Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2018 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: mierle@gmail.com (Keir Mierle) |
| 30 | |
| 31 | #include "ceres/solver.h" |
| 32 | |
| 33 | #include <cmath> |
| 34 | #include <limits> |
| 35 | #include <vector> |
| 36 | |
| 37 | #include "gtest/gtest.h" |
| 38 | #include "ceres/sized_cost_function.h" |
| 39 | #include "ceres/problem.h" |
| 40 | #include "ceres/problem_impl.h" |
| 41 | |
| 42 | namespace ceres { |
| 43 | namespace internal { |
| 44 | |
| 45 | // Use an inline hash function to avoid portability wrangling. Algorithm from |
| 46 | // Daniel Bernstein, known as the "djb2" hash. |
| 47 | template<typename T> |
| 48 | uint64_t Djb2Hash(const T* data, const int size) { |
| 49 | uint64_t hash = 5381; |
| 50 | const uint8_t* data_as_bytes = reinterpret_cast<const uint8_t*>(data); |
| 51 | for (int i = 0; i < sizeof(*data) * size; ++i) { |
| 52 | hash = hash * 33 + data_as_bytes[i]; |
| 53 | } |
| 54 | return hash; |
| 55 | } |
| 56 | |
| 57 | const double kUninitialized = 0; |
| 58 | |
| 59 | // Generally multiple inheritance is a terrible idea, but in this (test) |
| 60 | // case it makes for a relatively elegant test implementation. |
| 61 | struct WigglyBowlCostFunctionAndEvaluationCallback : |
| 62 | SizedCostFunction<2, 2>, |
| 63 | EvaluationCallback { |
| 64 | |
| 65 | explicit WigglyBowlCostFunctionAndEvaluationCallback(double *parameter) |
| 66 | : EvaluationCallback(), |
| 67 | user_parameter_block(parameter), |
| 68 | prepare_num_calls(0), |
| 69 | prepare_requested_jacobians(false), |
| 70 | prepare_new_evaluation_point(false), |
| 71 | prepare_parameter_hash(kUninitialized), |
| 72 | evaluate_num_calls(0), |
| 73 | evaluate_last_parameter_hash(kUninitialized) {} |
| 74 | |
| 75 | virtual ~WigglyBowlCostFunctionAndEvaluationCallback() {} |
| 76 | |
| 77 | // Evaluation callback interface. This checks that all the preconditions are |
| 78 | // met at the point that Ceres calls into it. |
| 79 | virtual void PrepareForEvaluation(bool evaluate_jacobians, |
| 80 | bool new_evaluation_point) { |
| 81 | // At this point, the incoming parameters are implicitly pushed by Ceres |
| 82 | // into the user parameter blocks; in contrast to in Evaluate(). |
| 83 | uint64_t incoming_parameter_hash = Djb2Hash(user_parameter_block, 2); |
| 84 | |
| 85 | // Check: Prepare() & Evaluate() come in pairs, in that order. Before this |
| 86 | // call, the number of calls excluding this one should match. |
| 87 | EXPECT_EQ(prepare_num_calls, evaluate_num_calls); |
| 88 | |
| 89 | // Check: new_evaluation_point indicates that the parameter has changed. |
| 90 | if (new_evaluation_point) { |
| 91 | // If it's a new evaluation point, then the parameter should have |
| 92 | // changed. Technically, it's not required that it must change but |
| 93 | // in practice it does, and that helps with testing. |
| 94 | EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash); |
| 95 | EXPECT_NE(prepare_parameter_hash, incoming_parameter_hash); |
| 96 | } else { |
| 97 | // If this is the same evaluation point as last time, ensure that |
| 98 | // the parameters match both from the previous evaluate, the |
| 99 | // previous prepare, and the current prepare. |
| 100 | EXPECT_EQ(evaluate_last_parameter_hash, prepare_parameter_hash); |
