blob: b849a806ced863d9e845fc949b786445f54db432 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2018 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: alexs.mac@gmail.com (Alex Stewart)
30
31#ifndef CERES_INTERNAL_ACCELERATE_SPARSE_H_
32#define CERES_INTERNAL_ACCELERATE_SPARSE_H_
33
34// This include must come before any #ifndef check on Ceres compile options.
35#include "ceres/internal/port.h"
36
37#ifndef CERES_NO_ACCELERATE_SPARSE
38
39#include <memory>
40#include <string>
41#include <vector>
42
43#include "ceres/linear_solver.h"
44#include "ceres/sparse_cholesky.h"
45#include "Accelerate.h"
46
47namespace ceres {
48namespace internal {
49
50class CompressedRowSparseMatrix;
51class TripletSparseMatrix;
52
53template<typename Scalar>
54struct SparseTypesTrait {
55};
56
57template<>
58struct SparseTypesTrait<double> {
59 typedef DenseVector_Double DenseVector;
60 typedef SparseMatrix_Double SparseMatrix;
61 typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
62 typedef SparseOpaqueFactorization_Double NumericFactorization;
63};
64
65template<>
66struct SparseTypesTrait<float> {
67 typedef DenseVector_Float DenseVector;
68 typedef SparseMatrix_Float SparseMatrix;
69 typedef SparseOpaqueSymbolicFactorization SymbolicFactorization;
70 typedef SparseOpaqueFactorization_Float NumericFactorization;
71};
72
73template<typename Scalar>
74class AccelerateSparse {
75 public:
76 using DenseVector = typename SparseTypesTrait<Scalar>::DenseVector;
77 // Use ASSparseMatrix to avoid collision with ceres::internal::SparseMatrix.
78 using ASSparseMatrix = typename SparseTypesTrait<Scalar>::SparseMatrix;
79 using SymbolicFactorization = typename SparseTypesTrait<Scalar>::SymbolicFactorization;
80 using NumericFactorization = typename SparseTypesTrait<Scalar>::NumericFactorization;
81
82 // Solves a linear system given its symbolic (reference counted within
83 // NumericFactorization) and numeric factorization.
84 void Solve(NumericFactorization* numeric_factor,
85 DenseVector* rhs_and_solution);
86
87 // Note: Accelerate's API passes/returns its objects by value, but as the
88 // objects contain pointers to the underlying data these copies are
89 // all shallow (in some cases Accelerate also reference counts the
90 // objects internally).
91 ASSparseMatrix CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);
92 // Computes a symbolic factorisation of A that can be used in Solve().
93 SymbolicFactorization AnalyzeCholesky(ASSparseMatrix* A);
94 // Compute the numeric Cholesky factorization of A, given its
95 // symbolic factorization.
96 NumericFactorization Cholesky(ASSparseMatrix* A,
97 SymbolicFactorization* symbolic_factor);
98 // Reuse the NumericFactorization from a previous matrix with the same
99 // symbolic factorization to represent a new numeric factorization.
100 void Cholesky(ASSparseMatrix* A, NumericFactorization* numeric_factor);
101
102 private:
103 std::vector<long> column_starts_;
104 // Storage for the values of A if Scalar != double (necessitating a copy).
105 Eigen::Matrix<Scalar, Eigen::Dynamic, 1> values_;
106};
107
108// An implementation of SparseCholesky interface using Apple's Accelerate
109// framework.
110template<typename Scalar>
111class AppleAccelerateCholesky : public SparseCholesky {
112 public:
113 // Factory
114 static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type);
115
116 // SparseCholesky interface.
117 virtual ~AppleAccelerateCholesky();
118 virtual CompressedRowSparseMatrix::StorageType StorageType() const;
119 virtual LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,
120 std::string* message);
121 virtual LinearSolverTerminationType Solve(const double* rhs,
122 double* solution,
123 std::string* message);
124
125 private:
126 AppleAccelerateCholesky(const OrderingType ordering_type);
127 void FreeSymbolicFactorization();
128 void FreeNumericFactorization();
129
130 const OrderingType ordering_type_;
131 AccelerateSparse<Scalar> as_;
132 std::unique_ptr<typename AccelerateSparse<Scalar>::SymbolicFactorization>
133 symbolic_factor_;
134 std::unique_ptr<typename AccelerateSparse<Scalar>::NumericFactorization>
135 numeric_factor_;
136 // Copy of rhs/solution if Scalar != double (necessitating a copy).
137 Eigen::Matrix<Scalar, Eigen::Dynamic, 1> scalar_rhs_and_solution_;
138};
139
140}
141}
142
143#endif // CERES_NO_ACCELERATE_SPARSE
144
145#endif // CERES_INTERNAL_ACCELERATE_SPARSE_H_