Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/covariance.h" |
| 32 | |
| 33 | #include <algorithm> |
| 34 | #include <cstdint> |
| 35 | #include <cmath> |
| 36 | #include <map> |
| 37 | #include <memory> |
| 38 | #include <utility> |
| 39 | |
| 40 | #include "ceres/compressed_row_sparse_matrix.h" |
| 41 | #include "ceres/cost_function.h" |
| 42 | #include "ceres/covariance_impl.h" |
| 43 | #include "ceres/local_parameterization.h" |
| 44 | #include "ceres/map_util.h" |
| 45 | #include "ceres/problem_impl.h" |
| 46 | #include "gtest/gtest.h" |
| 47 | |
| 48 | namespace ceres { |
| 49 | namespace internal { |
| 50 | |
| 51 | using std::make_pair; |
| 52 | using std::map; |
| 53 | using std::pair; |
| 54 | using std::vector; |
| 55 | |
| 56 | class UnaryCostFunction: public CostFunction { |
| 57 | public: |
| 58 | UnaryCostFunction(const int num_residuals, |
| 59 | const int32_t parameter_block_size, |
| 60 | const double* jacobian) |
| 61 | : jacobian_(jacobian, jacobian + num_residuals * parameter_block_size) { |
| 62 | set_num_residuals(num_residuals); |
| 63 | mutable_parameter_block_sizes()->push_back(parameter_block_size); |
| 64 | } |
| 65 | |
| 66 | virtual bool Evaluate(double const* const* parameters, |
| 67 | double* residuals, |
| 68 | double** jacobians) const { |
| 69 | for (int i = 0; i < num_residuals(); ++i) { |
| 70 | residuals[i] = 1; |
| 71 | } |
| 72 | |
| 73 | if (jacobians == NULL) { |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | if (jacobians[0] != NULL) { |
| 78 | copy(jacobian_.begin(), jacobian_.end(), jacobians[0]); |
| 79 | } |
| 80 | |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | private: |
| 85 | vector<double> jacobian_; |
| 86 | }; |
| 87 | |
| 88 | |
| 89 | class BinaryCostFunction: public CostFunction { |
| 90 | public: |
| 91 | BinaryCostFunction(const int num_residuals, |
| 92 | const int32_t parameter_block1_size, |
| 93 | const int32_t parameter_block2_size, |
| 94 | const double* jacobian1, |
| 95 | const double* jacobian2) |
| 96 | : jacobian1_(jacobian1, |
| 97 | jacobian1 + num_residuals * parameter_block1_size), |
| 98 | jacobian2_(jacobian2, |
| 99 | jacobian2 + num_residuals * parameter_block2_size) { |
| 100 | set_num_residuals(num_residuals); |
| 101 | mutable_parameter_block_sizes()->push_back(parameter_block1_size); |
| 102 | mutable_parameter_block_sizes()->push_back(parameter_block2_size); |
| 103 | } |
| 104 | |
| 105 | virtual bool Evaluate(double const* const* parameters, |
| 106 | double* residuals, |
| 107 | double** jacobians) const { |
| 108 | for (int i = 0; i < num_residuals(); ++i) { |
| 109 | residuals[i] = 2; |
| 110 | } |
| 111 | |
| 112 | if (jacobians == NULL) { |
| 113 | return true; |
| 114 | } |
| 115 | |
| 116 | if (jacobians[0] != NULL) { |
| 117 | copy(jacobian1_.begin(), jacobian1_.end(), jacobians[0]); |
| 118 | } |
| 119 | |
| 120 | if (jacobians[1] != NULL) { |
| 121 | copy(jacobian2_.begin(), jacobian2_.end(), jacobians[1]); |
| 122 | } |
| 123 | |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | private: |
| 128 | vector<double> jacobian1_; |
| 129 | vector<double> jacobian2_; |
| 130 | }; |
| 131 | |
| 132 | // x_plus_delta = delta * x; |
| 133 | class PolynomialParameterization : public LocalParameterization { |
| 134 | public: |
| 135 | virtual ~PolynomialParameterization() {} |
| 136 | |
| 137 | virtual bool Plus(const double* x, |
| 138 | const double* delta, |
| 139 | double* x_plus_delta) const { |
| 140 | x_plus_delta[0] = delta[0] * x[0]; |
| 141 | x_plus_delta[1] = delta[0] * x[1]; |
| 142 | return true; |
| 143 | } |
| 144 | |
| 145 | virtual bool ComputeJacobian(const double* x, double* jacobian) const { |
| 146 | jacobian[0] = x[0]; |
| 147 | jacobian[1] = x[1]; |
| 148 | return true; |
| 149 | } |
| 150 | |
| 151 | virtual int GlobalSize() const { return 2; } |
| 152 | virtual int LocalSize() const { return 1; } |
| 153 | }; |
| 154 | |
| 155 | TEST(CovarianceImpl, ComputeCovarianceSparsity) { |
| 156 | double parameters[10]; |
| 157 | |
| 158 | double* block1 = parameters; |
| 159 | double* block2 = block1 + 1; |
| 160 | double* block3 = block2 + 2; |
| 161 | double* block4 = block3 + 3; |
| 162 | |
| 163 | ProblemImpl problem; |
| 164 | |
| 165 | // Add in random order |
| 166 | Vector junk_jacobian = Vector::Zero(10); |
| 167 | problem.AddResidualBlock( |
| 168 | new UnaryCostFunction(1, 1, junk_jacobian.data()), NULL, block1); |
| 169 | problem.AddResidualBlock( |
| 170 | new UnaryCostFunction(1, 4, junk_jacobian.data()), NULL, block4); |
| 171 | problem.AddResidualBlock( |
| 172 | new UnaryCostFunction(1, 3, junk_jacobian.data()), NULL, block3); |
| 173 | problem.AddResidualBlock( |
| 174 | new UnaryCostFunction(1, 2, junk_jacobian.data()), NULL, block2); |
| 175 | |
| 176 | // Sparsity pattern |
| 177 | // |
| 178 | // Note that the problem structure does not imply this sparsity |
| 179 | // pattern since all the residual blocks are unary. But the |
| 180 | // ComputeCovarianceSparsity function in its current incarnation |
| 181 | // does not pay attention to this fact and only looks at the |
| 182 | // parameter block pairs that the user provides. |
| 183 | // |
| 184 | // X . . . . . X X X X |
| 185 | // . X X X X X . . . . |
| 186 | // . X X X X X . . . . |
| 187 | // . . . X X X . . . . |
| 188 | // . . . X X X . . . . |
| 189 | // . . . X X X . . . . |
| 190 | // . . . . . . X X X X |
| 191 | // . . . . . . X X X X |
| 192 | // . . . . . . X X X X |
| 193 | // . . . . . . X X X X |
| 194 | |
| 195 | int expected_rows[] = {0, 5, 10, 15, 18, 21, 24, 28, 32, 36, 40}; |
| 196 | int expected_cols[] = {0, 6, 7, 8, 9, |
| 197 | 1, 2, 3, 4, 5, |
| 198 | 1, 2, 3, 4, 5, |