| 101 | EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash); |
| 102 | } |
| 103 | |
| 104 | // Save details for to check at the next call to Evaluate(). |
| 105 | prepare_num_calls++; |
| 106 | prepare_requested_jacobians = evaluate_jacobians; |
| 107 | prepare_new_evaluation_point = new_evaluation_point; |
| 108 | prepare_parameter_hash = incoming_parameter_hash; |
| 109 | } |
| 110 | |
| 111 | // Cost function interface. This checks that preconditions that were |
| 112 | // set as part of the PrepareForEvaluation() call are met in this one. |
| 113 | virtual bool Evaluate(double const* const* parameters, |
| 114 | double* residuals, |
| 115 | double** jacobians) const { |
| 116 | // Cost function implementation of the "Wiggly Bowl" function: |
| 117 | // |
| 118 | // 1/2 * [(y - a*sin(x))^2 + x^2], |
| 119 | // |
| 120 | // expressed as a Ceres cost function with two residuals: |
| 121 | // |
| 122 | // r[0] = y - a*sin(x) |
| 123 | // r[1] = x. |
| 124 | // |
| 125 | // This is harder to optimize than the Rosenbrock function because the |
| 126 | // minimizer has to navigate a sine-shaped valley while descending the 1D |
| 127 | // parabola formed along the y axis. Note that the "a" needs to be more |
| 128 | // than 5 to get a strong enough wiggle effect in the cost surface to |
| 129 | // trigger failed iterations in the optimizer. |
| 130 | const double a = 10.0; |
| 131 | double x = (*parameters)[0]; |
| 132 | double y = (*parameters)[1]; |
| 133 | residuals[0] = y - a * sin(x); |
| 134 | residuals[1] = x; |
| 135 | if (jacobians != NULL) { |
| 136 | (*jacobians)[2 * 0 + 0] = - a * cos(x); // df1/dx |
| 137 | (*jacobians)[2 * 0 + 1] = 1.0; // df1/dy |
| 138 | (*jacobians)[2 * 1 + 0] = 1.0; // df2/dx |
| 139 | (*jacobians)[2 * 1 + 1] = 0.0; // df2/dy |
| 140 | } |
| 141 | |
| 142 | uint64_t incoming_parameter_hash = Djb2Hash(*parameters, 2); |
| 143 | |
| 144 | // Check: PrepareForEvaluation() & Evaluate() come in pairs, in that order. |
| 145 | EXPECT_EQ(prepare_num_calls, evaluate_num_calls + 1); |
| 146 | |
| 147 | // Check: if new_evaluation_point indicates that the parameter has |
| 148 | // changed, it has changed; otherwise it is the same. |
| 149 | if (prepare_new_evaluation_point) { |
| 150 | EXPECT_NE(evaluate_last_parameter_hash, incoming_parameter_hash); |
| 151 | } else { |
| 152 | EXPECT_NE(evaluate_last_parameter_hash, kUninitialized); |
| 153 | EXPECT_EQ(evaluate_last_parameter_hash, incoming_parameter_hash); |
| 154 | } |
| 155 | |
| 156 | // Check: Parameter matches value in in parameter blocks during prepare. |
| 157 | EXPECT_EQ(prepare_parameter_hash, incoming_parameter_hash); |
| 158 | |
| 159 | // Check: jacobians are requested if they were in PrepareForEvaluation(). |
| 160 | EXPECT_EQ(prepare_requested_jacobians, jacobians != NULL); |
| 161 | |
| 162 | evaluate_num_calls++; |
| 163 | evaluate_last_parameter_hash = incoming_parameter_hash; |
| 164 | return true; |
| 165 | } |
| 166 | |
| 167 | // Pointer to the parameter block associated with this cost function. |
| 168 | // Contents should get set by Ceres before calls to PrepareForEvaluation() |
| 169 | // and Evaluate(). |
| 170 | double* user_parameter_block; |
| 171 | |
| 172 | // Track state: PrepareForEvaluation(). |
| 173 | // |
| 174 | // These track details from the PrepareForEvaluation() call (hence the |
