blob: 411a67f866b3aad32a90c6fbb4672e65d89bce12 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2016 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Authors: wjr@google.com (William Rucklidge),
30// keir@google.com (Keir Mierle),
31// dgossow@google.com (David Gossow)
32
33#include "ceres/gradient_checker.h"
34
35#include <algorithm>
36#include <cmath>
37#include <cstdint>
38#include <numeric>
39#include <string>
40#include <vector>
41
42#include "ceres/is_close.h"
43#include "ceres/stringprintf.h"
44#include "ceres/types.h"
45
46namespace ceres {
47
48using internal::IsClose;
49using internal::StringAppendF;
50using internal::StringPrintf;
51using std::string;
52using std::vector;
53
54namespace {
55// Evaluate the cost function and transform the returned Jacobians to
56// the local space of the respective local parameterizations.
57bool EvaluateCostFunction(
58 const ceres::CostFunction* function,
59 double const* const * parameters,
60 const std::vector<const ceres::LocalParameterization*>&
61 local_parameterizations,
62 Vector* residuals,
63 std::vector<Matrix>* jacobians,
64 std::vector<Matrix>* local_jacobians) {
65 CHECK(residuals != nullptr);
66 CHECK(jacobians != nullptr);
67 CHECK(local_jacobians != nullptr);
68
69 const vector<int32_t>& block_sizes = function->parameter_block_sizes();
70 const int num_parameter_blocks = block_sizes.size();
71
72 // Allocate Jacobian matrices in local space.
73 local_jacobians->resize(num_parameter_blocks);
74 vector<double*> local_jacobian_data(num_parameter_blocks);
75 for (int i = 0; i < num_parameter_blocks; ++i) {
76 int block_size = block_sizes.at(i);
77 if (local_parameterizations.at(i) != NULL) {
78 block_size = local_parameterizations.at(i)->LocalSize();
79 }
80 local_jacobians->at(i).resize(function->num_residuals(), block_size);
81 local_jacobians->at(i).setZero();
82 local_jacobian_data.at(i) = local_jacobians->at(i).data();
83 }
84
85 // Allocate Jacobian matrices in global space.
86 jacobians->resize(num_parameter_blocks);
87 vector<double*> jacobian_data(num_parameter_blocks);
88 for (int i = 0; i < num_parameter_blocks; ++i) {
89 jacobians->at(i).resize(function->num_residuals(), block_sizes.at(i));
90 jacobians->at(i).setZero();
91 jacobian_data.at(i) = jacobians->at(i).data();
92 }
93
94 // Compute residuals & jacobians.
95 CHECK_NE(0, function->num_residuals());
96 residuals->resize(function->num_residuals());
97 residuals->setZero();
98 if (!function->Evaluate(parameters, residuals->data(),
99 jacobian_data.data())) {
100 return false;
101 }
102
103 // Convert Jacobians from global to local space.
104 for (size_t i = 0; i < local_jacobians->size(); ++i) {
105 if (local_parameterizations.at(i) == NULL) {
106 local_jacobians->at(i) = jacobians->at(i);
107 } else {
108 int global_size = local_parameterizations.at(i)->GlobalSize();
109 int local_size = local_parameterizations.at(i)->LocalSize();
110 CHECK_EQ(jacobians->at(i).cols(), global_size);
111 Matrix global_J_local(global_size, local_size);
112 local_parameterizations.at(i)->ComputeJacobian(
113 parameters[i], global_J_local.data());
114 local_jacobians->at(i).noalias() = jacobians->at(i) * global_J_local;
115 }
116 }
117 return true;
118}
119} // namespace
120
121GradientChecker::GradientChecker(
122 const CostFunction* function,
123 const vector<const LocalParameterization*>* local_parameterizations,
124 const NumericDiffOptions& options) :
125 function_(function) {
126 CHECK(function != nullptr);
127 if (local_parameterizations != NULL) {
128 local_parameterizations_ = *local_parameterizations;
129 } else {
130 local_parameterizations_.resize(function->parameter_block_sizes().size(),
131 NULL);
132 }
133 DynamicNumericDiffCostFunction<CostFunction, CENTRAL>*
134 finite_diff_cost_function =
135 new DynamicNumericDiffCostFunction<CostFunction, CENTRAL>(
136 function, DO_NOT_TAKE_OWNERSHIP, options);
137 finite_diff_cost_function_.reset(finite_diff_cost_function);
138
139 const vector<int32_t>& parameter_block_sizes =
140 function->parameter_block_sizes();
141 const int num_parameter_blocks = parameter_block_sizes.size();
142 for (int i = 0; i < num_parameter_blocks; ++i) {
143 finite_diff_cost_function->AddParameterBlock(parameter_block_sizes[i]);
144 }
145 finite_diff_cost_function->SetNumResiduals(function->num_residuals());
146}
147
148bool GradientChecker::Probe(double const* const * parameters,
149 double relative_precision,
150 ProbeResults* results_param) const {
151 int num_residuals = function_->num_residuals();
152
153 // Make sure that we have a place to store results, no matter if the user has
154 // provided an output argument.