| 199 | 3, 4, 5, |
| 200 | 3, 4, 5, |
| 201 | 3, 4, 5, |
| 202 | 6, 7, 8, 9, |
| 203 | 6, 7, 8, 9, |
| 204 | 6, 7, 8, 9, |
| 205 | 6, 7, 8, 9}; |
| 206 | |
| 207 | |
| 208 | vector<pair<const double*, const double*>> covariance_blocks; |
| 209 | covariance_blocks.push_back(make_pair(block1, block1)); |
| 210 | covariance_blocks.push_back(make_pair(block4, block4)); |
| 211 | covariance_blocks.push_back(make_pair(block2, block2)); |
| 212 | covariance_blocks.push_back(make_pair(block3, block3)); |
| 213 | covariance_blocks.push_back(make_pair(block2, block3)); |
| 214 | covariance_blocks.push_back(make_pair(block4, block1)); // reversed |
| 215 | |
| 216 | Covariance::Options options; |
| 217 | CovarianceImpl covariance_impl(options); |
| 218 | EXPECT_TRUE(covariance_impl |
| 219 | .ComputeCovarianceSparsity(covariance_blocks, &problem)); |
| 220 | |
| 221 | const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix(); |
| 222 | |
| 223 | EXPECT_EQ(crsm->num_rows(), 10); |
| 224 | EXPECT_EQ(crsm->num_cols(), 10); |
| 225 | EXPECT_EQ(crsm->num_nonzeros(), 40); |
| 226 | |
| 227 | const int* rows = crsm->rows(); |
| 228 | for (int r = 0; r < crsm->num_rows() + 1; ++r) { |
| 229 | EXPECT_EQ(rows[r], expected_rows[r]) |
| 230 | << r << " " |
| 231 | << rows[r] << " " |
| 232 | << expected_rows[r]; |
| 233 | } |
| 234 | |
| 235 | const int* cols = crsm->cols(); |
| 236 | for (int c = 0; c < crsm->num_nonzeros(); ++c) { |
| 237 | EXPECT_EQ(cols[c], expected_cols[c]) |
| 238 | << c << " " |
| 239 | << cols[c] << " " |
| 240 | << expected_cols[c]; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | TEST(CovarianceImpl, ComputeCovarianceSparsityWithConstantParameterBlock) { |
| 245 | double parameters[10]; |
| 246 | |
| 247 | double* block1 = parameters; |
| 248 | double* block2 = block1 + 1; |
| 249 | double* block3 = block2 + 2; |
| 250 | double* block4 = block3 + 3; |
| 251 | |
| 252 | ProblemImpl problem; |
| 253 | |
| 254 | // Add in random order |
| 255 | Vector junk_jacobian = Vector::Zero(10); |
| 256 | problem.AddResidualBlock( |
| 257 | new UnaryCostFunction(1, 1, junk_jacobian.data()), NULL, block1); |
| 258 | problem.AddResidualBlock( |
| 259 | new UnaryCostFunction(1, 4, junk_jacobian.data()), NULL, block4); |
| 260 | problem.AddResidualBlock( |
| 261 | new UnaryCostFunction(1, 3, junk_jacobian.data()), NULL, block3); |
| 262 | problem.AddResidualBlock( |
| 263 | new UnaryCostFunction(1, 2, junk_jacobian.data()), NULL, block2); |
| 264 | problem.SetParameterBlockConstant(block3); |
| 265 | |
| 266 | // Sparsity pattern |
| 267 | // |
| 268 | // Note that the problem structure does not imply this sparsity |
| 269 | // pattern since all the residual blocks are unary. But the |
| 270 | // ComputeCovarianceSparsity function in its current incarnation |
| 271 | // does not pay attention to this fact and only looks at the |
| 272 | // parameter block pairs that the user provides. |
| 273 | // |
| 274 | // X . . X X X X |
| 275 | // . X X . . . . |
| 276 | // . X X . . . . |
| 277 | // . . . X X X X |
| 278 | // . . . X X X X |
| 279 | // . . . X X X X |
| 280 | // . . . X X X X |
| 281 | |
| 282 | int expected_rows[] = {0, 5, 7, 9, 13, 17, 21, 25}; |
| 283 | int expected_cols[] = {0, 3, 4, 5, 6, |
| 284 | 1, 2, |
| 285 | 1, 2, |
| 286 | 3, 4, 5, 6, |
| 287 | 3, 4, 5, 6, |
| 288 | 3, 4, 5, 6, |
| 289 | 3, 4, 5, 6}; |
| 290 | |
| 291 | vector<pair<const double*, const double*>> covariance_blocks; |
| 292 | covariance_blocks.push_back(make_pair(block1, block1)); |
| 293 | covariance_blocks.push_back(make_pair(block4, block4)); |
| 294 | covariance_blocks.push_back(make_pair(block2, block2)); |
| 295 | covariance_blocks.push_back(make_pair(block3, block3)); |
| 296 | covariance_blocks.push_back(make_pair(block2, block3)); |
| 297 | covariance_blocks.push_back(make_pair(block4, block1)); // reversed |
| 298 | |
| 299 | Covariance::Options options; |
| 300 | CovarianceImpl covariance_impl(options); |
| 301 | EXPECT_TRUE(covariance_impl |
| 302 | .ComputeCovarianceSparsity(covariance_blocks, &problem)); |
| 303 | |
| 304 | const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix(); |
| 305 | |
| 306 | EXPECT_EQ(crsm->num_rows(), 7); |
| 307 | EXPECT_EQ(crsm->num_cols(), 7); |
| 308 | EXPECT_EQ(crsm->num_nonzeros(), 25); |
| 309 | |
| 310 | const int* rows = crsm->rows(); |
| 311 | for (int r = 0; r < crsm->num_rows() + 1; ++r) { |
| 312 | EXPECT_EQ(rows[r], expected_rows[r]) |
| 313 | << r << " " |
| 314 | << rows[r] << " " |
| 315 | << expected_rows[r]; |
| 316 | } |
| 317 | |
| 318 | const int* cols = crsm->cols(); |
| 319 | for (int c = 0; c < crsm->num_nonzeros(); ++c) { |
| 320 | EXPECT_EQ(cols[c], expected_cols[c]) |
| 321 | << c << " " |
| 322 | << cols[c] << " " |
| 323 | << expected_cols[c]; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | TEST(CovarianceImpl, ComputeCovarianceSparsityWithFreeParameterBlock) { |
| 328 | double parameters[10]; |
| 329 | |
| 330 | double* block1 = parameters; |
| 331 | double* block2 = block1 + 1; |
| 332 | double* block3 = block2 + 2; |
| 333 | double* block4 = block3 + 3; |
| 334 | |
| 335 | ProblemImpl problem; |
| 336 | |
| 337 | // Add in random order |
| 338 | Vector junk_jacobian = Vector::Zero(10); |
| 339 | problem.AddResidualBlock( |
| 340 | new UnaryCostFunction(1, 1, junk_jacobian.data()), NULL, block1); |
| 341 | problem.AddResidualBlock( |
| 342 | new UnaryCostFunction(1, 4, junk_jacobian.data()), NULL, block4); |
| 343 | problem.AddParameterBlock(block3, 3); |
| 344 | problem.AddResidualBlock( |
| 345 | new UnaryCostFunction(1, 2, junk_jacobian.data()), NULL, block2); |
| 346 | |
| 347 | // Sparsity pattern |