| 175 | // "prepare_" prefix), which are checked for consistency in Evaluate(). |
| 176 | int prepare_num_calls; |
| 177 | bool prepare_requested_jacobians; |
| 178 | bool prepare_new_evaluation_point; |
| 179 | uint64_t prepare_parameter_hash; |
| 180 | |
| 181 | // Track state: Evaluate(). |
| 182 | // |
| 183 | // These track details from the Evaluate() call (hence the "evaluate_" |
| 184 | // prefix), which are then checked for consistency in the calls to |
| 185 | // PrepareForEvaluation(). Mutable is reasonable for this case. |
| 186 | mutable int evaluate_num_calls; |
| 187 | mutable uint64_t evaluate_last_parameter_hash; |
| 188 | }; |
| 189 | |
| 190 | TEST(EvaluationCallback, WithTrustRegionMinimizer) { |
| 191 | double parameters[2] = {50.0, 50.0}; |
| 192 | const uint64_t original_parameters_hash = Djb2Hash(parameters, 2); |
| 193 | |
| 194 | WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters); |
| 195 | Problem::Options problem_options; |
| 196 | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; |
| 197 | Problem problem(problem_options); |
| 198 | problem.AddResidualBlock(&cost_function, NULL, parameters); |
| 199 | |
| 200 | Solver::Options options; |
| 201 | options.linear_solver_type = DENSE_QR; |
| 202 | options.max_num_iterations = 300; // Cost function is hard. |
| 203 | options.evaluation_callback = &cost_function; |
| 204 | |
| 205 | // Run the solve. Checking is done inside the cost function / callback. |
| 206 | Solver::Summary summary; |
| 207 | Solve(options, &problem, &summary); |
| 208 | |
| 209 | // Ensure that this was a hard cost function (not all steps succeed). |
| 210 | EXPECT_GT(summary.num_successful_steps, 10); |
| 211 | EXPECT_GT(summary.num_unsuccessful_steps, 10); |
| 212 | |
| 213 | // Ensure PrepareForEvaluation() is called the appropriate number of times. |
| 214 | EXPECT_EQ(cost_function.prepare_num_calls, |
| 215 | // Unsuccessful steps are evaluated only once (no jacobians). |
| 216 | summary.num_unsuccessful_steps + |
| 217 | // Successful steps are evaluated twice: with and without jacobians. |
| 218 | 2 * summary.num_successful_steps |
| 219 | // Final iteration doesn't re-evaluate the jacobian. |
| 220 | // Note: This may be sensitive to tweaks to the TR algorithm; if |
| 221 | // this becomes too brittle, remove this EXPECT_EQ() entirely. |
| 222 | - 1); |
| 223 | |
| 224 | // Ensure the callback calls ran a reasonable number of times. |
| 225 | EXPECT_GT(cost_function.prepare_num_calls, 0); |
| 226 | EXPECT_GT(cost_function.evaluate_num_calls, 0); |
| 227 | EXPECT_EQ(cost_function.prepare_num_calls, |
| 228 | cost_function.evaluate_num_calls); |
| 229 | |
| 230 | // Ensure that the parameters did actually change. |
| 231 | EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash); |
| 232 | } |
| 233 | |
| 234 | void WithLineSearchMinimizerImpl( |
| 235 | LineSearchType line_search, |
| 236 | LineSearchDirectionType line_search_direction, |
| 237 | LineSearchInterpolationType line_search_interpolation) { |
| 238 | double parameters[2] = {50.0, 50.0}; |
| 239 | const uint64_t original_parameters_hash = Djb2Hash(parameters, 2); |
| 240 | |
| 241 | WigglyBowlCostFunctionAndEvaluationCallback cost_function(parameters); |
| 242 | Problem::Options problem_options; |
| 243 | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; |
