Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: strandmark@google.com (Petter Strandmark) |
| 30 | |
| 31 | #include "ceres/gradient_problem.h" |
| 32 | #include "ceres/gradient_problem_solver.h" |
| 33 | |
| 34 | #include "gtest/gtest.h" |
| 35 | |
| 36 | namespace ceres { |
| 37 | namespace internal { |
| 38 | |
| 39 | // Rosenbrock function; see http://en.wikipedia.org/wiki/Rosenbrock_function . |
| 40 | class Rosenbrock : public ceres::FirstOrderFunction { |
| 41 | public: |
| 42 | virtual ~Rosenbrock() {} |
| 43 | |
| 44 | virtual bool Evaluate(const double* parameters, |
| 45 | double* cost, |
| 46 | double* gradient) const { |
| 47 | const double x = parameters[0]; |
| 48 | const double y = parameters[1]; |
| 49 | |
| 50 | cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x); |
| 51 | if (gradient != NULL) { |
| 52 | gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x; |
| 53 | gradient[1] = 200.0 * (y - x * x); |
| 54 | } |
| 55 | return true; |
| 56 | } |
| 57 | |
| 58 | virtual int NumParameters() const { return 2; } |
| 59 | }; |
| 60 | |
| 61 | TEST(GradientProblemSolver, SolvesRosenbrockWithDefaultOptions) { |
| 62 | const double expected_tolerance = 1e-9; |
| 63 | double parameters[2] = {-1.2, 0.0}; |
| 64 | |
| 65 | ceres::GradientProblemSolver::Options options; |
| 66 | ceres::GradientProblemSolver::Summary summary; |
| 67 | ceres::GradientProblem problem(new Rosenbrock()); |
| 68 | ceres::Solve(options, problem, parameters, &summary); |
| 69 | |
| 70 | EXPECT_EQ(CONVERGENCE, summary.termination_type); |
| 71 | EXPECT_NEAR(1.0, parameters[0], expected_tolerance); |
| 72 | EXPECT_NEAR(1.0, parameters[1], expected_tolerance); |
| 73 | } |
| 74 | |
| 75 | class QuadraticFunction : public ceres::FirstOrderFunction { |
| 76 | virtual ~QuadraticFunction() {} |
| 77 | virtual bool Evaluate(const double* parameters, |
| 78 | double* cost, |
| 79 | double* gradient) const { |
| 80 | const double x = parameters[0]; |
| 81 | *cost = 0.5 * (5.0 - x) * (5.0 - x); |
| 82 | if (gradient != NULL) { |
| 83 | gradient[0] = x - 5.0; |
| 84 | } |
| 85 | |
| 86 | return true; |
| 87 | } |
| 88 | virtual int NumParameters() const { return 1; } |
| 89 | }; |
| 90 | |
| 91 | struct RememberingCallback : public IterationCallback { |
| 92 | explicit RememberingCallback(double *x) : calls(0), x(x) {} |
| 93 | virtual ~RememberingCallback() {} |
| 94 | virtual CallbackReturnType operator()(const IterationSummary& summary) { |
| 95 | x_values.push_back(*x); |
| 96 | return SOLVER_CONTINUE; |
| 97 | } |
| 98 | int calls; |
| 99 | double *x; |
| 100 | std::vector<double> x_values; |
| 101 | }; |
| 102 | |
| 103 | |
| 104 | TEST(Solver, UpdateStateEveryIterationOption) { |
| 105 | double x = 50.0; |
| 106 | const double original_x = x; |
| 107 | |
| 108 | ceres::GradientProblem problem(new QuadraticFunction); |
| 109 | ceres::GradientProblemSolver::Options options; |
| 110 | RememberingCallback callback(&x); |
| 111 | options.callbacks.push_back(&callback); |
| 112 | ceres::GradientProblemSolver::Summary summary; |
| 113 | |
| 114 | int num_iterations; |
| 115 | |
| 116 | // First try: no updating. |
| 117 | ceres::Solve(options, problem, &x, &summary); |
| 118 | num_iterations = summary.iterations.size() - 1; |
| 119 | EXPECT_GT(num_iterations, 1); |
| 120 | for (int i = 0; i < callback.x_values.size(); ++i) { |
| 121 | EXPECT_EQ(50.0, callback.x_values[i]); |
| 122 | } |
| 123 | |
| 124 | // Second try: with updating |
| 125 | x = 50.0; |
| 126 | options.update_state_every_iteration = true; |
| 127 | callback.x_values.clear(); |
| 128 | ceres::Solve(options, problem, &x, &summary); |
| 129 | num_iterations = summary.iterations.size() - 1; |
| 130 | EXPECT_GT(num_iterations, 1); |
| 131 | EXPECT_EQ(original_x, callback.x_values[0]); |
| 132 | EXPECT_NE(original_x, callback.x_values[1]); |
| 133 | } |
| 134 | |
| 135 | } // namespace internal |
| 136 | } // namespace ceres |