| 348 | // |
| 349 | // Note that the problem structure does not imply this sparsity |
| 350 | // pattern since all the residual blocks are unary. But the |
| 351 | // ComputeCovarianceSparsity function in its current incarnation |
| 352 | // does not pay attention to this fact and only looks at the |
| 353 | // parameter block pairs that the user provides. |
| 354 | // |
| 355 | // X . . X X X X |
| 356 | // . X X . . . . |
| 357 | // . X X . . . . |
| 358 | // . . . X X X X |
| 359 | // . . . X X X X |
| 360 | // . . . X X X X |
| 361 | // . . . X X X X |
| 362 | |
| 363 | int expected_rows[] = {0, 5, 7, 9, 13, 17, 21, 25}; |
| 364 | int expected_cols[] = {0, 3, 4, 5, 6, |
| 365 | 1, 2, |
| 366 | 1, 2, |
| 367 | 3, 4, 5, 6, |
| 368 | 3, 4, 5, 6, |
| 369 | 3, 4, 5, 6, |
| 370 | 3, 4, 5, 6}; |
| 371 | |
| 372 | vector<pair<const double*, const double*>> covariance_blocks; |
| 373 | covariance_blocks.push_back(make_pair(block1, block1)); |
| 374 | covariance_blocks.push_back(make_pair(block4, block4)); |
| 375 | covariance_blocks.push_back(make_pair(block2, block2)); |
| 376 | covariance_blocks.push_back(make_pair(block3, block3)); |
| 377 | covariance_blocks.push_back(make_pair(block2, block3)); |
| 378 | covariance_blocks.push_back(make_pair(block4, block1)); // reversed |
| 379 | |
| 380 | Covariance::Options options; |
| 381 | CovarianceImpl covariance_impl(options); |
| 382 | EXPECT_TRUE(covariance_impl |
| 383 | .ComputeCovarianceSparsity(covariance_blocks, &problem)); |
| 384 | |
| 385 | const CompressedRowSparseMatrix* crsm = covariance_impl.covariance_matrix(); |
| 386 | |
| 387 | EXPECT_EQ(crsm->num_rows(), 7); |
| 388 | EXPECT_EQ(crsm->num_cols(), 7); |
| 389 | EXPECT_EQ(crsm->num_nonzeros(), 25); |
| 390 | |
| 391 | const int* rows = crsm->rows(); |
| 392 | for (int r = 0; r < crsm->num_rows() + 1; ++r) { |
| 393 | EXPECT_EQ(rows[r], expected_rows[r]) |
| 394 | << r << " " |
| 395 | << rows[r] << " " |
| 396 | << expected_rows[r]; |
| 397 | } |
| 398 | |
| 399 | const int* cols = crsm->cols(); |
| 400 | for (int c = 0; c < crsm->num_nonzeros(); ++c) { |
| 401 | EXPECT_EQ(cols[c], expected_cols[c]) |
| 402 | << c << " " |
| 403 | << cols[c] << " " |
| 404 | << expected_cols[c]; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | class CovarianceTest : public ::testing::Test { |
| 409 | protected: |
| 410 | typedef map<const double*, pair<int, int>> BoundsMap; |
| 411 | |
| 412 | virtual void SetUp() { |
| 413 | double* x = parameters_; |
| 414 | double* y = x + 2; |
| 415 | double* z = y + 3; |
| 416 | |
| 417 | x[0] = 1; |
| 418 | x[1] = 1; |
| 419 | y[0] = 2; |
| 420 | y[1] = 2; |
| 421 | y[2] = 2; |
| 422 | z[0] = 3; |
| 423 | |
| 424 | { |
| 425 | double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; |
| 426 | problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); |
| 427 | } |
| 428 | |
| 429 | { |
| 430 | double jacobian[] = { 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 2.0 }; |
| 431 | problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); |
| 432 | } |
| 433 | |
| 434 | { |
| 435 | double jacobian = 5.0; |
| 436 | problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), |
| 437 | NULL, |
| 438 | z); |
| 439 | } |
| 440 | |
| 441 | { |
| 442 | double jacobian1[] = { 1.0, 2.0, 3.0 }; |
| 443 | double jacobian2[] = { -5.0, -6.0 }; |
| 444 | problem_.AddResidualBlock( |
| 445 | new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), |
| 446 | NULL, |
| 447 | y, |
| 448 | x); |
| 449 | } |
| 450 | |
| 451 | { |
| 452 | double jacobian1[] = {2.0 }; |
| 453 | double jacobian2[] = { 3.0, -2.0 }; |
| 454 | problem_.AddResidualBlock( |
| 455 | new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), |
| 456 | NULL, |
| 457 | z, |
| 458 | x); |
| 459 | } |
| 460 | |
| 461 | all_covariance_blocks_.push_back(make_pair(x, x)); |
| 462 | all_covariance_blocks_.push_back(make_pair(y, y)); |
| 463 | all_covariance_blocks_.push_back(make_pair(z, z)); |
| 464 | all_covariance_blocks_.push_back(make_pair(x, y)); |
| 465 | all_covariance_blocks_.push_back(make_pair(x, z)); |
| 466 | all_covariance_blocks_.push_back(make_pair(y, z)); |
| 467 | |
| 468 | column_bounds_[x] = make_pair(0, 2); |
| 469 | column_bounds_[y] = make_pair(2, 5); |
| 470 | column_bounds_[z] = make_pair(5, 6); |
| 471 | } |
| 472 | |
| 473 | // Computes covariance in ambient space. |
| 474 | void ComputeAndCompareCovarianceBlocks(const Covariance::Options& options, |
| 475 | const double* expected_covariance) { |
| 476 | ComputeAndCompareCovarianceBlocksInTangentOrAmbientSpace( |
| 477 | options, |
| 478 | true, // ambient |
| 479 | expected_covariance); |
| 480 | } |
| 481 | |
| 482 | // Computes covariance in tangent space. |
| 483 | void ComputeAndCompareCovarianceBlocksInTangentSpace( |
| 484 | const Covariance::Options& options, |
| 485 | const double* expected_covariance) { |
| 486 | ComputeAndCompareCovarianceBlocksInTangentOrAmbientSpace( |
| 487 | options, |
| 488 | false, // tangent |
| 489 | expected_covariance); |
| 490 | } |
| 491 | |
| 492 | void ComputeAndCompareCovarianceBlocksInTangentOrAmbientSpace( |
| 493 | const Covariance::Options& options, |
| 494 | bool lift_covariance_to_ambient_space, |
| 495 | const double* expected_covariance) { |
| 496 | // Generate all possible combination of block pairs and check if the |
| 497 | // covariance computation is correct. |
| 498 | for (int i = 0; i <= 64; ++i) { |
| 499 | vector<pair<const double*, const double*>> covariance_blocks; |
| 500 | if (i & 1) { |
| 501 | covariance_blocks.push_back(all_covariance_blocks_[0]); |
| 502 | } |
| 503 | |
| 504 | if (i & 2) { |
| 505 | covariance_blocks.push_back(all_covariance_blocks_[1]); |
