | |
| 199 | const double norm_delta = |
| 200 | sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]); |
| 201 | if (norm_delta > 0.0) { |
| 202 | const double sin_delta_by_delta = sin(norm_delta) / norm_delta; |
| 203 | |
| 204 | // Note, in the constructor w is first. |
| 205 | Eigen::Quaterniond delta_q(cos(norm_delta), |
| 206 | sin_delta_by_delta * delta[0], |
| 207 | sin_delta_by_delta * delta[1], |
| 208 | sin_delta_by_delta * delta[2]); |
| 209 | x_plus_delta = delta_q * x; |
| 210 | } else { |
| 211 | x_plus_delta = x; |
| 212 | } |
| 213 | |
| 214 | return true; |
| 215 | } |
| 216 | |
| 217 | bool EigenQuaternionParameterization::ComputeJacobian(const double* x, |
| 218 | double* jacobian) const { |
| 219 | jacobian[0] = x[3]; jacobian[1] = x[2]; jacobian[2] = -x[1]; // NOLINT |
| 220 | jacobian[3] = -x[2]; jacobian[4] = x[3]; jacobian[5] = x[0]; // NOLINT |
| 221 | jacobian[6] = x[1]; jacobian[7] = -x[0]; jacobian[8] = x[3]; // NOLINT |
| 222 | jacobian[9] = -x[0]; jacobian[10] = -x[1]; jacobian[11] = -x[2]; // NOLINT |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | HomogeneousVectorParameterization::HomogeneousVectorParameterization(int size) |
| 227 | : size_(size) { |
| 228 | CHECK_GT(size_, 1) << "The size of the homogeneous vector needs to be " |
| 229 | << "greater than 1."; |
| 230 | } |
| 231 | |
| 232 | bool HomogeneousVectorParameterization::Plus(const double* x_ptr, |
| 233 | const double* delta_ptr, |
| 234 | double* x_plus_delta_ptr) const { |
| 235 | ConstVectorRef x(x_ptr, size_); |
| 236 | ConstVectorRef delta(delta_ptr, size_ - 1); |
| 237 | VectorRef x_plus_delta(x_plus_delta_ptr, size_); |
| 238 | |
| 239 | const double norm_delta = delta.norm(); |
| 240 | |
| 241 | if (norm_delta == 0.0) { |
| 242 | x_plus_delta = x; |
| 243 | return true; |
| 244 | } |
| 245 | |
| 246 | // Map the delta from the minimum representation to the over parameterized |
| 247 | // homogeneous vector. See section A6.9.2 on page 624 of Hartley & Zisserman |
| 248 | // (2nd Edition) for a detailed description. Note there is a typo on Page |
| 249 | // 625, line 4 so check the book errata. |
| 250 | const double norm_delta_div_2 = 0.5 * norm_delta; |
| 251 | const double sin_delta_by_delta = sin(norm_delta_div_2) / |
| 252 | norm_delta_div_2; |
| 253 | |
| 254 | Vector y(size_); |
| 255 | y.head(size_ - 1) = 0.5 * sin_delta_by_delta * delta; |
| 256 | y(size_ - 1) = cos(norm_delta_div_2); |
| 257 | |
| 258 | Vector v(size_); |
| 259 | double beta; |
| 260 | internal::ComputeHouseholderVector<double>(x, &v, &beta); |
| 261 | |
| 262 | // Apply the delta update to remain on the unit sphere. See section A6.9.3 |
| 263 | // on page 625 of Hartley & Zisserman (2nd Edition) for a detailed |
| 264 | // description. |
| 265 | x_plus_delta = x.norm() * (y - v * (beta * (v.transpose() * y))); |
| 266 | |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | bool HomogeneousVectorParameterization::ComputeJacobian( |
| 271 | const double* x_ptr, double* jacobian_ptr) const { |
| 272 | ConstVectorRef x(x_ptr, size_); |
| 273 | MatrixRef jacobian(jacobian_ptr, size_, size_ - 1); |
| 274 | |
| 275 | Vector v(size_); |
| 276 | double beta; |
| 277 | internal::ComputeHouseholderVector<double>(x, &v, &beta); |
| 278 | |
| 279 | // The Jacobian is equal to J = 0.5 * H.leftCols(size_ - 1) where H is the |
| 280 | // Householder matrix (H = I - beta * v * v'). |
| 281 | for (int i = 0; i < size_ - 1; ++i) { |
| 282 | jacobian.col(i) = -0.5 * beta * v(i) * v; |
| 283 | jacobian.col(i)(i) += 0.5; |
| 284 | } |