| 244 | Problem problem(problem_options); |
| 245 | problem.AddResidualBlock(&cost_function, NULL, parameters); |
| 246 | |
| 247 | Solver::Options options; |
| 248 | options.linear_solver_type = DENSE_QR; |
| 249 | options.max_num_iterations = 300; // Cost function is hard. |
| 250 | options.minimizer_type = ceres::LINE_SEARCH; |
| 251 | options.evaluation_callback = &cost_function; |
| 252 | options.line_search_type = line_search; |
| 253 | options.line_search_direction_type = line_search_direction; |
| 254 | options.line_search_interpolation_type = line_search_interpolation; |
| 255 | |
| 256 | // Run the solve. Checking is done inside the cost function / callback. |
| 257 | Solver::Summary summary; |
| 258 | Solve(options, &problem, &summary); |
| 259 | |
| 260 | // Ensure the callback calls ran a reasonable number of times. |
| 261 | EXPECT_GT(summary.num_line_search_steps, 10); |
| 262 | EXPECT_GT(cost_function.prepare_num_calls, 30); |
| 263 | EXPECT_EQ(cost_function.prepare_num_calls, |
| 264 | cost_function.evaluate_num_calls); |
| 265 | |
| 266 | // Ensure that the parameters did actually change. |
| 267 | EXPECT_NE(Djb2Hash(parameters, 2), original_parameters_hash); |
| 268 | } |
| 269 | |
| 270 | // Note: These tests omit combinations of Wolfe line search with bisection. |
| 271 | // Due to an implementation quirk in Wolfe line search with bisection, there |
| 272 | // are calls to re-evaluate an existing point with new_point = true. That |
| 273 | // causes the (overly) strict tests to break, since they check the new_point |
| 274 | // preconditions in an if-and-only-if way. Strictly speaking, if new_point = |
| 275 | // true, the interface does not *require* that the point has changed; only that |
| 276 | // if new_point = false, the same point is reused. |
| 277 | // |
| 278 | // Since the strict checking is useful to verify that there aren't missed |
| 279 | // optimizations, omit tests of the Wolfe with bisection cases. |
| 280 | |
| 281 | // Wolfe with L-BFGS. |
| 282 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsCubic) { |
| 283 | WithLineSearchMinimizerImpl(WOLFE, LBFGS, CUBIC); |
| 284 | } |
| 285 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeLbfgsQuadratic) { |
| 286 | WithLineSearchMinimizerImpl(WOLFE, LBFGS, QUADRATIC); |
| 287 | } |
| 288 | |
| 289 | // Wolfe with full BFGS. |
| 290 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsCubic) { |
| 291 | WithLineSearchMinimizerImpl(WOLFE, BFGS, CUBIC); |
| 292 | } |
| 293 | |
| 294 | TEST(EvaluationCallback, WithLineSearchMinimizerWolfeBfgsQuadratic) { |
| 295 | WithLineSearchMinimizerImpl(WOLFE, BFGS, QUADRATIC); |
| 296 | } |
| 297 | |
| 298 | // Armijo with nonlinear conjugate gradient. |
| 299 | TEST(EvaluationCallback, WithLineSearchMinimizerArmijoCubic) { |
| 300 | WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, CUBIC); |
| 301 | } |
| 302 | |
| 303 | TEST(EvaluationCallback, WithLineSearchMinimizerArmijoBisection) { |
| 304 | WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, BISECTION); |
| 305 | } |
| 306 | |
| 307 | TEST(EvaluationCallback, WithLineSearchMinimizerArmijoQuadratic) { |
| 308 | WithLineSearchMinimizerImpl(ARMIJO, NONLINEAR_CONJUGATE_GRADIENT, QUADRATIC); |
| 309 | } |
| 310 | |
| 311 | } // namespace internal |
| 312 | } // namespace ceres |