| 506 | } |
| 507 | |
| 508 | if (i & 4) { |
| 509 | covariance_blocks.push_back(all_covariance_blocks_[2]); |
| 510 | } |
| 511 | |
| 512 | if (i & 8) { |
| 513 | covariance_blocks.push_back(all_covariance_blocks_[3]); |
| 514 | } |
| 515 | |
| 516 | if (i & 16) { |
| 517 | covariance_blocks.push_back(all_covariance_blocks_[4]); |
| 518 | } |
| 519 | |
| 520 | if (i & 32) { |
| 521 | covariance_blocks.push_back(all_covariance_blocks_[5]); |
| 522 | } |
| 523 | |
| 524 | Covariance covariance(options); |
| 525 | EXPECT_TRUE(covariance.Compute(covariance_blocks, &problem_)); |
| 526 | |
| 527 | for (int i = 0; i < covariance_blocks.size(); ++i) { |
| 528 | const double* block1 = covariance_blocks[i].first; |
| 529 | const double* block2 = covariance_blocks[i].second; |
| 530 | // block1, block2 |
| 531 | GetCovarianceBlockAndCompare(block1, |
| 532 | block2, |
| 533 | lift_covariance_to_ambient_space, |
| 534 | covariance, |
| 535 | expected_covariance); |
| 536 | // block2, block1 |
| 537 | GetCovarianceBlockAndCompare(block2, |
| 538 | block1, |
| 539 | lift_covariance_to_ambient_space, |
| 540 | covariance, |
| 541 | expected_covariance); |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | void GetCovarianceBlockAndCompare(const double* block1, |
| 547 | const double* block2, |
| 548 | bool lift_covariance_to_ambient_space, |
| 549 | const Covariance& covariance, |
| 550 | const double* expected_covariance) { |
| 551 | const BoundsMap& column_bounds = lift_covariance_to_ambient_space ? |
| 552 | column_bounds_ : local_column_bounds_; |
| 553 | const int row_begin = FindOrDie(column_bounds, block1).first; |
| 554 | const int row_end = FindOrDie(column_bounds, block1).second; |
| 555 | const int col_begin = FindOrDie(column_bounds, block2).first; |
| 556 | const int col_end = FindOrDie(column_bounds, block2).second; |
| 557 | |
| 558 | Matrix actual(row_end - row_begin, col_end - col_begin); |
| 559 | if (lift_covariance_to_ambient_space) { |
| 560 | EXPECT_TRUE(covariance.GetCovarianceBlock(block1, |
| 561 | block2, |
| 562 | actual.data())); |
| 563 | } else { |
| 564 | EXPECT_TRUE(covariance.GetCovarianceBlockInTangentSpace(block1, |
| 565 | block2, |
| 566 | actual.data())); |
| 567 | } |
| 568 | |
| 569 | int dof = 0; // degrees of freedom = sum of LocalSize()s |
| 570 | for (const auto& bound : column_bounds) { |
| 571 | dof = std::max(dof, bound.second.second); |
| 572 | } |
| 573 | ConstMatrixRef expected(expected_covariance, dof, dof); |
| 574 | double diff_norm = (expected.block(row_begin, |
| 575 | col_begin, |
| 576 | row_end - row_begin, |
| 577 | col_end - col_begin) - actual).norm(); |
| 578 | diff_norm /= (row_end - row_begin) * (col_end - col_begin); |
| 579 | |
| 580 | const double kTolerance = 1e-5; |
| 581 | EXPECT_NEAR(diff_norm, 0.0, kTolerance) |
| 582 | << "rows: " << row_begin << " " << row_end << " " |
| 583 | << "cols: " << col_begin << " " << col_end << " " |
| 584 | << "\n\n expected: \n " << expected.block(row_begin, |
| 585 | col_begin, |
| 586 | row_end - row_begin, |
| 587 | col_end - col_begin) |
| 588 | << "\n\n actual: \n " << actual |
| 589 | << "\n\n full expected: \n" << expected; |
| 590 | } |
| 591 | |
| 592 | double parameters_[6]; |
| 593 | Problem problem_; |
| 594 | vector<pair<const double*, const double*>> all_covariance_blocks_; |
| 595 | BoundsMap column_bounds_; |
| 596 | BoundsMap local_column_bounds_; |
| 597 | }; |
| 598 | |
| 599 | |
| 600 | TEST_F(CovarianceTest, NormalBehavior) { |
| 601 | // J |
| 602 | // |
| 603 | // 1 0 0 0 0 0 |
| 604 | // 0 1 0 0 0 0 |
| 605 | // 0 0 2 0 0 0 |
| 606 | // 0 0 0 2 0 0 |
| 607 | // 0 0 0 0 2 0 |
| 608 | // 0 0 0 0 0 5 |
| 609 | // -5 -6 1 2 3 0 |
| 610 | // 3 -2 0 0 0 2 |
| 611 | |
| 612 | // J'J |
| 613 | // |
| 614 | // 35 24 -5 -10 -15 6 |
| 615 | // 24 41 -6 -12 -18 -4 |
| 616 | // -5 -6 5 2 3 0 |
| 617 | // -10 -12 2 8 6 0 |
| 618 | // -15 -18 3 6 13 0 |
| 619 | // 6 -4 0 0 0 29 |
| 620 | |
| 621 | // inv(J'J) computed using octave. |
| 622 | double expected_covariance[] = { |
| 623 | 7.0747e-02, -8.4923e-03, 1.6821e-02, 3.3643e-02, 5.0464e-02, -1.5809e-02, // NOLINT |
| 624 | -8.4923e-03, 8.1352e-02, 2.4758e-02, 4.9517e-02, 7.4275e-02, 1.2978e-02, // NOLINT |
| 625 | 1.6821e-02, 2.4758e-02, 2.4904e-01, -1.9271e-03, -2.8906e-03, -6.5325e-05, // NOLINT |
| 626 | 3.3643e-02, 4.9517e-02, -1.9271e-03, 2.4615e-01, -5.7813e-03, -1.3065e-04, // NOLINT |
| 627 | 5.0464e-02, 7.4275e-02, -2.8906e-03, -5.7813e-03, 2.4133e-01, -1.9598e-04, // NOLINT |
| 628 | -1.5809e-02, 1.2978e-02, -6.5325e-05, -1.3065e-04, -1.9598e-04, 3.9544e-02, // NOLINT |
| 629 | }; |
| 630 | |
| 631 | Covariance::Options options; |
| 632 | |
| 633 | #ifndef CERES_NO_SUITESPARSE |
| 634 | options.algorithm_type = SPARSE_QR; |
| 635 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 636 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 637 | #endif |
| 638 | |
| 639 | options.algorithm_type = DENSE_SVD; |
| 640 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 641 | |
| 642 | options.algorithm_type = SPARSE_QR; |
| 643 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 644 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 645 | } |
| 646 | |
| 647 | #ifdef CERES_USE_OPENMP |
| 648 | |
| 649 | TEST_F(CovarianceTest, ThreadedNormalBehavior) { |
| 650 | // J |
| 651 | // |
| 652 | // 1 0 0 0 0 0 |
| 653 | // 0 1 0 0 0 0 |
| 654 | // 0 0 2 0 0 0 |
| 655 | // 0 0 0 2 0 0 |
| 656 | // 0 0 0 0 2 0 |
| 657 | // 0 0 0 0 0 5 |
| 658 | // -5 -6 1 2 3 0 |
| 659 | // 3 -2 0 0 0 2 |
| 660 | |
| 661 | // J'J |
| 662 | // |
| 663 | // 35 24 -5 -10 -15 6 |
| 664 | // 24 41 -6 -12 -18 -4 |
| 665 | // -5 -6 5 2 3 0 |