| 285 | jacobian *= x.norm(); |
| 286 | |
| 287 | return true; |
| 288 | } |
| 289 | |
| 290 | ProductParameterization::ProductParameterization( |
| 291 | LocalParameterization* local_param1, |
| 292 | LocalParameterization* local_param2) { |
| 293 | local_params_.push_back(local_param1); |
| 294 | local_params_.push_back(local_param2); |
| 295 | Init(); |
| 296 | } |
| 297 | |
| 298 | ProductParameterization::ProductParameterization( |
| 299 | LocalParameterization* local_param1, |
| 300 | LocalParameterization* local_param2, |
| 301 | LocalParameterization* local_param3) { |
| 302 | local_params_.push_back(local_param1); |
| 303 | local_params_.push_back(local_param2); |
| 304 | local_params_.push_back(local_param3); |
| 305 | Init(); |
| 306 | } |
| 307 | |
| 308 | ProductParameterization::ProductParameterization( |
| 309 | LocalParameterization* local_param1, |
| 310 | LocalParameterization* local_param2, |
| 311 | LocalParameterization* local_param3, |
| 312 | LocalParameterization* local_param4) { |
| 313 | local_params_.push_back(local_param1); |
| 314 | local_params_.push_back(local_param2); |
| 315 | local_params_.push_back(local_param3); |
| 316 | local_params_.push_back(local_param4); |
| 317 | Init(); |
| 318 | } |
| 319 | |
| 320 | ProductParameterization::~ProductParameterization() { |
| 321 | for (int i = 0; i < local_params_.size(); ++i) { |
| 322 | delete local_params_[i]; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | void ProductParameterization::Init() { |
| 327 | global_size_ = 0; |
| 328 | local_size_ = 0; |
| 329 | buffer_size_ = 0; |
| 330 | for (int i = 0; i < local_params_.size(); ++i) { |
| 331 | const LocalParameterization* param = local_params_[i]; |
| 332 | buffer_size_ = std::max(buffer_size_, |
| 333 | param->LocalSize() * param->GlobalSize()); |
| 334 | global_size_ += param->GlobalSize(); |
| 335 | local_size_ += param->LocalSize(); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | bool ProductParameterization::Plus(const double* x, |
| 340 | const double* delta, |
| 341 | double* x_plus_delta) const { |
| 342 | int x_cursor = 0; |
| 343 | int delta_cursor = 0; |
| 344 | for (int i = 0; i < local_params_.size(); ++i) { |
| 345 | const LocalParameterization* param = local_params_[i]; |
| 346 | if (!param->Plus(x + x_cursor, |
| 347 | delta + delta_cursor, |
| 348 | x_plus_delta + x_cursor)) { |
| 349 | return false; |
| 350 | } |
| 351 | delta_cursor += param->LocalSize(); |
| 352 | x_cursor += param->GlobalSize(); |
| 353 | } |
| 354 | |
| 355 | return true; |
| 356 | } |
| 357 | |
| 358 | bool ProductParameterization::ComputeJacobian(const double* x, |
| 359 | double* jacobian_ptr) const { |
| 360 | MatrixRef jacobian(jacobian_ptr, GlobalSize(), LocalSize()); |
| 361 | jacobian.setZero(); |
| 362 | internal::FixedArray<double> buffer(buffer_size_); |
| 363 | |
| 364 | int x_cursor = 0; |
| 365 | int delta_cursor = 0; |
| 366 | for (int i = 0; i < local_params_.size(); ++i) { |
| 367 | const LocalParameterization* param = local_params_[i]; |
| 368 | const int local_size = param->LocalSize(); |
| 369 | const int global_size = param->GlobalSize(); |
| 370 | |
| 371 | if (!param->ComputeJacobian(x + x_cursor, buffer.get())) { |
| 372 | return false; |
| 373 | } |
| 374 | jacobian.block(x_cursor, delta_cursor, global_size, local_size) |
| 375 | = MatrixRef(buffer.get(), global_size, local_size); |
| 376 | |
| 377 | delta_cursor += local_size; |
| 378 | x_cursor += global_size; |
| 379 | } |
| 380 | |
| 381 | return true; |
| 382 | } |
| 383 | |
| 384 | } // namespace ceres |