Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2017 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: mierle@gmail.com (Keir Mierle) |
| 30 | // |
| 31 | // WARNING WARNING WARNING |
| 32 | // WARNING WARNING WARNING Tiny solver is experimental and will change. |
| 33 | // WARNING WARNING WARNING |
| 34 | |
| 35 | #ifndef CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |
| 36 | #define CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |
| 37 | |
| 38 | #include <memory> |
| 39 | #include <type_traits> |
| 40 | #include "Eigen/Core" |
| 41 | |
| 42 | #include "ceres/jet.h" |
| 43 | #include "ceres/types.h" // For kImpossibleValue. |
| 44 | |
| 45 | namespace ceres { |
| 46 | |
| 47 | // An adapter around autodiff-style CostFunctors to enable easier use of |
| 48 | // TinySolver. See the example below showing how to use it: |
| 49 | // |
| 50 | // // Example for cost functor with static residual size. |
| 51 | // // Same as an autodiff cost functor, but taking only 1 parameter. |
| 52 | // struct MyFunctor { |
| 53 | // template<typename T> |
| 54 | // bool operator()(const T* const parameters, T* residuals) const { |
| 55 | // const T& x = parameters[0]; |
| 56 | // const T& y = parameters[1]; |
| 57 | // const T& z = parameters[2]; |
| 58 | // residuals[0] = x + 2.*y + 4.*z; |
| 59 | // residuals[1] = y * z; |
| 60 | // return true; |
| 61 | // } |
| 62 | // }; |
| 63 | // |
| 64 | // typedef TinySolverAutoDiffFunction<MyFunctor, 2, 3> |
| 65 | // AutoDiffFunction; |
| 66 | // |
| 67 | // MyFunctor my_functor; |
| 68 | // AutoDiffFunction f(my_functor); |
| 69 | // |
| 70 | // Vec3 x = ...; |
| 71 | // TinySolver<AutoDiffFunction> solver; |
| 72 | // solver.Solve(f, &x); |
| 73 | // |
| 74 | // // Example for cost functor with dynamic residual size. |
| 75 | // // NumResiduals() supplies dynamic size of residuals. |
| 76 | // // Same functionality as in tiny_solver.h but with autodiff. |
| 77 | // struct MyFunctorWithDynamicResiduals { |
| 78 | // int NumResiduals() const { |
| 79 | // return 2; |
| 80 | // } |
| 81 | // |
| 82 | // template<typename T> |
| 83 | // bool operator()(const T* const parameters, T* residuals) const { |
| 84 | // const T& x = parameters[0]; |
| 85 | // const T& y = parameters[1]; |
| 86 | // const T& z = parameters[2]; |
| 87 | // residuals[0] = x + static_cast<T>(2.)*y + static_cast<T>(4.)*z; |
| 88 | // residuals[1] = y * z; |
| 89 | // return true; |
| 90 | // } |
| 91 | // }; |
| 92 | // |
| 93 | // typedef TinySolverAutoDiffFunction<MyFunctorWithDynamicResiduals, |
| 94 | // Eigen::Dynamic, |
| 95 | // 3> |
| 96 | // AutoDiffFunctionWithDynamicResiduals; |
| 97 | // |
| 98 | // MyFunctorWithDynamicResiduals my_functor_dyn; |
| 99 | // AutoDiffFunctionWithDynamicResiduals f(my_functor_dyn); |
| 100 | // |
| 101 | // Vec3 x = ...; |
| 102 | // TinySolver<AutoDiffFunctionWithDynamicResiduals> solver; |
| 103 | // solver.Solve(f, &x); |
| 104 | // |
| 105 | // WARNING: The cost function adapter is not thread safe. |
| 106 | template<typename CostFunctor, |
| 107 | int kNumResiduals, |
| 108 | int kNumParameters, |
| 109 | typename T = double> |
| 110 | class TinySolverAutoDiffFunction { |
| 111 | public: |
| 112 | TinySolverAutoDiffFunction(const CostFunctor& cost_functor) |
| 113 | : cost_functor_(cost_functor) { |
| 114 | Initialize<kNumResiduals>(cost_functor); |
| 115 | } |
| 116 | |
| 117 | typedef T Scalar; |
| 118 | enum { |
| 119 | NUM_PARAMETERS = kNumParameters, |
| 120 | NUM_RESIDUALS = kNumResiduals, |
| 121 | }; |
| 122 | |
| 123 | // This is similar to AutoDifferentiate(), but since there is only one |