| 666 | // -10 -12 2 8 6 0 |
| 667 | // -15 -18 3 6 13 0 |
| 668 | // 6 -4 0 0 0 29 |
| 669 | |
| 670 | // inv(J'J) computed using octave. |
| 671 | double expected_covariance[] = { |
| 672 | 7.0747e-02, -8.4923e-03, 1.6821e-02, 3.3643e-02, 5.0464e-02, -1.5809e-02, // NOLINT |
| 673 | -8.4923e-03, 8.1352e-02, 2.4758e-02, 4.9517e-02, 7.4275e-02, 1.2978e-02, // NOLINT |
| 674 | 1.6821e-02, 2.4758e-02, 2.4904e-01, -1.9271e-03, -2.8906e-03, -6.5325e-05, // NOLINT |
| 675 | 3.3643e-02, 4.9517e-02, -1.9271e-03, 2.4615e-01, -5.7813e-03, -1.3065e-04, // NOLINT |
| 676 | 5.0464e-02, 7.4275e-02, -2.8906e-03, -5.7813e-03, 2.4133e-01, -1.9598e-04, // NOLINT |
| 677 | -1.5809e-02, 1.2978e-02, -6.5325e-05, -1.3065e-04, -1.9598e-04, 3.9544e-02, // NOLINT |
| 678 | }; |
| 679 | |
| 680 | Covariance::Options options; |
| 681 | options.num_threads = 4; |
| 682 | |
| 683 | #ifndef CERES_NO_SUITESPARSE |
| 684 | options.algorithm_type = SPARSE_QR; |
| 685 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 686 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 687 | #endif |
| 688 | |
| 689 | options.algorithm_type = DENSE_SVD; |
| 690 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 691 | |
| 692 | options.algorithm_type = SPARSE_QR; |
| 693 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 694 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 695 | } |
| 696 | |
| 697 | #endif // CERES_USE_OPENMP |
| 698 | |
| 699 | TEST_F(CovarianceTest, ConstantParameterBlock) { |
| 700 | problem_.SetParameterBlockConstant(parameters_); |
| 701 | |
| 702 | // J |
| 703 | // |
| 704 | // 0 0 0 0 0 0 |
| 705 | // 0 0 0 0 0 0 |
| 706 | // 0 0 2 0 0 0 |
| 707 | // 0 0 0 2 0 0 |
| 708 | // 0 0 0 0 2 0 |
| 709 | // 0 0 0 0 0 5 |
| 710 | // 0 0 1 2 3 0 |
| 711 | // 0 0 0 0 0 2 |
| 712 | |
| 713 | // J'J |
| 714 | // |
| 715 | // 0 0 0 0 0 0 |
| 716 | // 0 0 0 0 0 0 |
| 717 | // 0 0 5 2 3 0 |
| 718 | // 0 0 2 8 6 0 |
| 719 | // 0 0 3 6 13 0 |
| 720 | // 0 0 0 0 0 29 |
| 721 | |
| 722 | // pinv(J'J) computed using octave. |
| 723 | double expected_covariance[] = { |
| 724 | 0, 0, 0, 0, 0, 0, // NOLINT |
| 725 | 0, 0, 0, 0, 0, 0, // NOLINT |
| 726 | 0, 0, 0.23611, -0.02778, -0.04167, -0.00000, // NOLINT |
| 727 | 0, 0, -0.02778, 0.19444, -0.08333, -0.00000, // NOLINT |
| 728 | 0, 0, -0.04167, -0.08333, 0.12500, -0.00000, // NOLINT |
| 729 | 0, 0, -0.00000, -0.00000, -0.00000, 0.03448 // NOLINT |
| 730 | }; |
| 731 | |
| 732 | Covariance::Options options; |
| 733 | |
| 734 | #ifndef CERES_NO_SUITESPARSE |
| 735 | options.algorithm_type = SPARSE_QR; |
| 736 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 737 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 738 | #endif |
| 739 | |
| 740 | options.algorithm_type = DENSE_SVD; |
| 741 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 742 | |
| 743 | options.algorithm_type = SPARSE_QR; |
| 744 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 745 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 746 | } |
| 747 | |
| 748 | TEST_F(CovarianceTest, LocalParameterization) { |
| 749 | double* x = parameters_; |
| 750 | double* y = x + 2; |
| 751 | |
| 752 | problem_.SetParameterization(x, new PolynomialParameterization); |
| 753 | |
| 754 | vector<int> subset; |
| 755 | subset.push_back(2); |
| 756 | problem_.SetParameterization(y, new SubsetParameterization(3, subset)); |
| 757 | |
| 758 | // Raw Jacobian: J |
| 759 | // |
| 760 | // 1 0 0 0 0 0 |
| 761 | // 0 1 0 0 0 0 |
| 762 | // 0 0 2 0 0 0 |
| 763 | // 0 0 0 2 0 0 |
| 764 | // 0 0 0 0 2 0 |
| 765 | // 0 0 0 0 0 5 |
| 766 | // -5 -6 1 2 3 0 |
| 767 | // 3 -2 0 0 0 2 |
| 768 | |
| 769 | // Local to global jacobian: A |
| 770 | // |
| 771 | // 1 0 0 0 |
| 772 | // 1 0 0 0 |
| 773 | // 0 1 0 0 |
| 774 | // 0 0 1 0 |
| 775 | // 0 0 0 0 |
| 776 | // 0 0 0 1 |
| 777 | |
| 778 | // A * inv((J*A)'*(J*A)) * A' |
| 779 | // Computed using octave. |
| 780 | double expected_covariance[] = { |
| 781 | 0.01766, 0.01766, 0.02158, 0.04316, 0.00000, -0.00122, |
| 782 | 0.01766, 0.01766, 0.02158, 0.04316, 0.00000, -0.00122, |
| 783 | 0.02158, 0.02158, 0.24860, -0.00281, 0.00000, -0.00149, |
| 784 | 0.04316, 0.04316, -0.00281, 0.24439, 0.00000, -0.00298, |
| 785 | 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, |
| 786 | -0.00122, -0.00122, -0.00149, -0.00298, 0.00000, 0.03457 |
| 787 | }; |
| 788 | |
| 789 | Covariance::Options options; |
| 790 | |
| 791 | #ifndef CERES_NO_SUITESPARSE |
| 792 | options.algorithm_type = SPARSE_QR; |
| 793 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 794 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 795 | #endif |
| 796 | |
| 797 | options.algorithm_type = DENSE_SVD; |
| 798 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 799 | |
| 800 | options.algorithm_type = SPARSE_QR; |
| 801 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 802 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 803 | } |
| 804 | |
| 805 | TEST_F(CovarianceTest, LocalParameterizationInTangentSpace) { |
| 806 | double* x = parameters_; |
| 807 | double* y = x + 2; |
| 808 | double* z = y + 3; |
| 809 | |
| 810 | problem_.SetParameterization(x, new PolynomialParameterization); |
| 811 | |
| 812 | vector<int> subset; |
| 813 | subset.push_back(2); |
| 814 | problem_.SetParameterization(y, new SubsetParameterization(3, subset)); |
| 815 | |
| 816 | local_column_bounds_[x] = make_pair(0, 1); |
| 817 | local_column_bounds_[y] = make_pair(1, 3); |
| 818 | local_column_bounds_[z] = make_pair(3, 4); |
| 819 | |
| 820 | // Raw Jacobian: J |
| 821 | // |
| 822 | // 1 0 0 0 0 0 |
| 823 | // 0 1 0 0 0 0 |
| 824 | // 0 0 2 0 0 0 |
| 825 | // 0 0 0 2 0 0 |
| 826 | // 0 0 0 0 2 0 |
