Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: strandmark@google.com (Petter Strandmark) |
| 30 | |
| 31 | // This include must come before any #ifndef check on Ceres compile options. |
| 32 | #include "ceres/internal/port.h" |
| 33 | |
| 34 | #ifndef CERES_NO_CXSPARSE |
| 35 | |
| 36 | #include "ceres/cxsparse.h" |
| 37 | |
| 38 | #include <string> |
| 39 | #include <vector> |
| 40 | |
| 41 | #include "ceres/compressed_col_sparse_matrix_utils.h" |
| 42 | #include "ceres/compressed_row_sparse_matrix.h" |
| 43 | #include "ceres/triplet_sparse_matrix.h" |
| 44 | #include "glog/logging.h" |
| 45 | |
| 46 | namespace ceres { |
| 47 | namespace internal { |
| 48 | |
| 49 | using std::vector; |
| 50 | |
| 51 | CXSparse::CXSparse() : scratch_(NULL), scratch_size_(0) {} |
| 52 | |
| 53 | CXSparse::~CXSparse() { |
| 54 | if (scratch_size_ > 0) { |
| 55 | cs_di_free(scratch_); |
| 56 | } |
| 57 | } |
| 58 | |
| 59 | csn* CXSparse::Cholesky(cs_di* A, cs_dis* symbolic_factor) { |
| 60 | return cs_di_chol(A, symbolic_factor); |
| 61 | } |
| 62 | |
| 63 | void CXSparse::Solve(cs_dis* symbolic_factor, csn* numeric_factor, double* b) { |
| 64 | // Make sure we have enough scratch space available. |
| 65 | const int num_cols = numeric_factor->L->n; |
| 66 | if (scratch_size_ < num_cols) { |
| 67 | if (scratch_size_ > 0) { |
| 68 | cs_di_free(scratch_); |
| 69 | } |
| 70 | scratch_ = |
| 71 | reinterpret_cast<CS_ENTRY*>(cs_di_malloc(num_cols, sizeof(CS_ENTRY))); |
| 72 | scratch_size_ = num_cols; |
| 73 | } |
| 74 | |
| 75 | // When the Cholesky factor succeeded, these methods are |
| 76 | // guaranteed to succeeded as well. In the comments below, "x" |
| 77 | // refers to the scratch space. |
| 78 | // |
| 79 | // Set x = P * b. |
| 80 | CHECK(cs_di_ipvec(symbolic_factor->pinv, b, scratch_, num_cols)); |
| 81 | // Set x = L \ x. |
| 82 | CHECK(cs_di_lsolve(numeric_factor->L, scratch_)); |
| 83 | // Set x = L' \ x. |
| 84 | CHECK(cs_di_ltsolve(numeric_factor->L, scratch_)); |
| 85 | // Set b = P' * x. |
| 86 | CHECK(cs_di_pvec(symbolic_factor->pinv, scratch_, b, num_cols)); |
| 87 | } |
| 88 | |
| 89 | bool CXSparse::SolveCholesky(cs_di* lhs, double* rhs_and_solution) { |
| 90 | return cs_cholsol(1, lhs, rhs_and_solution); |
| 91 | } |
| 92 | |
| 93 | cs_dis* CXSparse::AnalyzeCholesky(cs_di* A) { |
| 94 | // order = 1 for Cholesky factor. |
| 95 | return cs_schol(1, A); |
| 96 | } |
| 97 | |
| 98 | cs_dis* CXSparse::AnalyzeCholeskyWithNaturalOrdering(cs_di* A) { |
| 99 | // order = 0 for Natural ordering. |
| 100 | return cs_schol(0, A); |
| 101 | } |
| 102 | |
| 103 | cs_dis* CXSparse::BlockAnalyzeCholesky(cs_di* A, |
| 104 | const vector<int>& row_blocks, |
| 105 | const vector<int>& col_blocks) { |
| 106 | const int num_row_blocks = row_blocks.size(); |
| 107 | const int num_col_blocks = col_blocks.size(); |
| 108 | |
| 109 | vector<int> block_rows; |
| 110 | vector<int> block_cols; |
| 111 | CompressedColumnScalarMatrixToBlockMatrix( |
| 112 | A->i, A->p, row_blocks, col_blocks, &block_rows, &block_cols); |
| 113 | cs_di block_matrix; |
| 114 | block_matrix.m = num_row_blocks; |
| 115 | block_matrix.n = num_col_blocks; |
| 116 | block_matrix.nz = -1; |