| 124 | // parameter block it is easier to inline to avoid overhead. |
| 125 | bool operator()(const T* parameters, |
| 126 | T* residuals, |
| 127 | T* jacobian) const { |
| 128 | if (jacobian == NULL) { |
| 129 | // No jacobian requested, so just directly call the cost function with |
| 130 | // doubles, skipping jets and derivatives. |
| 131 | return cost_functor_(parameters, residuals); |
| 132 | } |
| 133 | // Initialize the input jets with passed parameters. |
| 134 | for (int i = 0; i < kNumParameters; ++i) { |
| 135 | jet_parameters_[i].a = parameters[i]; // Scalar part. |
| 136 | jet_parameters_[i].v.setZero(); // Derivative part. |
| 137 | jet_parameters_[i].v[i] = T(1.0); |
| 138 | } |
| 139 | |
| 140 | // Initialize the output jets such that we can detect user errors. |
| 141 | for (int i = 0; i < num_residuals_; ++i) { |
| 142 | jet_residuals_[i].a = kImpossibleValue; |
| 143 | jet_residuals_[i].v.setConstant(kImpossibleValue); |
| 144 | } |
| 145 | |
| 146 | // Execute the cost function, but with jets to find the derivative. |
| 147 | if (!cost_functor_(jet_parameters_, jet_residuals_.data())) { |
| 148 | return false; |
| 149 | } |
| 150 | |
| 151 | // Copy the jacobian out of the derivative part of the residual jets. |
| 152 | Eigen::Map<Eigen::Matrix<T, kNumResiduals, kNumParameters>> jacobian_matrix( |
| 153 | jacobian, |
| 154 | num_residuals_, |
| 155 | kNumParameters); |
| 156 | for (int r = 0; r < num_residuals_; ++r) { |
| 157 | residuals[r] = jet_residuals_[r].a; |
| 158 | // Note that while this looks like a fast vectorized write, in practice it |
| 159 | // unfortunately thrashes the cache since the writes to the column-major |
| 160 | // jacobian are strided (e.g. rows are non-contiguous). |
| 161 | jacobian_matrix.row(r) = jet_residuals_[r].v; |
| 162 | } |
| 163 | return true; |
| 164 | } |
| 165 | |
| 166 | int NumResiduals() const { |
| 167 | return num_residuals_; // Set by Initialize. |
| 168 | } |
| 169 | |
| 170 | private: |
| 171 | const CostFunctor& cost_functor_; |
| 172 | |
| 173 | // The number of residuals at runtime. |
| 174 | // This will be overriden if NUM_RESIDUALS == Eigen::Dynamic. |
| 175 | int num_residuals_ = kNumResiduals; |
| 176 | |
| 177 | // To evaluate the cost function with jets, temporary storage is needed. These |
| 178 | // are the buffers that are used during evaluation; parameters for the input, |
| 179 | // and jet_residuals_ are where the final cost and derivatives end up. |
| 180 | // |
| 181 | // Since this buffer is used for evaluation, the adapter is not thread safe. |
| 182 | using JetType = Jet<T, kNumParameters>; |
| 183 | mutable JetType jet_parameters_[kNumParameters]; |
| 184 | // Eigen::Matrix serves as static or dynamic container. |
| 185 | mutable Eigen::Matrix<JetType, kNumResiduals, 1> jet_residuals_; |
| 186 | |
| 187 | // The number of residuals is dynamically sized and the number of |
| 188 | // parameters is statically sized. |
| 189 | template<int R> |
| 190 | typename std::enable_if<(R == Eigen::Dynamic), void>::type Initialize( |
| 191 | const CostFunctor& function) { |
| 192 | jet_residuals_.resize(function.NumResiduals()); |
| 193 | num_residuals_ = function.NumResiduals(); |
| 194 | } |
| 195 | |
| 196 | // The number of parameters and residuals are statically sized. |
| 197 | template<int R> |
| 198 | typename std::enable_if<(R != Eigen::Dynamic), void>::type Initialize( |
| 199 | const CostFunctor& /* function */) { |
| 200 | num_residuals_ = kNumResiduals; |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | } // namespace ceres |
| 205 | |
| 206 | #endif // CERES_PUBLIC_TINY_SOLVER_AUTODIFF_FUNCTION_H_ |