| 827 | // 0 0 0 0 0 5 |
| 828 | // -5 -6 1 2 3 0 |
| 829 | // 3 -2 0 0 0 2 |
| 830 | |
| 831 | // Local to global jacobian: A |
| 832 | // |
| 833 | // 1 0 0 0 |
| 834 | // 1 0 0 0 |
| 835 | // 0 1 0 0 |
| 836 | // 0 0 1 0 |
| 837 | // 0 0 0 0 |
| 838 | // 0 0 0 1 |
| 839 | |
| 840 | // inv((J*A)'*(J*A)) |
| 841 | // Computed using octave. |
| 842 | double expected_covariance[] = { |
| 843 | 0.01766, 0.02158, 0.04316, -0.00122, |
| 844 | 0.02158, 0.24860, -0.00281, -0.00149, |
| 845 | 0.04316, -0.00281, 0.24439, -0.00298, |
| 846 | -0.00122, -0.00149, -0.00298, 0.03457 // NOLINT |
| 847 | }; |
| 848 | |
| 849 | Covariance::Options options; |
| 850 | |
| 851 | #ifndef CERES_NO_SUITESPARSE |
| 852 | options.algorithm_type = SPARSE_QR; |
| 853 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 854 | |
| 855 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 856 | #endif |
| 857 | |
| 858 | options.algorithm_type = DENSE_SVD; |
| 859 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 860 | |
| 861 | options.algorithm_type = SPARSE_QR; |
| 862 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 863 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 864 | } |
| 865 | |
| 866 | TEST_F(CovarianceTest, LocalParameterizationInTangentSpaceWithConstantBlocks) { |
| 867 | double* x = parameters_; |
| 868 | double* y = x + 2; |
| 869 | double* z = y + 3; |
| 870 | |
| 871 | problem_.SetParameterization(x, new PolynomialParameterization); |
| 872 | problem_.SetParameterBlockConstant(x); |
| 873 | |
| 874 | vector<int> subset; |
| 875 | subset.push_back(2); |
| 876 | problem_.SetParameterization(y, new SubsetParameterization(3, subset)); |
| 877 | problem_.SetParameterBlockConstant(y); |
| 878 | |
| 879 | local_column_bounds_[x] = make_pair(0, 1); |
| 880 | local_column_bounds_[y] = make_pair(1, 3); |
| 881 | local_column_bounds_[z] = make_pair(3, 4); |
| 882 | |
| 883 | // Raw Jacobian: J |
| 884 | // |
| 885 | // 1 0 0 0 0 0 |
| 886 | // 0 1 0 0 0 0 |
| 887 | // 0 0 2 0 0 0 |
| 888 | // 0 0 0 2 0 0 |
| 889 | // 0 0 0 0 2 0 |
| 890 | // 0 0 0 0 0 5 |
| 891 | // -5 -6 1 2 3 0 |
| 892 | // 3 -2 0 0 0 2 |
| 893 | |
| 894 | // Local to global jacobian: A |
| 895 | // |
| 896 | // 0 0 0 0 |
| 897 | // 0 0 0 0 |
| 898 | // 0 0 0 0 |
| 899 | // 0 0 0 0 |
| 900 | // 0 0 0 0 |
| 901 | // 0 0 0 1 |
| 902 | |
| 903 | // pinv((J*A)'*(J*A)) |
| 904 | // Computed using octave. |
| 905 | double expected_covariance[] = { |
| 906 | 0.0, 0.0, 0.0, 0.0, |
| 907 | 0.0, 0.0, 0.0, 0.0, |
| 908 | 0.0, 0.0, 0.0, 0.0, |
| 909 | 0.0, 0.0, 0.0, 0.034482 // NOLINT |
| 910 | }; |
| 911 | |
| 912 | Covariance::Options options; |
| 913 | |
| 914 | #ifndef CERES_NO_SUITESPARSE |
| 915 | options.algorithm_type = SPARSE_QR; |
| 916 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 917 | |
| 918 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 919 | #endif |
| 920 | |
| 921 | options.algorithm_type = DENSE_SVD; |
| 922 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 923 | |
| 924 | options.algorithm_type = SPARSE_QR; |
| 925 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 926 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 927 | } |
| 928 | |
| 929 | TEST_F(CovarianceTest, TruncatedRank) { |
| 930 | // J |
| 931 | // |
| 932 | // 1 0 0 0 0 0 |
| 933 | // 0 1 0 0 0 0 |
| 934 | // 0 0 2 0 0 0 |
| 935 | // 0 0 0 2 0 0 |
| 936 | // 0 0 0 0 2 0 |
| 937 | // 0 0 0 0 0 5 |
| 938 | // -5 -6 1 2 3 0 |
| 939 | // 3 -2 0 0 0 2 |
| 940 | |
| 941 | // J'J |
| 942 | // |
| 943 | // 35 24 -5 -10 -15 6 |
| 944 | // 24 41 -6 -12 -18 -4 |
| 945 | // -5 -6 5 2 3 0 |
| 946 | // -10 -12 2 8 6 0 |
| 947 | // -15 -18 3 6 13 0 |
| 948 | // 6 -4 0 0 0 29 |
| 949 | |
| 950 | // 3.4142 is the smallest eigen value of J'J. The following matrix |
| 951 | // was obtained by dropping the eigenvector corresponding to this |
| 952 | // eigenvalue. |
| 953 | double expected_covariance[] = { |
| 954 | 5.4135e-02, -3.5121e-02, 1.7257e-04, 3.4514e-04, 5.1771e-04, -1.6076e-02, // NOLINT |
| 955 | -3.5121e-02, 3.8667e-02, -1.9288e-03, -3.8576e-03, -5.7864e-03, 1.2549e-02, // NOLINT |
| 956 | 1.7257e-04, -1.9288e-03, 2.3235e-01, -3.5297e-02, -5.2946e-02, -3.3329e-04, // NOLINT |
| 957 | 3.4514e-04, -3.8576e-03, -3.5297e-02, 1.7941e-01, -1.0589e-01, -6.6659e-04, // NOLINT |
| 958 | 5.1771e-04, -5.7864e-03, -5.2946e-02, -1.0589e-01, 9.1162e-02, -9.9988e-04, // NOLINT |
| 959 | -1.6076e-02, 1.2549e-02, -3.3329e-04, -6.6659e-04, -9.9988e-04, 3.9539e-02 // NOLINT |
| 960 | }; |
| 961 | |
| 962 | |
| 963 | { |
| 964 | Covariance::Options options; |
| 965 | options.algorithm_type = DENSE_SVD; |
| 966 | // Force dropping of the smallest eigenvector. |
| 967 | options.null_space_rank = 1; |
| 968 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 969 | } |
| 970 | |
| 971 | { |
| 972 | Covariance::Options options; |
| 973 | options.algorithm_type = DENSE_SVD; |
| 974 | // Force dropping of the smallest eigenvector via the ratio but |
| 975 | // automatic truncation. |
| 976 | options.min_reciprocal_condition_number = 0.044494; |
| 977 | options.null_space_rank = -1; |
| 978 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | TEST_F(CovarianceTest, DenseCovarianceMatrixFromSetOfParameters) { |
| 983 | Covariance::Options options; |
| 984 | Covariance covariance(options); |
| 985 | double* x = parameters_; |
| 986 | double* y = x + 2; |
| 987 | double* z = y + 3; |
| 988 | vector<const double*> parameter_blocks; |
| 989 | parameter_blocks.push_back(x); |
| 990 | parameter_blocks.push_back(y); |
| 991 | parameter_blocks.push_back(z); |
| 992 | covariance.Compute(parameter_blocks, &problem_); |
| 993 | double expected_covariance[36]; |