| 117 | block_matrix.nzmax = block_rows.size(); |
| 118 | block_matrix.p = &block_cols[0]; |
| 119 | block_matrix.i = &block_rows[0]; |
| 120 | block_matrix.x = NULL; |
| 121 | |
| 122 | int* ordering = cs_amd(1, &block_matrix); |
| 123 | vector<int> block_ordering(num_row_blocks, -1); |
| 124 | std::copy(ordering, ordering + num_row_blocks, &block_ordering[0]); |
| 125 | cs_free(ordering); |
| 126 | |
| 127 | vector<int> scalar_ordering; |
| 128 | BlockOrderingToScalarOrdering(row_blocks, block_ordering, &scalar_ordering); |
| 129 | |
| 130 | cs_dis* symbolic_factor = |
| 131 | reinterpret_cast<cs_dis*>(cs_calloc(1, sizeof(cs_dis))); |
| 132 | symbolic_factor->pinv = cs_pinv(&scalar_ordering[0], A->n); |
| 133 | cs* permuted_A = cs_symperm(A, symbolic_factor->pinv, 0); |
| 134 | |
| 135 | symbolic_factor->parent = cs_etree(permuted_A, 0); |
| 136 | int* postordering = cs_post(symbolic_factor->parent, A->n); |
| 137 | int* column_counts = |
| 138 | cs_counts(permuted_A, symbolic_factor->parent, postordering, 0); |
| 139 | cs_free(postordering); |
| 140 | cs_spfree(permuted_A); |
| 141 | |
| 142 | symbolic_factor->cp = (int*)cs_malloc(A->n + 1, sizeof(int)); |
| 143 | symbolic_factor->lnz = cs_cumsum(symbolic_factor->cp, column_counts, A->n); |
| 144 | symbolic_factor->unz = symbolic_factor->lnz; |
| 145 | |
| 146 | cs_free(column_counts); |
| 147 | |
| 148 | if (symbolic_factor->lnz < 0) { |
| 149 | cs_sfree(symbolic_factor); |
| 150 | symbolic_factor = NULL; |
| 151 | } |
| 152 | |
| 153 | return symbolic_factor; |
| 154 | } |
| 155 | |
| 156 | cs_di CXSparse::CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A) { |
| 157 | cs_di At; |
| 158 | At.m = A->num_cols(); |
| 159 | At.n = A->num_rows(); |
| 160 | At.nz = -1; |
| 161 | At.nzmax = A->num_nonzeros(); |
| 162 | At.p = A->mutable_rows(); |
| 163 | At.i = A->mutable_cols(); |
| 164 | At.x = A->mutable_values(); |
| 165 | return At; |
| 166 | } |
| 167 | |
| 168 | cs_di* CXSparse::CreateSparseMatrix(TripletSparseMatrix* tsm) { |
| 169 | cs_di_sparse tsm_wrapper; |
| 170 | tsm_wrapper.nzmax = tsm->num_nonzeros(); |
| 171 | tsm_wrapper.nz = tsm->num_nonzeros(); |
| 172 | tsm_wrapper.m = tsm->num_rows(); |
| 173 | tsm_wrapper.n = tsm->num_cols(); |
| 174 | tsm_wrapper.p = tsm->mutable_cols(); |
| 175 | tsm_wrapper.i = tsm->mutable_rows(); |
| 176 | tsm_wrapper.x = tsm->mutable_values(); |
| 177 | |
| 178 | return cs_compress(&tsm_wrapper); |
| 179 | } |
| 180 | |
| 181 | void CXSparse::ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering) { |
| 182 | int* cs_ordering = cs_amd(1, A); |
| 183 | std::copy(cs_ordering, cs_ordering + A->m, ordering); |
| 184 | cs_free(cs_ordering); |
| 185 | } |
| 186 | |
| 187 | cs_di* CXSparse::TransposeMatrix(cs_di* A) { return cs_di_transpose(A, 1); } |
| 188 | |
| 189 | cs_di* CXSparse::MatrixMatrixMultiply(cs_di* A, cs_di* B) { |
| 190 | return cs_di_multiply(A, B); |
| 191 | } |
| 192 | |
| 193 | void CXSparse::Free(cs_di* sparse_matrix) { cs_di_spfree(sparse_matrix); } |
| 194 | |
| 195 | void CXSparse::Free(cs_dis* symbolic_factor) { cs_di_sfree(symbolic_factor); } |
| 196 | |
| 197 | void CXSparse::Free(csn* numeric_factor) { cs_di_nfree(numeric_factor); } |
| 198 | |