155 ProbeResults* results;
156 ProbeResults results_local;
157 if (results_param != NULL) {
158 results = results_param;
159 results->residuals.resize(0);
160 results->jacobians.clear();
161 results->numeric_jacobians.clear();
162 results->local_jacobians.clear();
163 results->local_numeric_jacobians.clear();
164 results->error_log.clear();
165 } else {
166 results = &results_local;
167 }
168 results->maximum_relative_error = 0.0;
169 results->return_value = true;
170
171 // Evaluate the derivative using the user supplied code.
172 vector<Matrix>& jacobians = results->jacobians;
173 vector<Matrix>& local_jacobians = results->local_jacobians;
174 if (!EvaluateCostFunction(function_, parameters, local_parameterizations_,
175 &results->residuals, &jacobians, &local_jacobians)) {
176 results->error_log = "Function evaluation with Jacobians failed.";
177 results->return_value = false;
178 }
179
180 // Evaluate the derivative using numeric derivatives.
181 vector<Matrix>& numeric_jacobians = results->numeric_jacobians;
182 vector<Matrix>& local_numeric_jacobians = results->local_numeric_jacobians;
183 Vector finite_diff_residuals;
184 if (!EvaluateCostFunction(finite_diff_cost_function_.get(), parameters,
185 local_parameterizations_, &finite_diff_residuals,
186 &numeric_jacobians, &local_numeric_jacobians)) {
187 results->error_log += "\nFunction evaluation with numerical "
188 "differentiation failed.";
189 results->return_value = false;
190 }
191
192 if (!results->return_value) {
193 return false;
194 }
195
196 for (int i = 0; i < num_residuals; ++i) {
197 if (!IsClose(
198 results->residuals[i],
199 finite_diff_residuals[i],
200 relative_precision,
201 NULL,
202 NULL)) {
203 results->error_log = "Function evaluation with and without Jacobians "
204 "resulted in different residuals.";
205 LOG(INFO) << results->residuals.transpose();
206 LOG(INFO) << finite_diff_residuals.transpose();
207 return false;
208 }
209 }
210
211 // See if any elements have relative error larger than the threshold.
212 int num_bad_jacobian_components = 0;
213 double& worst_relative_error = results->maximum_relative_error;
214 worst_relative_error = 0;
215
216 // Accumulate the error message for all the jacobians, since it won't get
217 // output if there are no bad jacobian components.
218 string error_log;
219 for (int k = 0; k < function_->parameter_block_sizes().size(); k++) {
220 StringAppendF(&error_log,
221 "========== "
222 "Jacobian for " "block %d: (%ld by %ld)) "
223 "==========\n",
224 k,
225 static_cast<long>(local_jacobians[k].rows()),
226 static_cast<long>(local_jacobians[k].cols()));
227 // The funny spacing creates appropriately aligned column headers.
228 error_log +=
229 " block row col user dx/dy num diff dx/dy "
230 "abs error relative error parameter residual\n";
231
232 for (int i = 0; i < local_jacobians[k].rows(); i++) {
233 for (int j = 0; j < local_jacobians[k].cols(); j++) {
234 double term_jacobian = local_jacobians[k](i, j);
235 double finite_jacobian = local_numeric_jacobians[k](i, j);
236 double relative_error, absolute_error;
237 bool bad_jacobian_entry =
238 !IsClose(term_jacobian,
239 finite_jacobian,
240 relative_precision,
241 &relative_error,
242 &absolute_error);
243 worst_relative_error = std::max(worst_relative_error, relative_error);
244
245 StringAppendF(&error_log,
246 "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
247 k, i, j,
248 term_jacobian, finite_jacobian,
249 absolute_error, relative_error,
250 parameters[k][j],
251 results->residuals[i]);
252
253 if (bad_jacobian_entry) {
254 num_bad_jacobian_components++;
255 StringAppendF(
256 &error_log,
257 " ------ (%d,%d,%d) Relative error worse than %g",
258 k, i, j, relative_precision);
259 }
260 error_log += "\n";
261 }
262 }
263 }
264
265 // Since there were some bad errors, dump comprehensive debug info.
266 if (num_bad_jacobian_components) {
267 string header = StringPrintf("\nDetected %d bad Jacobian component(s). "
268 "Worst relative error was %g.\n",
269 num_bad_jacobian_components,
270 worst_relative_error);
271 results->error_log = header + "\n" + error_log;
272 return false;
273 }
274 return true;
275}
276
277} // namespace ceres