| 994 | covariance.GetCovarianceMatrix(parameter_blocks, expected_covariance); |
| 995 | |
| 996 | #ifndef CERES_NO_SUITESPARSE |
| 997 | options.algorithm_type = SPARSE_QR; |
| 998 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 999 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1000 | #endif |
| 1001 | |
| 1002 | options.algorithm_type = DENSE_SVD; |
| 1003 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1004 | |
| 1005 | options.algorithm_type = SPARSE_QR; |
| 1006 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 1007 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1008 | } |
| 1009 | |
| 1010 | TEST_F(CovarianceTest, DenseCovarianceMatrixFromSetOfParametersThreaded) { |
| 1011 | Covariance::Options options; |
| 1012 | options.num_threads = 4; |
| 1013 | Covariance covariance(options); |
| 1014 | double* x = parameters_; |
| 1015 | double* y = x + 2; |
| 1016 | double* z = y + 3; |
| 1017 | vector<const double*> parameter_blocks; |
| 1018 | parameter_blocks.push_back(x); |
| 1019 | parameter_blocks.push_back(y); |
| 1020 | parameter_blocks.push_back(z); |
| 1021 | covariance.Compute(parameter_blocks, &problem_); |
| 1022 | double expected_covariance[36]; |
| 1023 | covariance.GetCovarianceMatrix(parameter_blocks, expected_covariance); |
| 1024 | |
| 1025 | #ifndef CERES_NO_SUITESPARSE |
| 1026 | options.algorithm_type = SPARSE_QR; |
| 1027 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 1028 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1029 | #endif |
| 1030 | |
| 1031 | options.algorithm_type = DENSE_SVD; |
| 1032 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1033 | |
| 1034 | options.algorithm_type = SPARSE_QR; |
| 1035 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 1036 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1037 | } |
| 1038 | |
| 1039 | TEST_F(CovarianceTest, DenseCovarianceMatrixFromSetOfParametersInTangentSpace) { |
| 1040 | Covariance::Options options; |
| 1041 | Covariance covariance(options); |
| 1042 | double* x = parameters_; |
| 1043 | double* y = x + 2; |
| 1044 | double* z = y + 3; |
| 1045 | |
| 1046 | problem_.SetParameterization(x, new PolynomialParameterization); |
| 1047 | |
| 1048 | vector<int> subset; |
| 1049 | subset.push_back(2); |
| 1050 | problem_.SetParameterization(y, new SubsetParameterization(3, subset)); |
| 1051 | |
| 1052 | local_column_bounds_[x] = make_pair(0, 1); |
| 1053 | local_column_bounds_[y] = make_pair(1, 3); |
| 1054 | local_column_bounds_[z] = make_pair(3, 4); |
| 1055 | |
| 1056 | vector<const double*> parameter_blocks; |
| 1057 | parameter_blocks.push_back(x); |
| 1058 | parameter_blocks.push_back(y); |
| 1059 | parameter_blocks.push_back(z); |
| 1060 | covariance.Compute(parameter_blocks, &problem_); |
| 1061 | double expected_covariance[16]; |
| 1062 | covariance.GetCovarianceMatrixInTangentSpace(parameter_blocks, |
| 1063 | expected_covariance); |
| 1064 | |
| 1065 | #ifndef CERES_NO_SUITESPARSE |
| 1066 | options.algorithm_type = SPARSE_QR; |
| 1067 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 1068 | |
| 1069 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 1070 | #endif |
| 1071 | |
| 1072 | options.algorithm_type = DENSE_SVD; |
| 1073 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 1074 | |
| 1075 | options.algorithm_type = SPARSE_QR; |
| 1076 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 1077 | ComputeAndCompareCovarianceBlocksInTangentSpace(options, expected_covariance); |
| 1078 | } |
| 1079 | |
| 1080 | TEST_F(CovarianceTest, ComputeCovarianceFailure) { |
| 1081 | Covariance::Options options; |
| 1082 | Covariance covariance(options); |
| 1083 | double* x = parameters_; |
| 1084 | double* y = x + 2; |
| 1085 | vector<const double*> parameter_blocks; |
| 1086 | parameter_blocks.push_back(x); |
| 1087 | parameter_blocks.push_back(x); |
| 1088 | parameter_blocks.push_back(y); |
| 1089 | parameter_blocks.push_back(y); |
| 1090 | EXPECT_DEATH_IF_SUPPORTED(covariance.Compute(parameter_blocks, &problem_), |
| 1091 | "Covariance::Compute called with duplicate blocks " |
| 1092 | "at indices \\(0, 1\\) and \\(2, 3\\)"); |
| 1093 | vector<pair<const double*, const double*>> covariance_blocks; |
| 1094 | covariance_blocks.push_back(make_pair(x, x)); |
| 1095 | covariance_blocks.push_back(make_pair(x, x)); |
| 1096 | covariance_blocks.push_back(make_pair(y, y)); |
| 1097 | covariance_blocks.push_back(make_pair(y, y)); |
| 1098 | EXPECT_DEATH_IF_SUPPORTED(covariance.Compute(covariance_blocks, &problem_), |
| 1099 | "Covariance::Compute called with duplicate blocks " |
| 1100 | "at indices \\(0, 1\\) and \\(2, 3\\)"); |
| 1101 | } |
| 1102 | |
| 1103 | class RankDeficientCovarianceTest : public CovarianceTest { |
| 1104 | protected: |
| 1105 | virtual void SetUp() { |
| 1106 | double* x = parameters_; |
| 1107 | double* y = x + 2; |
| 1108 | double* z = y + 3; |
| 1109 | |
| 1110 | { |
| 1111 | double jacobian[] = { 1.0, 0.0, 0.0, 1.0}; |
| 1112 | problem_.AddResidualBlock(new UnaryCostFunction(2, 2, jacobian), NULL, x); |
| 1113 | } |
| 1114 | |
| 1115 | { |
| 1116 | double jacobian[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; |
| 1117 | problem_.AddResidualBlock(new UnaryCostFunction(3, 3, jacobian), NULL, y); |
| 1118 | } |
| 1119 | |
| 1120 | { |
| 1121 | double jacobian = 5.0; |
| 1122 | problem_.AddResidualBlock(new UnaryCostFunction(1, 1, &jacobian), |
| 1123 | NULL, |
| 1124 | z); |
| 1125 | } |
| 1126 | |
| 1127 | { |
| 1128 | double jacobian1[] = { 0.0, 0.0, 0.0 }; |
| 1129 | double jacobian2[] = { -5.0, -6.0 }; |
| 1130 | problem_.AddResidualBlock( |
| 1131 | new BinaryCostFunction(1, 3, 2, jacobian1, jacobian2), |