| 199 | std::unique_ptr<SparseCholesky> CXSparseCholesky::Create( |
| 200 | const OrderingType ordering_type) { |
| 201 | return std::unique_ptr<SparseCholesky>(new CXSparseCholesky(ordering_type)); |
| 202 | } |
| 203 | |
| 204 | CompressedRowSparseMatrix::StorageType CXSparseCholesky::StorageType() const { |
| 205 | return CompressedRowSparseMatrix::LOWER_TRIANGULAR; |
| 206 | } |
| 207 | |
| 208 | CXSparseCholesky::CXSparseCholesky(const OrderingType ordering_type) |
| 209 | : ordering_type_(ordering_type), |
| 210 | symbolic_factor_(NULL), |
| 211 | numeric_factor_(NULL) {} |
| 212 | |
| 213 | CXSparseCholesky::~CXSparseCholesky() { |
| 214 | FreeSymbolicFactorization(); |
| 215 | FreeNumericFactorization(); |
| 216 | } |
| 217 | |
| 218 | LinearSolverTerminationType CXSparseCholesky::Factorize( |
| 219 | CompressedRowSparseMatrix* lhs, std::string* message) { |
| 220 | CHECK_EQ(lhs->storage_type(), StorageType()); |
| 221 | if (lhs == NULL) { |
| 222 | *message = "Failure: Input lhs is NULL."; |
| 223 | return LINEAR_SOLVER_FATAL_ERROR; |
| 224 | } |
| 225 | |
| 226 | cs_di cs_lhs = cs_.CreateSparseMatrixTransposeView(lhs); |
| 227 | |
| 228 | if (symbolic_factor_ == NULL) { |
| 229 | if (ordering_type_ == NATURAL) { |
| 230 | symbolic_factor_ = cs_.AnalyzeCholeskyWithNaturalOrdering(&cs_lhs); |
| 231 | } else { |
| 232 | if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) { |
| 233 | symbolic_factor_ = cs_.BlockAnalyzeCholesky( |
| 234 | &cs_lhs, lhs->col_blocks(), lhs->row_blocks()); |
| 235 | } else { |
| 236 | symbolic_factor_ = cs_.AnalyzeCholesky(&cs_lhs); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | if (symbolic_factor_ == NULL) { |
| 241 | *message = "CXSparse Failure : Symbolic factorization failed."; |
| 242 | return LINEAR_SOLVER_FATAL_ERROR; |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | FreeNumericFactorization(); |
| 247 | numeric_factor_ = cs_.Cholesky(&cs_lhs, symbolic_factor_); |
| 248 | if (numeric_factor_ == NULL) { |
| 249 | *message = "CXSparse Failure : Numeric factorization failed."; |
| 250 | return LINEAR_SOLVER_FAILURE; |
| 251 | } |
| 252 | |
| 253 | return LINEAR_SOLVER_SUCCESS; |
| 254 | } |
| 255 | |
| 256 | LinearSolverTerminationType CXSparseCholesky::Solve(const double* rhs, |
| 257 | double* solution, |
| 258 | std::string* message) { |
| 259 | CHECK(numeric_factor_ != NULL) |
| 260 | << "Solve called without a call to Factorize first."; |
| 261 | const int num_cols = numeric_factor_->L->n; |
| 262 | memcpy(solution, rhs, num_cols * sizeof(*solution)); |
| 263 | cs_.Solve(symbolic_factor_, numeric_factor_, solution); |
| 264 | return LINEAR_SOLVER_SUCCESS; |
| 265 | } |
| 266 | |
| 267 | void CXSparseCholesky::FreeSymbolicFactorization() { |
| 268 | if (symbolic_factor_ != NULL) { |
| 269 | cs_.Free(symbolic_factor_); |
| 270 | symbolic_factor_ = NULL; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | void CXSparseCholesky::FreeNumericFactorization() { |
| 275 | if (numeric_factor_ != NULL) { |
| 276 | cs_.Free(numeric_factor_); |
| 277 | numeric_factor_ = NULL; |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | } // namespace internal |
| 282 | } // namespace ceres |
| 283 | |
| 284 | #endif // CERES_NO_CXSPARSE |