| 1132 | NULL, |
| 1133 | y, |
| 1134 | x); |
| 1135 | } |
| 1136 | |
| 1137 | { |
| 1138 | double jacobian1[] = {2.0 }; |
| 1139 | double jacobian2[] = { 3.0, -2.0 }; |
| 1140 | problem_.AddResidualBlock( |
| 1141 | new BinaryCostFunction(1, 1, 2, jacobian1, jacobian2), |
| 1142 | NULL, |
| 1143 | z, |
| 1144 | x); |
| 1145 | } |
| 1146 | |
| 1147 | all_covariance_blocks_.push_back(make_pair(x, x)); |
| 1148 | all_covariance_blocks_.push_back(make_pair(y, y)); |
| 1149 | all_covariance_blocks_.push_back(make_pair(z, z)); |
| 1150 | all_covariance_blocks_.push_back(make_pair(x, y)); |
| 1151 | all_covariance_blocks_.push_back(make_pair(x, z)); |
| 1152 | all_covariance_blocks_.push_back(make_pair(y, z)); |
| 1153 | |
| 1154 | column_bounds_[x] = make_pair(0, 2); |
| 1155 | column_bounds_[y] = make_pair(2, 5); |
| 1156 | column_bounds_[z] = make_pair(5, 6); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | TEST_F(RankDeficientCovarianceTest, AutomaticTruncation) { |
| 1161 | // J |
| 1162 | // |
| 1163 | // 1 0 0 0 0 0 |
| 1164 | // 0 1 0 0 0 0 |
| 1165 | // 0 0 0 0 0 0 |
| 1166 | // 0 0 0 0 0 0 |
| 1167 | // 0 0 0 0 0 0 |
| 1168 | // 0 0 0 0 0 5 |
| 1169 | // -5 -6 0 0 0 0 |
| 1170 | // 3 -2 0 0 0 2 |
| 1171 | |
| 1172 | // J'J |
| 1173 | // |
| 1174 | // 35 24 0 0 0 6 |
| 1175 | // 24 41 0 0 0 -4 |
| 1176 | // 0 0 0 0 0 0 |
| 1177 | // 0 0 0 0 0 0 |
| 1178 | // 0 0 0 0 0 0 |
| 1179 | // 6 -4 0 0 0 29 |
| 1180 | |
| 1181 | // pinv(J'J) computed using octave. |
| 1182 | double expected_covariance[] = { |
| 1183 | 0.053998, -0.033145, 0.000000, 0.000000, 0.000000, -0.015744, |
| 1184 | -0.033145, 0.045067, 0.000000, 0.000000, 0.000000, 0.013074, |
| 1185 | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 1186 | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 1187 | 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, |
| 1188 | -0.015744, 0.013074, 0.000000, 0.000000, 0.000000, 0.039543 |
| 1189 | }; |
| 1190 | |
| 1191 | Covariance::Options options; |
| 1192 | options.algorithm_type = DENSE_SVD; |
| 1193 | options.null_space_rank = -1; |
| 1194 | ComputeAndCompareCovarianceBlocks(options, expected_covariance); |
| 1195 | } |
| 1196 | |
| 1197 | class LargeScaleCovarianceTest : public ::testing::Test { |
| 1198 | protected: |
| 1199 | virtual void SetUp() { |
| 1200 | num_parameter_blocks_ = 2000; |
| 1201 | parameter_block_size_ = 5; |
| 1202 | parameters_.reset( |
| 1203 | new double[parameter_block_size_ * num_parameter_blocks_]); |
| 1204 | |
| 1205 | Matrix jacobian(parameter_block_size_, parameter_block_size_); |
| 1206 | for (int i = 0; i < num_parameter_blocks_; ++i) { |
| 1207 | jacobian.setIdentity(); |
| 1208 | jacobian *= (i + 1); |
| 1209 | |
| 1210 | double* block_i = parameters_.get() + i * parameter_block_size_; |
| 1211 | problem_.AddResidualBlock(new UnaryCostFunction(parameter_block_size_, |
| 1212 | parameter_block_size_, |
| 1213 | jacobian.data()), |
| 1214 | NULL, |
| 1215 | block_i); |
| 1216 | for (int j = i; j < num_parameter_blocks_; ++j) { |
| 1217 | double* block_j = parameters_.get() + j * parameter_block_size_; |
| 1218 | all_covariance_blocks_.push_back(make_pair(block_i, block_j)); |
| 1219 | } |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | void ComputeAndCompare( |
| 1224 | CovarianceAlgorithmType algorithm_type, |
| 1225 | SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type, |
| 1226 | int num_threads) { |
| 1227 | Covariance::Options options; |
| 1228 | options.algorithm_type = algorithm_type; |
| 1229 | options.sparse_linear_algebra_library_type = |
| 1230 | sparse_linear_algebra_library_type; |
| 1231 | options.num_threads = num_threads; |
| 1232 | Covariance covariance(options); |
| 1233 | EXPECT_TRUE(covariance.Compute(all_covariance_blocks_, &problem_)); |
| 1234 | |
| 1235 | Matrix expected(parameter_block_size_, parameter_block_size_); |
| 1236 | Matrix actual(parameter_block_size_, parameter_block_size_); |
| 1237 | const double kTolerance = 1e-16; |
| 1238 | |
| 1239 | for (int i = 0; i < num_parameter_blocks_; ++i) { |
| 1240 | expected.setIdentity(); |
| 1241 | expected /= (i + 1.0) * (i + 1.0); |
| 1242 | |
| 1243 | double* block_i = parameters_.get() + i * parameter_block_size_; |
| 1244 | covariance.GetCovarianceBlock(block_i, block_i, actual.data()); |
| 1245 | EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) |
| 1246 | << "block: " << i << ", " << i << "\n" |
| 1247 | << "expected: \n" << expected << "\n" |
| 1248 | << "actual: \n" << actual; |
| 1249 | |
| 1250 | expected.setZero(); |
| 1251 | for (int j = i + 1; j < num_parameter_blocks_; ++j) { |
| 1252 | double* block_j = parameters_.get() + j * parameter_block_size_; |
| 1253 | covariance.GetCovarianceBlock(block_i, block_j, actual.data()); |
| 1254 | EXPECT_NEAR((expected - actual).norm(), 0.0, kTolerance) |
| 1255 | << "block: " << i << ", " << j << "\n" |
| 1256 | << "expected: \n" << expected << "\n" |
| 1257 | << "actual: \n" << actual; |
| 1258 | } |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | std::unique_ptr<double[]> parameters_; |
| 1263 | int parameter_block_size_; |
| 1264 | int num_parameter_blocks_; |
| 1265 | |
| 1266 | Problem problem_; |
| 1267 | vector<pair<const double*, const double*>> all_covariance_blocks_; |
| 1268 | }; |
| 1269 | |
| 1270 | #if !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) |
| 1271 | |
| 1272 | TEST_F(LargeScaleCovarianceTest, Parallel) { |
| 1273 | ComputeAndCompare(SPARSE_QR, SUITE_SPARSE, 4); |
| 1274 | } |
| 1275 | |
| 1276 | #endif // !defined(CERES_NO_SUITESPARSE) && defined(CERES_USE_OPENMP) |
| 1277 | |
| 1278 | } // namespace internal |
| 1279 | } // namespace ceres |